1
|
Vinken M, Grimm D, Baatout S, Baselet B, Beheshti A, Braun M, Carstens AC, Casaletto JA, Cools B, Costes SV, De Meulemeester P, Doruk B, Eyal S, Ferreira MJS, Miranda S, Hahn C, Helvacıoğlu Akyüz S, Herbert S, Krepkiy D, Lichterfeld Y, Liemersdorf C, Krüger M, Marchal S, Ritz J, Schmakeit T, Stenuit H, Tabury K, Trittel T, Wehland M, Zhang YS, Putt KS, Zhang ZY, Tagle DA. Taking the 3Rs to a higher level: replacement and reduction of animal testing in life sciences in space research. Biotechnol Adv 2025; 81:108574. [PMID: 40180136 PMCID: PMC12048243 DOI: 10.1016/j.biotechadv.2025.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Human settlements on the Moon, crewed missions to Mars and space tourism will become a reality in the next few decades. Human presence in space, especially for extended periods of time, will therefore steeply increase. However, despite more than 60 years of spaceflight, the mechanisms underlying the effects of the space environment on human physiology are still not fully understood. Animals, ranging in complexity from flies to monkeys, have played a pioneering role in understanding the (patho)physiological outcome of critical environmental factors in space, in particular altered gravity and cosmic radiation. The use of animals in biomedical research is increasingly being criticized because of ethical reasons and limited human relevance. Driven by the 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, major efforts have been focused in the past decades on the development of alternative methods that fully bypass animal testing or so-called new approach methodologies. These new approach methodologies range from simple monolayer cultures of individual primary or stem cells all up to bioprinted 3D organoids and microfluidic chips that recapitulate the complex cellular architecture of organs. Other approaches applied in life sciences in space research contribute to the reduction of animal experimentation. These include methods to mimic space conditions on Earth, such as microgravity and radiation simulators, as well as tools to support the processing, analysis or application of testing results obtained in life sciences in space research, including systems biology, live-cell, high-content and real-time analysis, high-throughput analysis, artificial intelligence and digital twins. The present paper provides an in-depth overview of such methods to replace or reduce animal testing in life sciences in space research.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Baatout
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Bjorn Baselet
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Afshin Beheshti
- Center of Space Biomedicine, McGowan Institute for Regenerative Medicine, and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Markus Braun
- German Space Agency, German Aerospace Center, Bonn, Germany
| | | | - James A Casaletto
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Ben Cools
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium; Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Sylvain V Costes
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA; Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Phoebe De Meulemeester
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bartu Doruk
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Silvana Miranda
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium; Department of Molecular Biotechnology, Gent University, Gent, Belgium
| | - Christiane Hahn
- European Space Agency, Human and Robotic Exploration Programmes, Human Exploration Science team, Noordwijk, the Netherlands
| | - Sinem Helvacıoğlu Akyüz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Herbert
- Space Systems, Airbus Defence and Space, Immenstaad am Bodensee, Germany
| | - Dmitriy Krepkiy
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yannick Lichterfeld
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jette Ritz
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Theresa Schmakeit
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Hilde Stenuit
- Space Applications Services NV/SA, Sint-Stevens-Woluwe, Belgium
| | - Kevin Tabury
- Nuclear Medical Applications Institute, Belgian Nuclear Research Centre, Mol, Belgium
| | - Torsten Trittel
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany; Department of Engineering, Brandenburg University of Applied Sciences, Brandenburg an der Havel, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yu Shrike Zhang
- Division of Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA; Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Danilo A Tagle
- Office of Special Initiatives, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Zhao H, Tu X. The potential key genes within focal adhesion that regulate mesenchymal stem cells osteogenesis or adipogenesis in microgravity related disuse osteoporosis: an integrated analysis. Front Endocrinol (Lausanne) 2025; 16:1469400. [PMID: 40130165 PMCID: PMC11930814 DOI: 10.3389/fendo.2025.1469400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
This study aimed to identify key genes related to focal adhesions (FA) and cells involved in osteoblast (OS) and adipocyte (AD) differentiation in osteoporosis. A mouse model of disuse osteoporosis was made by hindlimbs unloading (HLU)/Tail - suspension. Micro - CT and histological analysis were done, and differentially expressed genes (DEGs) from GSE100930 were analyzed. Soft clustering on GSE80614 OS/AD samples found FA - related candidate genes. protein-protein interaction (PPI) network and cytoHubba's Degree algorithm identified key FA - genes, validated by quantitative polymerase chain reaction (qPCR). Key OS/AD - associated cells were identified by single - cell analysis. The mouse model showed decreased bone density, microstructure damage, increased marrow adiposity, and altered gene expression. Key FA - related genes for osteogenesis (ITGB3, LAMC1, COL6A3, ITGA8, PDGFRB) and adipogenesis (ITGB3, ITGA4, LAMB1, ITGA8, LAMA4) were found and validated. Key cells (chondrocyte, adipocyte, and osteoblast progenitors) are involved in specific pathways, with osteoblast progenitors having stronger interactions. Pseudotime analysis implies differentiation from chondrocyte progenitors to adipocyte, then osteoblast progenitors. This study provides new insights for disuse osteoporosis research.
Collapse
Affiliation(s)
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Abdelfattah F, Schulz H, Wehland M, Corydon TJ, Sahana J, Kraus A, Krüger M, González-Torres LF, Cortés-Sánchez JL, Wise PM, Mushunuri A, Hemmersbach R, Liemersdorf C, Infanger M, Grimm D. Omics Studies of Specialized Cells and Stem Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:10014. [PMID: 39337501 PMCID: PMC11431953 DOI: 10.3390/ijms251810014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| | - Armin Kraus
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Ashwini Mushunuri
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
| | - Ruth Hemmersbach
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Christian Liemersdorf
- Department of Applied Aerospace Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (R.H.); (C.L.)
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (F.A.); (H.S.); (M.W.); (A.K.); (M.K.); (L.F.G.-T.); (J.L.C.-S.); (P.M.W.); (A.M.); (M.I.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
4
|
Wang J, Xue M, Hu Y, Li J, Li Z, Wang Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024; 14:554. [PMID: 38785961 PMCID: PMC11118602 DOI: 10.3390/biom14050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoporosis (OP), a prevalent skeletal disorder characterized by compromised bone strength and increased susceptibility to fractures, poses a significant public health concern. This review aims to provide a comprehensive analysis of the current state of research in the field, focusing on the application of proteomic techniques to elucidate diagnostic markers and therapeutic targets for OP. The integration of cutting-edge proteomic technologies has enabled the identification and quantification of proteins associated with bone metabolism, leading to a deeper understanding of the molecular mechanisms underlying OP. In this review, we systematically examine recent advancements in proteomic studies related to OP, emphasizing the identification of potential biomarkers for OP diagnosis and the discovery of novel therapeutic targets. Additionally, we discuss the challenges and future directions in the field, highlighting the potential impact of proteomic research in transforming the landscape of OP diagnosis and treatment.
Collapse
Affiliation(s)
- Jihan Wang
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
| | - Mengju Xue
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Ya Hu
- Department of Medical College, Hunan Polytechnic of Environment and Biology, Hengyang 421000, China
| | - Jingwen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Zhenzhen Li
- Xi’an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (J.W.)
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
5
|
Carnovali M, Zava S, Banfi G, Rizzo AM, Mariotti M. Vibration Rather than Microgravity Affects Bone Metabolism in Adult Zebrafish Scale Model. Cells 2024; 13:509. [PMID: 38534353 PMCID: PMC10969198 DOI: 10.3390/cells13060509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Gravity and mechanical forces cause important alterations in the human skeletal system, as demonstrated by space flights. Innovative animal models like zebrafish embryos and medaka have been introduced to study bone response in ground-based microgravity simulators. We used, for the first time, adult zebrafish in simulated microgravity, with a random positioning machine (RPM) to study bone remodeling in the scales. To evaluate the effects of microgravity on bone remodeling in adult bone tissue, we exposed adult zebrafish to microgravity for 14 days using RPM and we evaluated bone remodeling on explanted scales. Our data highlight bone resorption in scales in simulated microgravity fish but also in the fish exposed, in normal gravity, to the vibrations produced by the RPM. The osteoclast activation in both rotating and non-rotating samples suggest that prolonged vibrations exposure leads to bone resorption in the scales tissue. Stress levels in these fish were normal, as demonstrated by blood cortisol quantification. In conclusion, vibrational mechanical stress induced bone resorption in adult fish scales. Moreover, adult fish as an animal model for microgravity studies remains controversial since fish usually live in weightless conditions because of the buoyant force from water and do not constantly need to support their bodies against gravity.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Ospedale Galeazzi Sant’Ambrogio, Via C. Belgioioso 173, 20161 Milan, Italy; (M.C.); (G.B.)
| | - Stefania Zava
- Department of Pharmacological and Biomedical Sciences “Rodolfo Paoletti”, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy; (S.Z.); (A.M.R.)
| | - Giuseppe Banfi
- IRCCS Ospedale Galeazzi Sant’Ambrogio, Via C. Belgioioso 173, 20161 Milan, Italy; (M.C.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomedical Sciences “Rodolfo Paoletti”, University of Milan, Via D. Trentacoste 2, 20134 Milan, Italy; (S.Z.); (A.M.R.)
| | - Massimo Mariotti
- IRCCS Ospedale Galeazzi Sant’Ambrogio, Via C. Belgioioso 173, 20161 Milan, Italy; (M.C.); (G.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, 20122 Milan, Italy
| |
Collapse
|
6
|
Shi Q, Gui J, Sun L, Song Y, Na J, Zhang J, Fan Y, Zheng L. Frizzled-9 triggers actin polymerization and activates mechano-transducer YAP to rescue simulated microgravity-induced osteoblast dysfunction. FASEB J 2023; 37:e23147. [PMID: 37585277 DOI: 10.1096/fj.202300977r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Long-term spaceflight can result in bone loss and osteoblast dysfunction. Frizzled-9 (Fzd9) is a Wnt receptor of the frizzled family that is vital for osteoblast differentiation and bone formation. In the present study, we elucidated whether Fzd9 plays a role in osteoblast dysfunction induced by simulated microgravity (SMG). After 1-7 days of SMG, osteogenic markers such as alkaline phosphatase (ALP), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2) were decreased, accompanied by a decrease in Fzd9 expression. Furthermore, Fzd9 expression decreased in the rat femur after 3 weeks of hindlimb unloading. In contrast, Fzd9 overexpression counteracted the decrease in ALP, OPN, and RUNX2 induced by SMG in osteoblasts. Moreover, SMG regulated phosphorylated glycogen synthase kinase-3β (pGSK3β) and β-catenin expression or sublocalization. However, Fzd9 overexpression did not affect pGSK3β and β-catenin expression or sublocalization induced by SMG. In addition, Fzd9 overexpression regulated protein kinase B also known as Akt and extracellular signal-regulated kinase (ERK) phosphorylation and induced F-actin polymerization to form the actin cap, press the nuclei, and increase nuclear pore size, thereby promoting the nuclear translocation of Yes-associated protein (YAP). Our study findings provide mechanistic insights into the role of Fzd9 in triggering actin polymerization and activating YAP to rescue SMG-induced osteoblast dysfunction and suggest that Fzd9 is a potential target to restore osteoblast function in individuals with bone diseases and after spaceflight.
Collapse
Affiliation(s)
- Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jinpeng Gui
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lianwen Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yaxin Song
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jingyi Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
7
|
Yamada S, Ockermann PN, Schwarz T, Mustafa K, Hansmann J. Translation of biophysical environment in bone into dynamic cell culture under flow for bone tissue engineering. Comput Struct Biotechnol J 2023; 21:4395-4407. [PMID: 37711188 PMCID: PMC10498129 DOI: 10.1016/j.csbj.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Bone is a dynamic environment where osteocytes, osteoblasts, and mesenchymal stem/progenitor cells perceive mechanical cues and regulate bone metabolism accordingly. In particular, interstitial fluid flow in bone and bone marrow serves as a primary biophysical stimulus, which regulates the growth and fate of the cellular components of bone. The processes of mechano-sensory and -transduction towards bone formation have been well studied mainly in vivo as well as in two-dimensional (2D) dynamic cell culture platforms, which elucidated mechanically induced osteogenesis starting with anabolic responses, such as production of nitrogen oxide and prostaglandins followed by the activation of canonical Wnt signaling, upon mechanosensation. The knowledge has been now translated into regenerative medicine, particularly into the field of bone tissue engineering, where multipotent stem cells are combined with three-dimensional (3D) scaffolding biomaterials to produce transplantable constructs for bone regeneration. In the presence of 3D scaffolds, the importance of suitable dynamic cell culture platforms increases further not only to improve mass transfer inside the scaffolds but to provide appropriate biophysical cues to guide cell fate. In principle, the concept of dynamic cell culture platforms is rooted to bone mechanobiology. Therefore, this review primarily focuses on biophysical environment in bone and its translation into dynamic cell culture platforms commonly used for 2D and 3D cell expansion, including their advancement, challenges, and future perspectives. Additionally, it provides the literature review of recent empirical studies using 2D and 3D flow-based dynamic cell culture systems for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Philipp Niklas Ockermann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Kamal Mustafa
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
- Department of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Germany
| |
Collapse
|
8
|
Cancelliere R, Rea G, Micheli L, Mantegazza P, Bauer EM, El Khouri A, Tempesta E, Altomare A, Capelli D, Capitelli F. Electrochemical and Structural Characterization of Lanthanum-Doped Hydroxyapatite: A Promising Material for Sensing Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4522. [PMID: 37444835 DOI: 10.3390/ma16134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In the quest to find powerful modifiers of screen-printed electrodes for sensing applications, a set of rare earth-doped Ca10-xREx(PO4)6(OH)2 (RE = La, Nd, Sm, Eu, Dy, and Tm and x = 0.01, 0.02, 0.10, and 0.20) hydroxyapatite (HAp) samples were subjected to an in-depth electrochemical characterization using electrochemical impedance spectroscopy and cyclic and square wave voltammetry. Among all of these, the inorganic phosphates doped with lanthanum proved to be the most reliable, revealing robust analytical performances in terms of sensitivity, repeatability, reproducibility, and reusability, hence paving the way for their exploitation in sensing applications. Structural data on La-doped HAp samples were also provided by using different techniques, including optical microscopy, X-ray diffraction, Rietveld refinement from X-ray data, Fourier transform infrared, and Raman vibrational spectroscopies, to complement the electrochemical characterization.
Collapse
Affiliation(s)
- Rocco Cancelliere
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Giuseppina Rea
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Laura Micheli
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Pietro Mantegazza
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Institute of Structure of Matter (ISM), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Asmaa El Khouri
- Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Emanuela Tempesta
- Institute of Environmental Geology and Geoengineering (IGAG), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Angela Altomare
- Institute of Crystallography (IC), National Research Council (CNR), Via Amendola 122/o, 70100 Bari, Italy
| | - Davide Capelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| | - Francesco Capitelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, 00016 Rome, Italy
| |
Collapse
|