1
|
Xiang G, Shi T, Nwaele CO, Xiao H, Liu Y, Wang Q, Zhang J, Zheng Y. Inhibition of the Sp1/PI3K/AKT signaling pathway exacerbates doxorubicin-induced cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119960. [PMID: 40246177 DOI: 10.1016/j.bbamcr.2025.119960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE This study aimed to investigate the interaction and underlying mechanisms between specificity protein 1 (Sp1) and the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the context of doxorubicin-induced cardiomyopathy (DIC). METHODS A rat model of DIC was established by intraperitoneal injection of doxorubicin (1 mg/kg) twice a week for eight weeks. Cardiac function was evaluated using echocardiography, and myocardial histopathology was assessed by hematoxylin-eosin (HE) staining. In vitro, H9c2 cardiomyocytes were treated with doxorubicin (2 μmol/L) to induce cardiotoxicity, followed by co-treatment with the Sp1 inhibitor plicamycin or the PI3K/AKT inhibitor LY294002. Cell viability was measured by the CCK-8 assay. Oxidative stress markers, including reactive oxygen species (ROS) and lactate dehydrogenase (LDH), were quantified using flow cytometry and colorimetric assays. Apoptosis was detected via TUNEL staining, and protein expression of Sp1, PI3K, AKT, and Caspase-3 was analyzed by Western blotting. RESULTS Doxorubicin treatment significantly impaired cardiac function in rats, as evidenced by an increase in both left ventricular internal diameters during diastole (LVIDd) and systole (LVIDs), along with decreased ejection fraction (EF) and fractional shortening (FS) (p < 0.01). Myocardial HE staining in doxorubicin-treated rats revealed disorganized cardiomyocyte structures, edema, and cellular necrosis. In vitro, doxorubicin exposure led to reduced H9c2 cell viability, elevated ROS and LDH levels, and increased apoptosis rates (p < 0.01). Western blotting demonstrated that doxorubicin significantly downregulated the expression of Sp1, PI3K, and AKT while upregulating Caspase-3. Inhibition of Sp1 or PI3K/AKT exacerbated these effects, resulting in further cardiac dysfunction, oxidative stress, and apoptosis. Moreover, Sp1 inhibition led to decreased PI3K/AKT pathway activation, while PI3K/AKT inhibition reciprocally suppressed Sp1 expression, indicating a bidirectional regulatory relationship. CONCLUSION Doxorubicin induces cardiotoxicity by promoting oxidative stress and apoptosis through the downregulation of the Sp1/PI3K/AKT signaling pathway. Inhibition of this pathway exacerbates cardiac injury, suggesting that targeting Sp1 and PI3K/AKT may offer novel therapeutic strategies for the prevention and treatment of DIC.
Collapse
Affiliation(s)
- Guojian Xiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Tingting Shi
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China; Fuzhou Jian Jia Rehabilitation Hospital, Fuzhou 350007, Fujian, China
| | | | - Huazhen Xiao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Yucheng Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Qingfeng Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Jiancheng Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology in South Branch, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China.
| | - Yonghong Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| |
Collapse
|
2
|
Jiang W, Yu L, Mu N, Zhang Z, Ma H. MG53 inhibits ferroptosis by targeting the p53/SLC7A11/GPX4 pathway to alleviate doxorubicin-induced cardiotoxicity. Free Radic Biol Med 2024; 223:224-236. [PMID: 39111582 DOI: 10.1016/j.freeradbiomed.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Doxorubicin (DOX) is an anthracycline medication that is commonly used to treat solid tumors. However, DOX has limited clinical efficacy due to known cardiotoxicity. Ferroptosis is involved in DOX-induced cardiotoxicity (DIC). Although mitsugumin-53 (MG53) has cardioprotective effects and is expected to attenuate myocardial ischemic injury, its ability to inhibit DOX-induced ferroptosis has not been extensively studied. This research aims to investigate the pathophysiological impact of MG53 on DOX induced ferroptosis. Here, MG53 levels were evaluated in relation to the extent of ferroptosis by establishing in vivo and in vitro DIC mouse models. Additionally, myocardial specific MG53 overexpressing mice were used to study the effect of MG53 on cardiac function in DIC mice. The study found that the MG53 expression decreased in DOX treated mouse hearts or cardiomyocytes. However, MG53-overexpressing improved cardiac function in the DIC model and effectively reduced myocardial ferroptosis by increasing solute carrier family 7 member 11 (SLC7A11) and Glutathione peroxidase 4 (GPX4) levels, which were decreased by DOX. Mechanistically, MG53 binds to tumor suppressor 53 (p53) to regulate its ubiquitination and degradation. Ferroptosis induced by DOX was prevented by either MG53 overexpression or p53 knockdown in cardiomyocytes. The modulation of the p53/SLC7A11/GPX4 pathway by overexpression of MG53 can alleviate DOX induced ferroptosis. The study indicates that MG53 can provide protection against DIC by increasing p53 ubiquitination. These results highlight the previously unidentified role of MG53 in inhibiting ferroptosis to prevent DIC.
Collapse
Affiliation(s)
- Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
3
|
Chen Y, Yang W, Cui X, Zhang H, Li L, Fu J, Guo H. Research Progress on the Mechanism, Monitoring, and Prevention of Cardiac Injury Caused by Antineoplastic Drugs-Anthracyclines. BIOLOGY 2024; 13:689. [PMID: 39336116 PMCID: PMC11429024 DOI: 10.3390/biology13090689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Anthracyclines represent a highly efficacious class of chemotherapeutic agents employed extensively in antitumor therapy. They are universally recognized for their potency in treating diverse malignancies, encompassing breast cancer, gastrointestinal tumors, and lymphomas. Nevertheless, the accumulation of anthracyclines within the body can lead to significant cardiac toxicity, adversely impacting both the survival rates and quality of life for tumor patients. This limitation somewhat restricts their clinical utilization. Determining how to monitor and mitigate their cardiotoxicity at an early stage has become an urgent clinical problem to be solved. Therefore, this paper reviews the mechanism of action, early monitoring, and strategies for the prevention of anthracycline-induced cardiotoxicity for clinical reference.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Cardiology, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710005, China
| | - Xiaoshan Cui
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huiyu Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Li
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianhua Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Guo
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
4
|
Dong WS, Hu C, Hu M, Gao YP, Hu YX, Li K, Ye YJ, Zhang X. Metrnl: a promising biomarker and therapeutic target for cardiovascular and metabolic diseases. Cell Commun Signal 2024; 22:389. [PMID: 39103830 PMCID: PMC11301845 DOI: 10.1186/s12964-024-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Modern human society is burdened with the pandemic of cardiovascular and metabolic diseases. Metrnl is a widely distributed secreted protein in the body, involved in regulating glucose and lipid metabolism and maintaining cardiovascular system homeostasis. In this review, we present the predictive and therapeutic roles of Metrnl in various cardiovascular and metabolic diseases, including atherosclerosis, ischemic heart disease, cardiac remodeling, heart failure, hypertension, chemotherapy-induced myocardial injury, diabetes mellitus, and obesity.
Collapse
Affiliation(s)
- Wen-Sheng Dong
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Can Hu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Min Hu
- Department of Cardiology, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Peng Gao
- Department of Cardiology, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Xin Hu
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Kang Li
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Yun-Jia Ye
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China
| | - Xin Zhang
- Department of Geriatrics, Hubei Key Laboratory of Metabolic and Chronic Diseases, Renmin Hospital of Wuhan University, Wuhan University at Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
5
|
Abohashem RS, Ahmed HH, Sayed AH, Effat H. Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats. Cell Biochem Biophys 2024; 82:1353-1366. [PMID: 38743136 DOI: 10.1007/s12013-024-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.
Collapse
Affiliation(s)
- Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Alaa H Sayed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Quagliariello V, Berretta M, Bisceglia I, Giacobbe I, Iovine M, Giordano V, Arianna R, Barbato M, Izzo F, Maurea C, Canale ML, Paccone A, Inno A, Scherillo M, Gabrielli D, Maurea N. The sGCa Vericiguat Exhibit Cardioprotective and Anti-Sarcopenic Effects through NLRP-3 Pathways: Potential Benefits for Anthracycline-Treated Cancer Patients. Cancers (Basel) 2024; 16:1487. [PMID: 38672567 PMCID: PMC11047880 DOI: 10.3390/cancers16081487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Anthracycline-induced cardiomyopathies and sarcopenia are frequently seen in cancer patients, affecting their overall survival and quality of life; therefore, new cardioprotective and anti-sarcopenic strategies are needed. Vericiguat is a new oral guanylate cyclase activator that reduces heart failure hospitalizations or cardiovascular death. This study highlighted the potential cardioprotective and anti-sarcopenic properties of vericiguat during anthracycline therapy. Human cardiomyocytes and primary skeletal muscle cells were exposed to doxorubicin (DOXO) with or without a pre-treatment with vericiguat. Mitochondrial cell viability, LDH, and Cytochrome C release were performed to study cytoprotective properties. Intracellular Ca++ content, TUNEL assay, cGMP, NLRP-3, Myd-88, and cytokine intracellular levels were quantified through colorimetric and selective ELISA methods. Vericiguat exerts significant cytoprotective and anti-apoptotic effects during exposure to doxorubicin. A drastic increase in cGMP expression and reduction in NLRP-3, MyD-88 levels were also seen in Vericiguat-DOXO groups vs. DOXO groups (p < 0.001) in both cardiomyocytes and human muscle cells. GCa vericiguat reduces cytokines and chemokines involved in heart failure and sarcopenia. The findings that emerged from this study could provide the rationale for further preclinical and clinical investigations aimed at reducing anthracycline cardiotoxicity and sarcopenia in cancer patients.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Rome, Italy;
| | - Ilaria Giacobbe
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Martina Iovine
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Vienna Giordano
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Raffaele Arianna
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Matteo Barbato
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Francesca Izzo
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Carlo Maurea
- ASL NA1, U.O.C. Neurology and Stroke Unit, Ospedale del Mare, 80147 Naples, Italy;
| | | | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Marino Scherillo
- Cardiologia Interventistica e UTIC, A.O. San Pio, Presidio Ospedaliero Gaetano Rummo, 82100 Benevento, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, Roma-Fondazione per Il Tuo Cuore-Heart Care Foundation, 00152 Roma, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy; (I.G.); (M.I.); (R.A.); (M.B.); (F.I.); (A.P.); (N.M.)
| |
Collapse
|
7
|
Saleh T. Therapy-induced senescence is finally escapable, what is next? Cell Cycle 2024; 23:713-721. [PMID: 38879812 PMCID: PMC11229739 DOI: 10.1080/15384101.2024.2364579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Several breakthrough articles have recently confirmed the ability of tumor cells to escape the stable cell cycle arrest imposed by Therapy-Induced Senescence (TIS). Subsequently, accepting the hypothesis that TIS is escapable should encourage serious reassessments of the fundamental roles of senescence in cancer treatment. The potential for escape from TIS undermines the well-established tumor suppressor function of senescence, proposes it as a mechanism of tumor dormancy leading to disease recurrence and invites for further investigation of its unfavorable contribution to cancer therapy outcomes. Moreover, escaping TIS strongly indicates that the elimination of senescent tumor cells, primarily through pharmacological means, is a suitable approach for increasing the efficacy of cancer treatment, one that still requires further exploration. This commentary provides an overview of the recent evidence that unequivocally demonstrated the ability of therapy-induced senescent tumor cells in overcoming the terminal growth arrest fate and provides future perspectives on the roles of TIS in tumor biology.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
8
|
Tikhomirov AS, Sinkevich YB, Dezhenkova LG, Kaluzhny DN, Ilyinsky NS, Borshchevskiy VI, Schols D, Shchekotikhin AE. Synthesis and antitumor activity of cyclopentane-fused anthraquinone derivatives. Eur J Med Chem 2024; 265:116103. [PMID: 38176358 DOI: 10.1016/j.ejmech.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Yuri B Sinkevich
- Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991, Moscow, Russian Federation
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russian Federation
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russian Federation.
| |
Collapse
|
9
|
Chen K, Guan H, Sun M, Zhang Y, Zhong W, Guo X, Zuo A, Zhuang H. Effects of Physical Activity on Cardiotoxicity and Cardio respiratory Function in Cancer Survivors Undergoing Chemotherapy: A Systematic Review and Meta-Analysis. Integr Cancer Ther 2024; 23:15347354241291176. [PMID: 39415360 PMCID: PMC11487611 DOI: 10.1177/15347354241291176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/28/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Introduction: Physical activity, as a promising complementary therapy, has shown considerable potential for reducing chemotherapy-related cardiotoxicity (CTRCT) and enhancing cardiorespiratory function (CRF). This study aimed to systematically assess the effects of physical activity on CTRCT and CRF in various cancer survivors receiving chemotherapy. Methods: A systematic review and meta-analysis was conducted. A literature search was conducted across 8 databases from inception to January 2024 and was limited to the English and Chinese languages. Statistical analysis was conducted using RevMan 5.3 and Stata 17.0 software. Results: Sixteen randomized controlled trials (RCTs) were included in the systematic review and 15 RCTs were included in the meta-analysis. Among various cancer survivors undergoing chemotherapy, physical activity markedly increased absolute oxygen uptake (VO2peak or VO2max; WMD = 292.99, 95% confidence interval [CI]:87.87 to 498.12, P = .005), with significant effects of subgroup analysis at 4 to 10 weeks (P = .02) or over 16 weeks (P < .01), moderate-to-high or high intensity training (both P < .0001), patients with breast cancer (P = .009) and reported CTRCT (P = .007); relative VO2peak or VO2max(WMD = 3.30, 95%CI: 2.02 to 4.58, P < .00001), with significant effects of subgroup analysis at 10 to 16 weeks or over 16 weeks, moderate-to-high or high intensity training, patients with breast cancer, with or without reported CTRCT and exercise during chemotherapy (all P < .01); E/A values (WMD = 0.11, 95%CI:0.03 to 0.18, P = .007) and flow-mediated dilatation (WMD = 2.71, 95%CI:1.49 to 3.94, P < .0001). Compared to the control group, physical activity had no significant improvement in E/e' values (P = .50), NT-proBNP (P = .12), hs-cTn (P = 3.83), left ventricular ejection fraction (WMD = 2.89, 95%CI: -3.28 to 9.06, P = .36) with non-significant effects being independent of exercise intensity or duration, with or without CTRCT and cancer types (all P > .05), and global longitudinal strain (WMD = 0.37, 95%CI: -0.20 to 0.94, P = .20) with non-significant effects being independent of exercise duration and cancer types(both P > .05). Conclusions: Physical activity may be an effective complementary therapy to improve CRF and CTRCT in various cancer survivors, particularly during medium to long duration and moderate-to-high and high intensity exercise with concurrent chemotherapy.
Collapse
Affiliation(s)
- Kang Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hui Guan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Meixia Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yukun Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenwen Zhong
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaonan Guo
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Anqi Zuo
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - He Zhuang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
10
|
Mahoney SA, Dey AK, Basisty N, Herman AB. Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches. Am J Physiol Heart Circ Physiol 2023; 325:H1039-H1058. [PMID: 37656130 PMCID: PMC10908411 DOI: 10.1152/ajpheart.00352.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and senescent cells have emerged as key contributors to its pathogenesis. Senescent cells exhibit cell cycle arrest and secrete a range of proinflammatory factors, termed the senescence-associated secretory phenotype (SASP), which promotes tissue dysfunction and exacerbates CVD progression. Omics technologies, specifically transcriptomics and proteomics, offer powerful tools to uncover and define the molecular signatures of senescent cells in cardiovascular tissue. By analyzing the comprehensive molecular profiles of senescent cells, omics approaches can identify specific genetic alterations, gene expression patterns, protein abundances, and metabolite levels associated with senescence in CVD. These omics-based discoveries provide insights into the mechanisms underlying senescence-induced cardiovascular damage, facilitating the development of novel diagnostic biomarkers and therapeutic targets. Furthermore, integration of multiple omics data sets enables a systems-level understanding of senescence in CVD, paving the way for precision medicine approaches to prevent or treat cardiovascular aging and its associated complications.
Collapse
Affiliation(s)
- Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States
| | - Amit K Dey
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Nathan Basisty
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| | - Allison B Herman
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States
| |
Collapse
|
11
|
Liao HH, Ding W, Zhang N, Zhou ZY, Ling Z, Li WJ, Chen S, Tang QZ. Activation of AMPKα2 attenuated doxorubicin-induced cardiotoxicity via inhibiting lipid peroxidation associated ferroptosis. Free Radic Biol Med 2023; 205:275-290. [PMID: 37331642 DOI: 10.1016/j.freeradbiomed.2023.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Ferroptosis has been suggested to involve in doxorubicin (DOX)-induced cardiotoxicity. However, the underlying mechanisms and regulatory targets of cardiomyocyte ferroptosis remains to be understood. This study demonstrated that the up-regulation of ferroptosis associated proteins genes were accompanied with the down-regulation of AMPKα2 phosphorylation in DOX treated mouse heart or neonatal rat cardiomyocytes (NRCMs). AMPKα2 knockout (AMPKα2-/-) significantly exacerbated mouse cardiac dysfunction, increased mortality, promoting ferroptosis associated mitochondrial injuries, enhanced ferroptosis associated proteins and genes expression, and lead to accumulation of lactate dehydrogenase (LDH) and malondialdehyde (MDA) in mouse serum and hearts respectively. Ferrostatin-1 administration markedly improved cardiac function, decreased mortality, inhibited mitochondrial injuries and ferroptosis associated proteins and genes expression, and depressed accumulation of LDH and MDA in DOX treated AMPKα2-/- mouse. Moreover, Adeno-associated virus serotype 9 AMPKα2 (AAV9-AMPKα2) or AICAR treatment mediated AMPKα2 activation could significantly improve cardiac function and depress ferroptosis in mouse. AMPKα2 activation or silence could also inhibit or promote ferroptosis associated injuries in DOX treated NRCMs respecitively. Mechanistically, AMPKα2/ACC mediated lipid metabolism has been suggested to involve in regulating DOX-treatment induced ferroptosis other than mTORC1 or autophagy dependent pathway. The metabolomics analysis exhibited that AMPKα2-/- significantly enhanced accumulation of polyunsaturated fatty acids (PFAs), oxidized lipid, and phosphatidylethanolamine (PE). Finally, this study also demonstrated that metformin (MET) treatment could inhibit ferroptosis and improve cardiac function via activating AMPKα2 phosphorylation. The metabolomics analysis exhibited that MET treatment significantly depressed PFAs accumulation in DOX treated mouse hearts. Collectively, this study suggested that AMPKα2 activation might protect against anthracycline chemotherapeutic drugs mediated cardiotoxicity via inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Zheng Ling
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Si Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China.
| |
Collapse
|
12
|
Morsy MA, Abdel-Gaber SA, Mokhemer SA, Kandeel M, Sedik WF, Nair AB, Venugopala KN, Khalil HE, Al-Dhubiab BE, Mohamed MZ. Pregnenolone Inhibits Doxorubicin-Induced Cardiac Oxidative Stress, Inflammation, and Apoptosis-Role of Matrix Metalloproteinase 2 and NADPH Oxidase 1. Pharmaceuticals (Basel) 2023; 16:ph16050665. [PMID: 37242448 DOI: 10.3390/ph16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical usefulness of doxorubicin (DOX) is limited by its serious adverse effects, such as cardiotoxicity. Pregnenolone demonstrated both anti-inflammatory and antioxidant activity in animal models. The current study aimed to investigate the cardioprotective potential of pregnenolone against DOX-induced cardiotoxicity. After acclimatization, male Wistar rats were randomly grouped into four groups: control (vehicle-treated), pregnenolone (35 mg/kg/d, p.o.), DOX (15 mg/kg, i.p, once), and pregnenolone + DOX. All treatments continued for seven consecutive days except DOX, which was administered once on day 5. The heart and serum samples were harvested one day after the last treatment for further assays. Pregnenolone ameliorated the DOX-induced increase in markers of cardiotoxicity, namely, histopathological changes and elevated serum levels of creatine kinase-MB and lactate dehydrogenase. Moreover, pregnenolone prevented DOX-induced oxidative changes (significantly lowered cardiac malondialdehyde, total nitrite/nitrate, and NADPH oxidase 1, and elevated reduced glutathione), tissue remodeling (significantly decreased matrix metalloproteinase 2), inflammation (significantly decreased tumor necrosis factor-α and interleukin 6), and proapoptotic changes (significantly lowered cleaved caspase-3). In conclusion, these findings show the cardioprotective effects of pregnenolone in DOX-treated rats. The cardioprotection achieved by pregnenolone treatment can be attributed to its antioxidant, anti-inflammatory, and antiapoptotic actions.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Sahar A Mokhemer
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Wael F Sedik
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Bandar E Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
13
|
Zhou F, Zhu X, Liu Y, Sun Y, Zhang Y, Cheng D, Wang W. Coronary atherosclerosis and chemotherapy: From bench to bedside. Front Cardiovasc Med 2023; 10:1118002. [PMID: 36742069 PMCID: PMC9892653 DOI: 10.3389/fcvm.2023.1118002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular disease, particularly coronary artery disease, is the leading cause of death in humans worldwide. Coronary heart disease caused by chemotherapy affects the prognosis and survival of patients with tumors. The most effective chemotherapeutic drugs for cancer include proteasome inhibitors, tyrosine kinase inhibitors, immune checkpoint inhibitors, 5-fluorouracil, and anthracyclines. Animal models and clinical trials have consistently shown that chemotherapy is closely associated with coronary events and can cause serious adverse cardiovascular events. Adverse cardiovascular events after chemotherapy can affect the clinical outcome, treatment, and prognosis of patients with tumors. In recent years, with the development of new chemotherapeutic drugs, new discoveries have been made about the effects of drugs used for chemotherapy on cardiovascular disease and its related mechanisms, such as inflammation. This review article summarizes the effects of chemotherapeutic drugs on coronary artery disease and its related mechanisms to guide efforts in reducing cardiovascular adverse events during tumor chemotherapy, preventing the development of coronary heart disease, and designing new prevention and treatment strategies for cardiotoxicity caused by clinical tumor chemotherapy.
Collapse
Affiliation(s)
- Fanghui Zhou
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinxin Zhu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yao Liu
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Sun
- Department of Blood and Endocrinology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, Heilongjiang, China
| | - Ying Zhang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | | | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Wei Wang,
| |
Collapse
|
14
|
Muggeo P, Scicchitano P, Muggeo VMR, Novielli C, Giordano P, Ciccone MM, Faienza MF, Santoro N. Assessment of Cardiovascular Function in Childhood Leukemia Survivors: The Role of the Right Heart. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1731. [PMID: 36421180 PMCID: PMC9688880 DOI: 10.3390/children9111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Childhood acute lymphoblastic leukemia (ALL) survivors who underwent chemotherapy with anthracyclines have an increased cardiovascular risk. The aim of the study was to evaluate left and right cardiac chamber performances and vascular endothelial function in childhood ALL survivors. Fifty-four ALL survivors and 37 healthy controls were enrolled. All patients underwent auxological evaluation, blood pressure measurements, biochemical parameters of endothelial dysfunction, flow-mediated dilatation (FMD) of the brachial artery, mean common carotid intima-media thickness (c-IMT), antero-posterior diameter of the infra-renal abdominal aorta (APAO), and echocardiographic assessment. The ALL subjects had significantly lower FMD (p = 0.0041), higher left (p = 0.0057) and right (p = 0.0021) echocardiographic/Doppler Tei index (the non-invasive index for combined systolic and diastolic ventricular function) as compared to controls. Tricuspid annular plane excursion (TAPSE) was 16.9 ± 1.2 mm vs. 24.5 ± 3.7 mm, p < 0.0001. Cumulative anthracycline doses were related to TAPSE (p < 0.001). The ALL survivors treated with anthracyclines demonstrated systo/diastolic alterations of the right ventricle and reduced endothelial function compared with healthy controls. The early recognition of subclinical cardiac and vascular impairment during follow up is of utmost importance for the cardiologist to implement strategies preventing overt cardiovascular disease considering the growing number of young adults cured after childhood ALL.
Collapse
Affiliation(s)
- Paola Muggeo
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy
| | - Pietro Scicchitano
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari “A. Moro”, 70124 Bari, Italy
| | | | - Chiara Novielli
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy
| | - Paola Giordano
- Department of Interdisciplinary Medicine, Pediatric Unit, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Marco Matteo Ciccone
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari “A. Moro”, 70124 Bari, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, Pediatric Unit, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Nicola Santoro
- Department of Pediatric Oncology and Hematology, University Hospital of Policlinico, 70124 Bari, Italy
| |
Collapse
|