1
|
Jin L, Zhang X, Wang J, Wang Y, Wang K, Wang Z, Wang P, Sun X, Hao J, Jin R, Lu D, Ge Q. Epigenetic Regulation of CD8 + Effector T Cell Differentiation by PDCD5. Eur J Immunol 2025; 55:e202451388. [PMID: 40111008 PMCID: PMC11924876 DOI: 10.1002/eji.202451388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic modification plays a crucial role in establishing the transcriptional program that governs the differentiation of CD8+ effector T cells. However, the mechanisms by which this process is regulated at an early stage, prior to the expression of master transcription factors, are not yet fully understood. In this study, we have identified PDCD5 as an activation-induced molecule that is necessary for the proper differentiation and expansion of antigen-specific CD8+ effector T cells in a mouse model of chronic viral infection. The genetic deletion of Pdcd5 resulted in impaired differentiation and function of effector T cells, while T-cell activation, metabolic reprogramming, and the differentiation of memory/exhausted T cells were largely unaffected. At the molecular level, we observed reduced chromatin accessibility and transcriptional activity of Tbx21 and its regulated genes in Pdcd5-/- CD8+ T cells. We further identified that PRDM9 facilitates the H3K4me3 modification of genes associated with the effector phenotype in CD8+ T cells. The interaction between PDCD5 and PRDM9 promotes the nuclear translocation and lysine methyltransferase activity of PRDM9. Collectively, these findings highlight the crucial role of the PDCD5/PRDM9 axis in epigenetic reprogramming during the early stages of fate determination for effector CD8+ T cell fate.
Collapse
Affiliation(s)
- Lixue Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Xin Zhang
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyInstitute of Systems BiomedicinePeking University Health Science CenterBeijingChina
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Yujia Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Ke Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Zhuolin Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
| | - Dan Lu
- Department of ImmunologySchool of Basic Medical SciencesNHC Key Laboratory of Medical ImmunologyBeijing Key Laboratory of Tumor Systems BiologyInstitute of Systems BiomedicinePeking University Health Science CenterBeijingChina
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science CenterPeking UniversityBeijingChina
- Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking UniversityBeijingChina
| |
Collapse
|
2
|
Yin L, Jiang N, Xiong W, Yang S, Zhang J, Xiong M, Liu K, Zhang Y, Xiong X, Gui Y, Gao H, Li T, Li Y, Wang X, Zhang Y, Wang F, Yuan S. METTL16 is Required for Meiotic Sex Chromosome Inactivation and DSB Formation and Recombination during Male Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406332. [PMID: 39607422 PMCID: PMC11744674 DOI: 10.1002/advs.202406332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Meiosis in males is a critical process that ensures complete spermatogenesis and genetic diversity. However, the key regulators involved in this process and the underlying molecular mechanisms remain unclear. Here, we report an essential role of the m6A methyltransferase METTL16 in meiotic sex chromosome inactivation (MSCI), double-strand break (DSB) formation, homologous recombination and SYCP1 deposition during male meiosis. METTL16 depletion results in a significantly upregulated transcriptome on sex chromosomes in pachytene spermatocytes and leads to reduced DSB formation and recombination, and increased SYCP1 depositioin during the first wave of spermatogenesis. Mechanistically, in pachytene spermatocytes, METTL16 interacts with MDC1/SCML2 to coordinate DNA damage response (DDR) and XY body epigenetic modifications that establish and maintain MSCI, and in early meiotic prophase I, METTL16 regulates DSB formation and recombination by regulating protein levels of meiosis-related genes. Furthermore, multi-omics analyses reveal that METTL16 interacts with translational factors and controls m6A levels in the RNAs of meiosis-related genes (e.g., Ubr2) to regulate the expression of critical meiotic regulators. Collectively, this study identified METTL16 as a key regulator of male meiosis and demonstrated that it modulates meiosis by interacting with MSCI-related factors and regulating m6A levels and translational efficiency (TE) of meiosis-related genes.
Collapse
Affiliation(s)
- Lisha Yin
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Nan Jiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenjing Xiong
- Laboratory of Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| | - Shiyu Yang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jin Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengneng Xiong
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kuan Liu
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuting Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xinxin Xiong
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yiqian Gui
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huihui Gao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Obstetrics and GynecologyThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430014China
| | - Tao Li
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yi Li
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoli Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Youzhi Zhang
- School of PharmacyHubei University of Science and TechnologyXianning437100China
| | - Fengli Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuiqiao Yuan
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Laboratory of Animal CenterHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
3
|
Lampitto M, Barchi M. Recent advances in mechanisms ensuring the pairing, synapsis and segregation of XY chromosomes in mice and humans. Cell Mol Life Sci 2024; 81:194. [PMID: 38653846 PMCID: PMC11039559 DOI: 10.1007/s00018-024-05216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.
Collapse
Affiliation(s)
- Matteo Lampitto
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marco Barchi
- Section of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Section of Anatomy, Department of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy.
| |
Collapse
|
4
|
Giannattasio T, Testa E, Faieta M, Lampitto M, Nardozi D, di Cecca S, Russo A, Barchi M. The proper interplay between the expression of Spo11 splice isoforms and the structure of the pseudoautosomal region promotes XY chromosomes recombination. Cell Mol Life Sci 2023; 80:279. [PMID: 37682311 PMCID: PMC10491539 DOI: 10.1007/s00018-023-04912-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023]
Abstract
XY chromosome missegregation is relatively common in humans and can lead to sterility or the generation of aneuploid spermatozoa. A leading cause of XY missegregation in mammals is the lack of formation of double-strand breaks (DSBs) in the pseudoautosomal region (PAR), a defect that may occur in mice due to faulty expression of Spo11 splice isoforms. Using a knock-in (ki) mouse that expresses only the single Spo11β splice isoform, here we demonstrate that by varying the genetic background of mice, the length of chromatin loops extending from the PAR axis and the XY recombination proficiency varies. In spermatocytes of C57Spo11βki/- mice, in which loops are relatively short, recombination/synapsis between XY is fairly normal. In contrast, in cells of C57/129Spo11βki/- males where PAR loops are relatively long, formation of DSBs in the PAR (more frequently the Y-PAR) and XY synapsis fails at a high rate, and mice produce sperm with sex-chromosomal aneuploidy. However, if the entire set of Spo11 splicing isoforms is expressed by a wild type allele in the C57/129 background, XY recombination and synapsis is recovered. By generating a Spo11αki mouse model, we prove that concomitant expression of SPO11β and SPO11α isoforms, boosts DSB formation in the PAR. Based on these findings, we propose that SPO11 splice isoforms cooperate functionally in promoting recombination in the PAR, constraining XY asynapsis defects that may arise due to differences in the conformation of the PAR between mouse strains.
Collapse
Affiliation(s)
- Teresa Giannattasio
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Erika Testa
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Monica Faieta
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Lampitto
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Nardozi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Stefano di Cecca
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy
| | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marco Barchi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, Rome, Italy.
- Department of Biomedical Science, Lady of Good Counsel University, Tirana, Albania.
| |
Collapse
|