1
|
Chamakiya CA, Chothani SR, Joshi RJ, Bhalodia J, Ambasana MA, Bapodra AH, Kapuriya N. Efficient and metal-free synthesis of 2-aroyl 7-azaindoles via thermally induced denitrogenative intramolecular annulation of 1,2,3,4-tetrazolopyridines. Org Biomol Chem 2024; 22:2192-2196. [PMID: 38411006 DOI: 10.1039/d4ob00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A facile and metal-free intramolecular denitrogenative annulation strategy for the preparation of novel 2-aroyl 7-azaindoles has been developed from 3-(tetrazolo[1,5-a]pyridin-8-yl)prop-2-en-1-one in the presence of the deep eutectic solvent Dowtherm A. The valuable features of the protocol include a short reaction time, absence of any metal catalyst, utilization of a eutectic solvent, easy product isolation, and very good yields of novel 2-aroyl 7-azaindoles.
Collapse
Affiliation(s)
- Chirag A Chamakiya
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Savankumar R Chothani
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Rupal J Joshi
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Jasmin Bhalodia
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Mrunal A Ambasana
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Atul H Bapodra
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| | - Naval Kapuriya
- Department of chemistry and forensic science, Bhakta Kavi Narsinh Mehta University Junagadh, Gujarat, India.
| |
Collapse
|
2
|
Ha T, Lee D, Kwon Y, Park MS, Lee S, Jang J, Choi B, Jeon H, Kim J, Choi H, Seo HT, Choi W, Hong W, Park YJ, Jang J, Cho J, Kim B, Kwon H, Kim G, Oh WS, Kim JW, Choi J, Min M, Jeon A, Jung Y, Kim E, Lee H, Choi YS. AI-driven robotic chemist for autonomous synthesis of organic molecules. SCIENCE ADVANCES 2023; 9:eadj0461. [PMID: 37910607 PMCID: PMC10619927 DOI: 10.1126/sciadv.adj0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
The automation of organic compound synthesis is pivotal for expediting the development of such compounds. In addition, enhancing development efficiency can be achieved by incorporating autonomous functions alongside automation. To achieve this, we developed an autonomous synthesis robot that harnesses the power of artificial intelligence (AI) and robotic technology to establish optimal synthetic recipes. Given a target molecule, our AI initially plans synthetic pathways and defines reaction conditions. It then iteratively refines these plans using feedback from the experimental robot, gradually optimizing the recipe. The system performance was validated by successfully determining synthetic recipes for three organic compounds, yielding that conversion rates that outperform existing references. Notably, this autonomous system is designed around batch reactors, making it accessible and valuable to chemists in standard laboratory settings, thereby streamlining research endeavors.
Collapse
Affiliation(s)
- Taesin Ha
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Dongseon Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Youngchun Kwon
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Min Sik Park
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Sangyoon Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jaejun Jang
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Byungkwon Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyunjeong Jeon
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jeonghun Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyundo Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyung-Tae Seo
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
- Department of Mechanical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, Republic of Korea
| | - Wonje Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Wooram Hong
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Young Jin Park
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
- School of Mechanical Engineering, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Junwon Jang
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Joonkee Cho
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Bosung Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyukju Kwon
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Gahee Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Won Seok Oh
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Jin Woo Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Joonhyuk Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Minsik Min
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Aram Jeon
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Eunji Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
- School of Business Administration, Chung-Ang University, 135, Seodal-ro, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Hyosug Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
- College of Information and Communication Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Youn-Suk Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| |
Collapse
|
3
|
Liu Y, Yang H, Fang Y, Xing Y, Pang X, Li Y, Zhang Y, Liu Y. Function and inhibition of Haspin kinase: targeting multiple cancer therapies by antimitosis. J Pharm Pharmacol 2022; 75:445-465. [PMID: 36334086 DOI: 10.1093/jpp/rgac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Abstract
Objectives
Haploid germ cell-specific nuclear protein kinase (Haspin) is a serine/threonine kinase as an atypical kinase, which is structurally distinct from conventional protein kinases.
Key findings
Functionally, Haspin is involved in important cell cycle progression, particularly in critical mitosis regulating centromeric sister chromatid cohesion during prophase and prometaphase, and subsequently ensuring proper chromosome alignment during metaphase and the normal chromosome segregation during anaphase. However, increasing evidence has demonstrated that Haspin is significantly upregulated in a variety of cancer cells in addition to normal proliferating somatic cells. Its knockdown or small molecule inhibition could prevent cancer cell growth and induce apoptosis by disrupting the regular mitotic progression. Given the specificity of its expressed tissues or cells and the uniqueness of its current known substrate, Haspin can be a promising target against cancer. Consequently, selective synthetic and natural inhibitors of Haspin have been widely developed to determine their inhibitory power for various cancer cells in vivo and in vitro.
Summary
Here our perspective includes a comprehensive review of the roles and structure of Haspin, its relatively potent and selective inhibitors and Haspin’s preliminary studies in a variety of cancers.
Collapse
Affiliation(s)
- Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yongsheng Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yantao Xing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Xinxin Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yuanyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
4
|
Doneti R, Pasha A, Botlagunta M, Heena SK, Mutyala VVVP, Pawar SC. Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:-an in silico and in vitro approach. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:179. [PMID: 36048256 DOI: 10.1007/s12032-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
The DEAD-box helicase family member DDX3 is involved in many diseases, such as viral infection, inflammation, and cancer. Many studies in the last decade have revealed the role of DDX3 in tumorigenesis and metastasis. DDX3 has both tumour suppressor and oncogenic effect, in the present study we have evaluated the expression levels of DDX3 in cervical squamous cell carcinoma at mRNA level via real-time PCR and protein level via Immunohistochemistry. DDX3 has become a molecule of interest in cancer biology that promotes drug resistance by adaptive response inevitably leading to treatment failure. One approach to avoid the development of resistant to disease is to create novel drugs that target the overexpressed proteins, we designed and synthesized a novel 7-azaindole derivative (7-AID) compound, {5-[1H-pyrrolo (2, 3-b) pyridin-5-yl] pyridin-2-ol]} that could lodge within the adenosine-binding pocket of the DDX3 (PDB ID: 2I4I). The binding efficacy of 7-AID compound with DDX3 was analysed by molecular docking studies. 7-AID was found to interact with the key residues Tyr200 and Arg202 from the Q-motif rendered by π-interactions and hydrogen bonds within the binding pocket with good docking score - 7.99 kcal/mol. The cytotoxicity effect of 7-AID compound was evaluated using MTT assay on human cervical carcinoma cells (HeLa) and breast cancer cells (MCF-7 and MDA MB-231) and the compound shown effective inhibitory concentration (IC50) on Hela cells 16.96 µM/ml and 14.12 and 12.69 µM/ml on MCF-7 and MDA MB-231, respectively. Further, the in-vitro, in-vivo anti-cancer and anti-angiogenic assessment of 7-AID compound was evaluated on Hela cells using scratch wound-healing assay, DAPI staining, cell cycle analysis, immunoblotting, and chorioallontoic membrane assay. Furthermore, the inhibitory effect of derivative compound on DDX3 was investigated in HeLa, MCF-7, and MDA MB-231 cells at the mRNA and protein levels. The results showed that the 7-AID compound effectively inhibited DDX3 in a dose-dependent manner, and the findings suggest that the compound could be used as a potential DDX3 inhibitor.
Collapse
Affiliation(s)
- Ravinder Doneti
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Mahendran Botlagunta
- School of Biosciences Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, 466114, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | | | - Smita C Pawar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
5
|
Defois M, Rémondin C, Josselin B, Nauton L, Théry V, Anizon F, Ruchaud S, Giraud F, Moreau P. Synthesis and Kinase Inhibitory Potencies of Pyrazolo[3,4-g]isoquinolines. Molecules 2022; 27:molecules27175578. [PMID: 36080340 PMCID: PMC9457941 DOI: 10.3390/molecules27175578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
A new series of pyrazolo[3,4-g]isoquinoline derivatives, diversely substituted at the 4- or 8-position, were synthesized. The results of the kinase inhibitory potency study demonstrated that the introduction of a bromine atom at the 8-position was detrimental to Haspin inhibition, while the introduction of an alkyl group at the 4-position led to a modification of the kinase inhibition profiles. Altogether, the results obtained demonstrated that new pyrazolo[3,4-g]isoquinolines represent a novel family of kinase inhibitors with various selectivity profiles.
Collapse
Affiliation(s)
- Mathilde Defois
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Chloé Rémondin
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Béatrice Josselin
- Sorbonne Université, CNRS, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Protein Phosphorylation and Human Diseases Unit, Station Biologique, Place Georges Teissier, F-29688 Roscoff, France
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, CEDEX, F-29688 Roscoff, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Vincent Théry
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Fabrice Anizon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Sandrine Ruchaud
- Sorbonne Université/CNRS UMR8227, Station Biologique, Place Georges Teissier, CS90074, CEDEX, F-29688 Roscoff, France
| | - Francis Giraud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
- Correspondence: (F.G.); (P.M.)
| | - Pascale Moreau
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
- Correspondence: (F.G.); (P.M.)
| |
Collapse
|
6
|
Kumar M, Raziullah, Ahmad A, Dutta HS, Khan AA, Rastogi A, Kant R, Koley D. Cu(II)-Catalyzed C-N, C-O, C-Cl, C-S, and C-Se Bond Formation via C(sp 2)-H Activation Using 7-Azaindole as an Intrinsic Directing Group. J Org Chem 2021; 86:15185-15202. [PMID: 34696586 DOI: 10.1021/acs.joc.1c01811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A general protocol has been developed for the construction of carbon-heteroatom (C-N, C-Cl, C-O, C-S, and C-Se) bonds using the bench stable, earth-abundant, and environmentally benign copper catalyst. Only oxygen is sufficient to regenerate the copper catalyst. Control experiments suggested that the proto-demetalation step is reversible. Depending on the coupling partner, the reaction follows either disproportionation or radical pathways to complete the catalytic cycle. The synthetic utility of the developed protocol has been demonstrated via various functional group transformations.
Collapse
Affiliation(s)
- Mohit Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | | | - Afsar Ali Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushka Rastogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dipankar Koley
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
7
|
Pieterse L, Beteck RM, Baratte B, Jesumoroti OJ, Robert T, Ruchaud S, Bach S, Legoabe LJ. Synthesis and biological evaluation of selected 7H-pyrrolo[2,3-d]pyrimidine derivatives as novel CDK9/CyclinT and Haspin inhibitors. Chem Biol Interact 2021; 349:109643. [PMID: 34508710 DOI: 10.1016/j.cbi.2021.109643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases, including CDK9/CyclinT and Haspin, are regarded as potential drug targets in cancer therapy. Findings from a previous study suggested 7-azaindole as a privileged scaffold for producing inhibitors of CDK9/CyclinT and Haspin. Inspired by these findings, the current study synthesised and evaluated thirteen (13) C6-substituted 7-azaindole and twenty (20) C4-substituted structurally related 7H-pyrrolo[2,3-d]pyrimidine derivatives against a panel of protein kinases, including CDK9/CyclinT and Haspin. Eleven of the 7H-pyrrolo[2,3-d]pyrimidine derivatives exhibited activity toward CDK9/CyclinT, while 4 of compounds had activity against Haspin. The best CDK9/CyclinT (IC50 of 0.38 μM) and Haspin (IC50 of 0.11 μM) activities were achieved by compounds 7d and 7f, respectively. Hence, these compounds may be valuable starting points for development of new anti-cancer drugs.
Collapse
Affiliation(s)
- Lianie Pieterse
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Omobolanle J Jesumoroti
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Stéphane Bach
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa; Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff Cedex, France
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
8
|
Exploration of 7-azaindole-coumaranone hybrids and their analogues as protein kinase inhibitors. Chem Biol Interact 2021; 343:109478. [PMID: 33905741 DOI: 10.1016/j.cbi.2021.109478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023]
Abstract
7-Azaindole has been labelled a privileged scaffold for the design of new potent inhibitors of protein kinases. In this paper, we determined the inhibition profiles of novel mono- and disubstituted derivatives of 7-azaindole-coumaranone hybrids on various disease-related protein kinases. Eight hit compounds were identified, including a potent Haspin inhibitor with an IC50 value of 0.15 μM. An interesting observation was that all active monosubstituted compounds displayed dual inhibition for Haspin and GSK-3β, while disubstituted derivatives inhibited GSK-3β and LmCK1 from Leishmania major parasite. Analyses of structure activity relationships (SARs) also revealed that mono-substitution with para-fluorobenzyloxy ring produced an equipotent inhibition of Haspin and GSK-3β. Haspin and GSK-3β are relevant targets for developing new anticancer agents while LmCK1 is an innovative target for leishmanicidal drugs. Novel compounds reported in this paper constitute promising starting points for the development of new anticancer and leishmanicidal drugs.
Collapse
|