1
|
Adeleke MA, Opara KN, Mafuyai HB, Nwoke BEB, Surakat OA, Akinde SB, Nwoke M, Chikezie FM, Yaro CA, Mmaduabuchi U, Igbe M, Makata E, Oyediran F, Anyaike C, Tongjura J, Hawkes F, Iwalewa ZO. Improving onchocerciasis elimination surveillance: trials of odour baited Esperanza Window Traps to collect black fly vectors and real-time qPCR detection of Onchocerca volvulus in black fly pools. Parasit Vectors 2024; 17:471. [PMID: 39558382 PMCID: PMC11575192 DOI: 10.1186/s13071-024-06554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Entomological data for onchocerciasis surveillance relies on sampling black flies through human landing collectors in the field and laboratory testing of the flies for infection using pooled screening O-150 PCR-ELISA assay. Both techniques require improvements. This study aimed to optimize the Esperanza Window Trap (EWT) for black fly collection. We tested alternative carbon dioxide (CO2) mimics to attract black flies to the traps. Additionally, we evaluated new quantitative PCR (qPCR) methods that target mitochondrial DNA markers and have been proposed to enhance the sensitivity and specificity for detecting Onchocerca volvulus infections in blackflies. METHODS Traps baited with low, medium and high release rates of either 2-butanone or cyclopentanone as CO2 mimics were field tested against traps baited with organically generated CO2 in four ecological zones in Nigeria: Guinea savannah, derived savannah, rainforest and montane forest. The performance of EWTs baited with CO2 or in combination with 2-butanone (low release) were subsequently evaluated against the human landing collection (HLC). Trap scaling was also pilot tested by comparing two EWTs to a single HLC team. Collected black flies were used to test detection of O. volvulus in black flies using Ov ND5 real-time PCR (qPCR) compared to the conventional pool screening O-150 PCR. RESULTS EWTs baited with 2-butanone caught similar numbers of black flies (Simulium damnosum s.l.) to those baited with CO2, while cyclopentanone collected significantly fewer flies in all locations. The low release of 2-butanone was the most effective overall, although HLCs collected higher numbers of black flies than EWT baited with CO2 either singly or in combination with low-release 2-butanone. The combination of two EWTs baited with CO2 and deployed 100 m apart from each other collected similar numbers of flies as one HLC. More black fly pools were positive for O. volvulus by Ov ND5 qPCR compared with O-150 PCR in derived savannah (31.15 vs. 15.57%), montane forest (11.54 vs. 0%) and rainforest (23.08 vs. 2.56%), with only one positive pool in Guinea savannah detected by both methods. CONCLUSIONS The 2-butanone has potential to be used in xenomonitoring as a standardized replacement for organically generated CO2. Ov ND5 qPCR detected more positive pools than O-150 PCR. The positive pools found in foci hitherto considered to have interrupted/eliminated onchocerciasis highlight the need for more sensitive and specific methods that support programmatic assessments to identify and combat recrudescence.
Collapse
Affiliation(s)
| | - Kenneth N Opara
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Nigeria
| | | | | | | | - Sunday B Akinde
- Department of Microbiology, Osun State University, Osogbo, Nigeria
| | - Murphy Nwoke
- Department of Animal and Environmental Biology, Imo State University, Owerri, Nigeria
| | - Friday M Chikezie
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Nigeria
| | - Clement A Yaro
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Nigeria
| | - Ugagu Mmaduabuchi
- Department of Animal and Environmental Biology, Imo State University, Owerri, Nigeria
| | | | | | | | | | - Joseph Tongjura
- Department of Biological Science, Nassarawa State University, Lafia, Nigeria
| | - Frances Hawkes
- Agriculture, Health & Environment Department, Natural Resources Institute, University of Greenwich, London, UK
| | - Zahra O Iwalewa
- Department of Zoology, Osun State University, Osogbo, Nigeria
| |
Collapse
|
2
|
Adhiambo EF, Gouagna LC, Owino EA, Mutuku F, Getahun MN, Torto B, Tchouassi DP. Polymer Beads Increase Field Responses to Host Attractants in the Dengue Vector Aedes aegypti. J Chem Ecol 2024; 50:654-662. [PMID: 38532168 DOI: 10.1007/s10886-024-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
This study investigates the efficacy of three different olfactory cues - cyclohexanone, linalool oxide (LO), and 6-methyl-5-heptan-2-one (sulcatone) - in attracting Aedes aegypti, the primary vector of dengue, using BG sentinel traps in a dengue-endemic area (urban Ukunda) in coastal Kenya. Two experiments were conducted. Experiment 1 compared solid formulations of the compounds in polymer beads against liquid formulations with hexane as the solvent. CO2-baited traps served as controls. In Experiment 2, traps were baited with each compound in the polymer beads, commercial BG-Lure, and CO2. Our results indicate that CO2-baited traps recorded the greatest Ae. aegypti captures in both Experiment 1 and 2, whereas trap captures with polymer beads and solvent-based treatments were comparable. In experiment 2, polymer bead-based treatments yielded significantly greater female captures, each recording ~ 2-fold more captures than traps baited with the BG-Lure. There was no significant difference, however, between the treatments. Female Ae. aegypti captured in CO2-baited traps were mainly unfed (91%), with fewer gravid mosquitoes (6.4%) compared to traps with test compounds (range; 12.7-21.1%). Male captures were lower in LO and BG-Lure baited traps compared to other treatments. Gravimetric analysis showed LO had a slower release rate compared to other compounds. The findings suggest that host-associated compounds loaded on polymer beads are more effective in trapping Ae. aegypti than commercial BG-Lure and reveal sex-specific differences in mosquito responses. These results have implications for mosquito surveillance and control programs, highlighting the potential for selective trapping strategies.
Collapse
Affiliation(s)
- Elizabeth F Adhiambo
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
- Faculty of Science and Technology, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | | | - Eunice A Owino
- Faculty of Science and Technology, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | | | - Merid N Getahun
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
3
|
Gimonneau G, Buatois B, Lapeyre B, Wendemanegde Salou E, Sanon N, Ranaivoarisoa A, Roux O, Dormont L. Identification of Semiochemical Candidates Involved in Glossina Palpalis Gambiensis Larviposition Site Selection and Behavioural Responses of Adult Gravid Females. J Chem Ecol 2024; 50:439-452. [PMID: 38896387 DOI: 10.1007/s10886-024-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of human and animal trypanosomes. This viviparous insect develops and produces a single larva at 10-day intervals deposited in specific sites. In some species aggregation of larvae has been shown and seems to be mediated by both physical factors and volatile semiochemicals of larval origin. In this context, this study aims to identify chemicals emitted during the pupariation process in Glossina palpalis gambiensis. Volatile Organic Compounds (VOCs) emitted by larvae were identified using static headspace solid-phase microextraction and gas-chromatography mass-spectrometry (GC-MS) analysis. Electrophysiology and behavioural assays were performed on gravid females to confirm VOCs behavioural activity and attractiveness. GC-MS results revealed ten chemicals emitted during the pupariation process of G. p. gambiensis larvae. Among these chemicals, gravid females were shown to detect nine of them during coupled gas chromatography - electroantennographic detection tests. Behavioural assays highlighted two compounds were as attractive as pupae and one compound and a blend of four compounds were more attractive than pupae. Although the larval origin of some of them needs to be confirmed as they may also likely produced by micro-organisms, these compounds induced significant behavioural responses in the laboratory. Further experiments have to explore the biological activity and competitiveness of these compounds in the field. This work opens interesting opportunities for behavioural manipulation and control of tsetse flies.
Collapse
Affiliation(s)
- Geoffrey Gimonneau
- Centre International de Recherche - Développement sur l'Elevage en zone subhumide, BP 454, Bobo-Dioulasso 01, Burkina Faso.
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France.
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Bruno Buatois
- CEFE, Université Paul Valéry Montpellier 3, CNRS, Université de Montpellier, EPHE, IRD, Montpellier, France
| | - Benoit Lapeyre
- CEFE, Université Paul Valéry Montpellier 3, CNRS, Université de Montpellier, EPHE, IRD, Montpellier, France
| | - Ernest Wendemanegde Salou
- Centre International de Recherche - Développement sur l'Elevage en zone subhumide, BP 454, Bobo-Dioulasso 01, Burkina Faso
- Département de Sciences biologiques/UFR-ST, Université Polytechnique de Bobo - Dioulasso (UPB), Bobo-Dioulasso, Burkina Faso
| | - Nadege Sanon
- Centre International de Recherche - Développement sur l'Elevage en zone subhumide, BP 454, Bobo-Dioulasso 01, Burkina Faso
| | - Annick Ranaivoarisoa
- CIRAD, UMR INTERTRYP, Montpellier, F-34398, France
- INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Olivier Roux
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Laurent Dormont
- CEFE, Université Paul Valéry Montpellier 3, CNRS, Université de Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
4
|
Serdo DF. Insects' perception and behavioral responses to plant semiochemicals. PeerJ 2024; 12:e17735. [PMID: 39035155 PMCID: PMC11260073 DOI: 10.7717/peerj.17735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024] Open
Abstract
Insect-plant interactions are shaped by the exchange of chemical cues called semiochemicals, which play a vital role in communication between organisms. Plants release a variety of volatile organic compounds in response to environmental cues, such as herbivore attacks. These compounds play a crucial role in mediating the interactions between plants and insects. This review provides an in-depth analysis of plant semiochemicals, encompassing their classification, current understanding of extraction, identification, and characterization using various analytical techniques, including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. The article also delves into the manner in which insects perceive and respond to plant semiochemicals, as well as the impact of environmental factors on plant odor emission and insect orientation. Furthermore, it explores the underlying mechanisms by which insects perceive and interpret these chemical cues, and how this impacts their behavioral responses, including feeding habits, oviposition patterns, and mating behaviors. Additionally, the potential applications of plant semiochemicals in integrated pest management strategies are explored. This review provides insight into the intricate relationships between plants and insects mediated by semiochemicals, highlighting the significance of continued research in this field to better understand and leverage these interactions for effective pest control.
Collapse
|
5
|
Parmar D, Verma S, Sharma D, Singh E. Semiochemical based integrated livestock pest control. Trop Anim Health Prod 2024; 56:49. [PMID: 38236343 DOI: 10.1007/s11250-024-03890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
The role of arthropods as livestock pests has been well established. Besides their biting habits causing nuisance in animals; they are important vectors for transmission of economically important livestock diseases worldwide. Various pests and vector control managemental programs that also make use of chemicals have variable success rates. Consequently, insecticide/acaricide resistance has been reported against most of the commonly used chemicals along with increased concern for environment and demand for clean and green, residue-free animal products. This calls for an urgent need to develop novel, alternate, effective strategies/technologies. This lays the foundation for the use of semiochemicals as alternatives along with other biological control agents. Current knowledge on semiochemical use in livestock is refined and limited; however, it has been widely exploited in the agricultural sector to control plant and food crop pests, surveillance, and monitoring. Semiochemicals have an added advantage of being natural and safe; however, knowledge of extraction and quantification by using assays needs to be explicit. Expertise is required in behavioral and electrophysiological studies of arthropods and their interactions with the host and environment targeting specific semiochemicals for promising results. A thorough prior understanding on aspects such as mechanism of action, the stimulus for the release, the effecter/target species, response produced, application methods, dose and concentration is required to develop any successful pest/vector control program. The current review provides essential and frontline information on semiochemicals and their potential applications in the livestock sector along with future challenges and interventions.
Collapse
Affiliation(s)
- Dipali Parmar
- Department of Veterinary Parasitology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, 176062, India.
| | - Subhash Verma
- Department of Veterinary Parasitology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, 176062, India
| | - Devina Sharma
- Department of Veterinary Parasitology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, 176062, India
| | - Ekta Singh
- Department of Veterinary Parasitology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, 176062, India
| |
Collapse
|
6
|
Chakraborty S, Gao S, Allan BF, Smith RL. Effects of cattle on vector-borne disease risk to humans: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011152. [PMID: 38113279 PMCID: PMC10763968 DOI: 10.1371/journal.pntd.0011152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/03/2024] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Vector-borne pathogens (VBPs) causing vector-borne diseases (VBDs) can circulate among humans, domestic animals, and wildlife, with cattle in particular serving as an important source of exposure risk to humans. The close associations between humans and cattle can facilitate the transmission of numerous VBPs, impacting public health and economic security. Published studies demonstrate that cattle can influence human exposure risk positively, negatively, or have no effect. There is a critical need to synthesize the information in the scientific literature on this subject, in order to illuminate the various ecological mechanisms that can affect VBP exposure risk in humans. Therefore, the aim of this systematic review was to review the scientific literature, provide a synthesis of the possible effects of cattle on VBP risk to humans, and propose future directions for research. This study was performed according to the PRISMA 2020 extension guidelines for systematic review. After screening 470 peer-reviewed articles published between 1999-2019 using the databases Web of Science Core Collection, PubMed Central, CABI Global Health, and Google Scholar, and utilizing forward and backward search techniques, we identified 127 papers that met inclusion criteria. Results of the systematic review indicate that cattle can be beneficial or harmful to human health with respect to VBDs depending on vector and pathogen ecology and livestock management practices. Cattle can increase risk of exposure to infections spread by tsetse flies and ticks, followed by sandflies and mosquitoes, through a variety of mechanisms. However, cattle can have a protective effect when the vector prefers to feed on cattle instead of humans and when chemical control measures (e.g., acaricides/insecticides), semio-chemicals, and other integrated vector control measures are utilized in the community. We highlight that further research is needed to determine ways in which these mechanisms may be exploited to reduce VBD risk in humans.
Collapse
Affiliation(s)
- Sulagna Chakraborty
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
| | - Siyu Gao
- School of Social Work, The University of Minnesota, Twin Cities, Minnesota, United Sates of America
| | - Brian. F. Allan
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| | - Rebecca Lee Smith
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| |
Collapse
|
7
|
Cuthbert RN, Darriet F, Chabrerie O, Lenoir J, Courchamp F, Claeys C, Robert V, Jourdain F, Ulmer R, Diagne C, Ayala D, Simard F, Morand S, Renault D. Invasive hematophagous arthropods and associated diseases in a changing world. Parasit Vectors 2023; 16:291. [PMID: 37592298 PMCID: PMC10436414 DOI: 10.1186/s13071-023-05887-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Biological invasions have increased significantly with the tremendous growth of international trade and transport. Hematophagous arthropods can be vectors of infectious and potentially lethal pathogens and parasites, thus constituting a growing threat to humans-especially when associated with biological invasions. Today, several major vector-borne diseases, currently described as emerging or re-emerging, are expanding in a world dominated by climate change, land-use change and intensive transportation of humans and goods. In this review, we retrace the historical trajectory of these invasions to better understand their ecological, physiological and genetic drivers and their impacts on ecosystems and human health. We also discuss arthropod management strategies to mitigate future risks by harnessing ecology, public health, economics and social-ethnological considerations. Trade and transport of goods and materials, including vertebrate introductions and worn tires, have historically been important introduction pathways for the most prominent invasive hematophagous arthropods, but sources and pathways are likely to diversify with future globalization. Burgeoning urbanization, climate change and the urban heat island effect are likely to interact to favor invasive hematophagous arthropods and the diseases they can vector. To mitigate future invasions of hematophagous arthropods and novel disease outbreaks, stronger preventative monitoring and transboundary surveillance measures are urgently required. Proactive approaches, such as the use of monitoring and increased engagement in citizen science, would reduce epidemiological and ecological risks and could save millions of lives and billions of dollars spent on arthropod control and disease management. Last, our capacities to manage invasive hematophagous arthropods in a sustainable way for worldwide ecosystems can be improved by promoting interactions among experts of the health sector, stakeholders in environmental issues and policymakers (e.g. the One Health approach) while considering wider social perceptions.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Olivier Chabrerie
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Jonathan Lenoir
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Franck Courchamp
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif sur Yvette, France
| | - Cecilia Claeys
- Centre de Recherche sur les Sociétés et les Environnement Méditerranéens (CRESEM), UR 7397 UPVD, Université de Perpignan, Perpignan, France
| | - Vincent Robert
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Frédéric Jourdain
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Santé Publique France, Saint-Maurice, France
| | - Romain Ulmer
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Christophe Diagne
- CBGP, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 755 Avenue du Campus Agropolis, 34988, Cedex, Montferrier-Sur-Lez, France
| | - Diego Ayala
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Medical Entomology Unit, Institut Pasteur de Madagascar, BP 1274, Antananarivo, Madagascar
| | - Frédéric Simard
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Serge Morand
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Faculty of Veterinary Technology, CNRS - CIRAD, Kasetsart University, Bangkok, Thailand
| | - David Renault
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution) - UMR 6553, Rennes, France
- Institut Universitaire de France, 1 Rue Descartes, Paris, France
| |
Collapse
|
8
|
Veršić Bratinčević M, Bego A, Nižetić Kosović I, Jukić Špika M, Burul F, Popović M, Ninčević Runjić T, Vitanović E. A Lifetime of a Dispenser-Release Rates of Olive Fruit Fly-Associated Yeast Volatile Compounds and Their Influence on Olive Fruit Fly ( Bactrocera oleae Rossi) Attraction. Molecules 2023; 28:molecules28062431. [PMID: 36985404 PMCID: PMC10052186 DOI: 10.3390/molecules28062431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The objective of this study was to evaluate the release rate, duration, and biological efficiency of yeast volatile compounds associated with olive fruit flies in slow-release dispensers, polypropylene vials, and rubber septa attached to yellow sticky traps under different environmental conditions in order to protect the environment, humans, and nontarget organisms. Isoamyl alcohol, 2-octanone, and 2-phenethyl acetate were placed in dispensers and tested over a four-week experiment. The weight loss of the volatile compounds in both dispensers was measured, and a rapid, inexpensive, and simple HS-GC/FID method was developed to determine the residual amount of volatiles in the septa. 2-Phenethyl acetate stood out in the rubber septa and showed a statistically significant difference in the release ratio compared to the other volatiles under all conditions tested. Our results showed that the attraction of olive fruit flies increased with decreasing concentrations of the tested volatiles. Regarding the number of flies attracted by rubber septa containing 2-phenethyl acetate, significantly better results were obtained than for septa containing isoamyl alcohol and 2-octanone, in contrast to the attraction of olive fruit flies to polypropylene vials containing these compounds but without significant difference. Since the presence of all tested chemicals was detected during the experiment, this opens the possibility of using more environmentally friendly and cost-effective dispensers with a significantly lower amount of semiochemicals.
Collapse
Affiliation(s)
- Maja Veršić Bratinčević
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Ana Bego
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | | | - Maja Jukić Špika
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
- Center of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Filipa Burul
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Marijana Popović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Tonka Ninčević Runjić
- Department of Plant Sciences, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Elda Vitanović
- Department of Applied Science, Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
9
|
Proof of Concept of Biopolymer Based Hydrogels as Biomimetic Oviposition Substrate to Develop Tiger Mosquitoes (Aedes albopictus) Cost-Effective Lure and Kill Ovitraps. Bioengineering (Basel) 2022; 9:bioengineering9070267. [PMID: 35877317 PMCID: PMC9312165 DOI: 10.3390/bioengineering9070267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Pest management is looking for green and cost-effective innovative solutions to control tiger mosquitoes and other pests. By using biomimetic principles and biocompatible/biodegradable biopolymers, it could be possible to develop a new approach based on substrates that selectively attract insects by reproducing specific natural environmental conditions and then kill them by hosting and delivering a natural biopesticide or through mechanical action (biomimetic lure and kill approach, BL&K). Such an approach can be theoretically specialized against tiger mosquitoes (BL&K-TM) by designing hydrogels to imitate the natural oviposition site’s conditions to employ them inside a lure and kill ovitraps as a biomimetic oviposition substrate. In this work, the hydrogels have been prepared to prove the concept. The study compares lab/on-field oviposition between standard substrates (absorbing paper/masonite) and a physical and chemically crosslinked hydrogel composition panel. Then the best performing is characterized to evaluate a correlation between the hydrogel’s properties and oviposition. Tests identify a 2-Hydroxyethylcellulose (HEC)-based physical hydrogel preparation as five times more attractive than the control in a lab oviposition assay. When employed on the field in a low-cost cardboard trap, the same substrate is seven times more capturing than a standard masonite ovitrap, with a duration four times longer.
Collapse
|
10
|
Fytrou A, Papachristos DP, Milonas PG, Giatropoulos A, Zographos SE, Michaelakis A. Behavioural response of Culex pipiens biotype molestus to oviposition pheromone. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104383. [PMID: 35315335 DOI: 10.1016/j.jinsphys.2022.104383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Insect behaviour relies on an olfactory sensory system that controls a range of activities, from food choice and mating to oviposition, where pheromones play a central role. In Culex mosquitoes, egg-laying is accompanied by the release of mosquito oviposition pheromone (MOP), which has been shown to affect the oviposition behaviour of conspecifics. Here, we investigated for the first time the effect of MOP on the oviposition rate of Culex pipiens biotype molestus, examining separately males and females, before and after mating and oviposition. Our results demonstrate that MOP is more likely to act as an oviposition stimulant rather than an attractant, since more gravid females laid eggs in its presence, while the number of male or female mosquitoes (virgin or mated) captured on pheromone-treated pots was similar to those treated with control water.
Collapse
Affiliation(s)
- Anastasia Fytrou
- Benaki Phytopathological Institute, 8 S. Delta Str., 14561 Kifissia, Athens, Greece
| | | | - Panagiotis G Milonas
- Benaki Phytopathological Institute, 8 S. Delta Str., 14561 Kifissia, Athens, Greece
| | | | - Spyros E Zographos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, 8 S. Delta Str., 14561 Kifissia, Athens, Greece.
| |
Collapse
|
11
|
Loreto F, D'Auria S. How do plants sense volatiles sent by other plants? TRENDS IN PLANT SCIENCE 2022; 27:29-38. [PMID: 34544607 DOI: 10.1016/j.tplants.2021.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Plants communicate via the emission of volatile organic compounds (VOCs) with many animals as well as other plants. We still know little about how VOCs are perceived by receiving (eavesdropping) plants. Here we propose a multiple system of VOC perception, where stress-induced VOCs dock on odorant-binding proteins (OBPs) like in animals and are transported to as-yet-unknown receptors mediating downstream metabolic and/or behavioral changes. Constitutive VOCs that are broadly and lifelong emitted by plants do not bind OBPs but may directly change the metabolism of eavesdropping plants. Deciphering how plants listen to their talking neighbors could empower VOCs as a tool for bioinspired strategies of plant defense when challenged by abiotic and biotic stresses.
Collapse
Affiliation(s)
- Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Sesto Fiorentino, Italy.
| | - Sabato D'Auria
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Institute for Food Science, National Research Council of Italy (CNR-ISA), Avellino, Italy.
| |
Collapse
|
12
|
Ivaskovic P, Ainseba B, Nicolas Y, Toupance T, Tardy P, Thiéry D. Sensing of Airborne Infochemicals for Green Pest Management: What Is the Challenge? ACS Sens 2021; 6:3824-3840. [PMID: 34704740 DOI: 10.1021/acssensors.1c00917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
One of the biggest global challenges for our societies is to provide natural resources to the rapidly expanding population while maintaining sustainable and ecologically friendly products. The increasing public concern about toxic insecticides has resulted in the rapid development of alternative techniques based on natural infochemicals (ICs). ICs (e.g., pheromones, allelochemicals, volatile organic compounds) are secondary metabolites produced by plants and animals and used as information vectors governing their interactions. Such chemical language is the primary focus of chemical ecology, where behavior-modifying chemicals are used as tools for green pest management. The success of ecological programs highly depends on several factors, including the amount of ICs that enclose the crop, the range of their diffusion, and the uniformity of their application, which makes precise detection and quantification of ICs essential for efficient and profitable pest control. However, the sensing of such molecules remains challenging, and the number of devices able to detect ICs in air is so far limited. In this review, we will present the advances in sensing of ICs including biochemical sensors mimicking the olfactory system, chemical sensors, and sensor arrays (e-noses). We will also present several mathematical models used in integrated pest management to describe how ICs diffuse in the ambient air and how the structure of the odor plume affects the pest dynamics.
Collapse
Affiliation(s)
- Petra Ivaskovic
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Bedr’Eddine Ainseba
- UMR 5251, Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33405 Talence, France
| | - Yohann Nicolas
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Thierry Toupance
- UMR 5255, Institut des Sciences Moléculaires, Université de Bordeaux, 33405 Talence, France
| | - Pascal Tardy
- UMR 5218, Laboratoire de l’Intégration du Matériau au Système, 33405 Talence, France
| | - Denis Thiéry
- UMR 1065, Santé et Agroécologie du Vignoble, INRAE, 33140 Villenave d’Ornon, France
| |
Collapse
|
13
|
Narayanan M, Vijay A, Kandasamy S, Nasif O, Alharbi SA, Srinivasan R, Kavitha R. Phytochemical profile and larvicidal activity of aqueous extract of Ocimum americanum against mosquito vectors. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02087-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
15
|
Moore SD. Biological Control of a Phytosanitary Pest ( Thaumatotibia leucotreta): A Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031198. [PMID: 33572807 PMCID: PMC7908599 DOI: 10.3390/ijerph18031198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022]
Abstract
Thaumatotibia leucotreta, known as the false codling moth, is a pest of citrus and other crops in sub-Saharan Africa. As it is endemic to this region and as South Africa exports most of its citrus around the world, T. leucotreta has phytosanitary status for most markets. This means that there is zero tolerance for any infestation with live larvae in the market. Consequently, control measures prior to exporting must be exemplary. Certain markets require a standalone postharvest disinfestation treatment for T. leucotreta. However, the European Union accepts a systems approach, consisting of three measures and numerous components within these measures. Although effective preharvest control measures are important under all circumstances, they are most critical where a standalone postharvest disinfestation treatment is not applied, such as within a systems approach. Conventional wisdom may lead a belief that effective chemical control tools are imperative to achieve this end. However, we demonstrate that it is possible to effectively control T. leucotreta to a level acceptable for a phytosanitary market, using only biological control tools. This includes parasitoids, predators, microbial control, semiochemicals, and sterile insects. Simultaneously, on-farm and environmental safety is improved and compliance with the increasing stringency of chemical residue requirements imposed by markets is achieved.
Collapse
Affiliation(s)
- Sean D. Moore
- Citrus Research International, P.O. Box 5095, Walmer, Port Elizabeth 6065, South Africa;
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa
| |
Collapse
|
16
|
Effective biodiversity monitoring could be facilitated by networks of simple sensors and a shift to incentivising results. ADV ECOL RES 2021. [DOI: 10.1016/bs.aecr.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|