1
|
Roh YH, Cheong EN, Park JE, Choi Y, Jung SC, Song SW, Kim YH, Hong CK, Kim JH, Kim HS. Imaging-Based Molecular Characterization of Adult-Type Diffuse Glioma Using Diffusion and Perfusion MRI in Pre- and Post-Treatment Stage Considering Spatial and Temporal Heterogeneity. J Magn Reson Imaging 2025. [PMID: 40197845 DOI: 10.1002/jmri.29781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Imaging-based molecular characterization is important for identifying treatment targets in adult-type diffuse gliomas. PURPOSE To assess isocitrate dehydrogenase (IDH) mutation and epidermal growth factor receptor (EGFR) amplification status in primary and recurrent gliomas using diffusion and perfusion MRI, addressing spatial and temporal heterogeneity. STUDY TYPE Retrospective. SUBJECTS Three-hundred and twelve newly diagnosed (cross-sectional set, 57.9 ± 13.2 years, 52.2% male, 235 IDH-wildtype, 71 EGFR-amplified) and 38 recurrent (longitudinal set, 53.1 ± 13.4 years, 44.7% male, 30 IDH-wildtype, 13 EGFR-amplified) adult-type diffuse glioma patients. FIELD STRENGTH/SEQUENCE 3.0T; diffusion weighted and dynamic susceptibility contrast-perfusion weighted imaging. ASSESSMENT Radiomics features from contrast-enhancing tumors (CET) and non-enhancing lesions (NEL) were extracted from apparent diffusion coefficient and perfusion maps. Spatial heterogeneity was assessed using intersection and Bhattacharyya distance between CET and NEL. Stable imaging features were identified in patients with unchanged genetic profiles in the longitudinal set. The "best model," using features from the cross-sectional set (n = 312), and the "concordant model," using stable features identified in the longitudinal set (n = 38), were constructed using the LASSO for IDH and EGFR status. STATISTICAL TESTS The area under the receiver-operating-characteristic curve (AUC). RESULTS For IDH mutations, both best and concordant models demonstrated high AUCs in the cross-sectional set (0.936; 95% confidence interval [CI]: 0.903-0.969 and 0.964 [0.943-0.986], respectively). Only the concordant model maintained strong performance in recurrent tumors (AUC, 0.919 vs. 0.656). For EGFR amplification in IDH-wildtype, the best and concordant models showed AUCs of 0.821 (95% CI: 0.761-0.881) and 0.746 (95% CI: 0.675-0.817) in newly diagnosed gliomas, but poor performance in recurrent tumors with AUCs of 0.503 (95% CI: 0.34-0.665) and 0.518 (95% CI: 0.357-0.678). DATA CONCLUSION Diffusion and perfusion MRI characterized IDH status in both newly diagnosed and recurrent gliomas, but showed limited diagnostic performance for EGFR, especially for recurrent tumors. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yun Hwa Roh
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - E-Nae Cheong
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yangsean Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Seung Chai Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Woo Song
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chang-Ki Hong
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
2
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Bartoszewska-Kubiak A, Serafin Z. Investigating glioma genetics through perfusion MRI: rCBV and rCBF as predictive biomarkers. Magn Reson Imaging 2025; 117:110318. [PMID: 39740747 DOI: 10.1016/j.mri.2024.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Brain tumors exhibit diverse genetic landscapes and hemodynamic properties, influencing diagnosis and treatment outcomes. PURPOSE To explore the relationship between MRI perfusion metrics (rCBV, rCBF), genetic markers, and contrast enhancement patterns in gliomas, aiming to enhance diagnostic accuracy and inform personalized therapeutic strategies. Additionally, other radiological features, such as the T2/FLAIR mismatch sign, are evaluated for their predictive utility in IDH mutations. STUDY TYPE Retrospective cohort study. POPULATION 67 patients with brain tumors (including glioblastoma, astrocytoma, oligodendroglioma) undergoing surgical resection. FIELD STRENGTH 1.5 Tesla MRI, including T1 pre- and post-contrast, FLAIR, DWI, and DSC sequences. ASSESSMENT Semiquantitative perfusion metrics (rCBV, rCBF) were evaluated against genetic markers (IDH1, EGFR, CDKN2A, PDGFRA, MGMT, TERT, 1p19q, PTEN, TP53, H3F3A) through advanced MRI techniques. Contrast enhancement was assessed, and genetic alterations were confirmed via histopathological and molecular analyses. STATISTICAL TESTS Chi-square test, sensitivity, specificity, and ROC analysis for predictive modeling; significance level set at p < 0.05. RESULTS Statistically significant differences in perfusion metrics were observed among tumors with distinct genetic profiles, with primary tumors and those harboring specific mutations (IDH1 wildtype, EGFR amplification, CDKN2A homozygous deletion, PDGFRA amplification) showing higher perfusion values. A cut-off value of <4 for rCBV in predicting IDH1 mutation yielded a sensitivity of 61.5 % and specificity of 82.1 %. For CDKN2A deletion, a cut-off of >5 resulted in a sensitivity of 75 % and specificity of 74.6 %, with an ROC value of 0.78. DATA CONCLUSION Integrating perfusion MRI with genetic analysis offers a promising approach to improving the diagnostic and therapeutic landscape for brain tumors, indicating a substantial step toward personalized neuro-oncology. Additionally, findings like the T2/FLAIR mismatch sign highlight the potential for preoperative molecular predictions when biopsy is not feasible. These findings support further validation in larger, multi-institutional studies to solidify their role in clinical practice. DATA CONCLUSION Integrating perfusion MRI with genetic analysis offers a promising approach to improving the diagnostic and therapeutic landscape for brain tumors, indicating a substantial step toward personalized neuro-oncology. These findings support further validation in larger, multi-institutional studies to solidify their role in clinical practice.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Alicja Bartoszewska-Kubiak
- Laboratory of Clinical Genetics and Molecular Pathology, Department of Medical Analytics, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
3
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
5
|
Kersch CN, Kim M, Stoller J, Barajas RF, Park JE. Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity. AJNR Am J Neuroradiol 2024; 45:537-548. [PMID: 38548303 PMCID: PMC11288537 DOI: 10.3174/ajnr.a8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/09/2023] [Indexed: 04/12/2024]
Abstract
An improved understanding of the cellular and molecular biologic processes responsible for brain tumor development, growth, and resistance to therapy is fundamental to improving clinical outcomes. Imaging genomics is the study of the relationships between microscopic, genetic, and molecular biologic features and macroscopic imaging features. Imaging genomics is beginning to shift clinical paradigms for diagnosing and treating brain tumors. This article provides an overview of imaging genomics in gliomas, in which imaging data including hallmarks such as IDH-mutation, MGMT methylation, and EGFR-mutation status can provide critical insights into the pretreatment and posttreatment stages. This article will accomplish the following: 1) review the methods used in imaging genomics, including visual analysis, quantitative analysis, and radiomics analysis; 2) recommend suitable analytic methods for imaging genomics according to biologic characteristics; 3) discuss the clinical applicability of imaging genomics; and 4) introduce subregional tumor habitat analysis with the goal of guiding future radiogenetics research endeavors toward translation into critically needed clinical applications.
Collapse
Affiliation(s)
- Cymon N Kersch
- From the Department of Radiation Medicine (C.N.K.), Oregon Health and Science University, Portland, Oregon
| | - Minjae Kim
- Department of Radiology and Research Institute of Radiology (M.K., J.E.P.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jared Stoller
- Department of Diagnostic Radiology (J.S., R.F.B.), Oregon Health and Science University, Portland, Oregon
| | - Ramon F Barajas
- Department of Diagnostic Radiology (J.S., R.F.B.), Oregon Health and Science University, Portland, Oregon
- Knight Cancer Institute (R.F.B.), Oregon Health and Science University, Portland, Oregon
- Advanced Imaging Research Center (R.F.B.), Oregon Health and Science University, Portland, Oregon
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology (M.K., J.E.P.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Wang L, Wang H, D’Angelo F, Curtin L, Sereduk CP, Leon GD, Singleton KW, Urcuyo J, Hawkins-Daarud A, Jackson PR, Krishna C, Zimmerman RS, Patra DP, Bendok BR, Smith KA, Nakaji P, Donev K, Baxter LC, Mrugała MM, Ceccarelli M, Iavarone A, Swanson KR, Tran NL, Hu LS, Li J. Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward precision medicine using MRI and a data-inclusive machine learning algorithm. PLoS One 2024; 19:e0299267. [PMID: 38568950 PMCID: PMC10990246 DOI: 10.1371/journal.pone.0299267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.
Collapse
Affiliation(s)
- Lujia Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hairong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Fulvio D’Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York City, New York, United States of America
| | - Lee Curtin
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Christopher P. Sereduk
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Gustavo De Leon
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Kyle W. Singleton
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Javier Urcuyo
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Andrea Hawkins-Daarud
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Pamela R. Jackson
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Chandan Krishna
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Richard S. Zimmerman
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Devi P. Patra
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Bernard R. Bendok
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Kris A. Smith
- Department of Neurosurgery, Barrow Neurological Institute—St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute—St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Kliment Donev
- Department of Pathology, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Leslie C. Baxter
- Department of Neuropsychology, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Maciej M. Mrugała
- Department of Neuro-Oncology, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, Naples, Italy
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York City, New York, United States of America
| | - Kristin R. Swanson
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Nhan L. Tran
- Department of Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
- Department of Cancer Biology, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, Arizona, United States of America
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
7
|
Sohn B, Park K, Ahn SS, Park YW, Choi SH, Kang SG, Kim SH, Chang JH, Lee SK. Dynamic contrast-enhanced MRI radiomics model predicts epidermal growth factor receptor amplification in glioblastoma, IDH-wildtype. J Neurooncol 2023; 164:341-351. [PMID: 37689596 DOI: 10.1007/s11060-023-04435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE To develop and validate a dynamic contrast-enhanced (DCE) MRI-based radiomics model to predict epidermal growth factor receptor (EGFR) amplification in patients with glioblastoma, isocitrate dehydrogenase (IDH) wildtype. METHODS Patients with pathologically confirmed glioblastoma, IDH wildtype, from January 2015 to December 2020, with an EGFR amplification status, were included. Patients who did not undergo DCE or conventional brain MRI were excluded. Patients were categorized into training and test sets by a ratio of 7:3. DCE MRI data were used to generate volume transfer constant (Ktrans) and extracellular volume fraction (Ve) maps. Ktrans, Ve, and conventional MRI were then used to extract the radiomics features, from which the prediction models for EGFR amplification status were developed and validated. RESULTS A total of 190 patients (mean age, 59.9; male, 55.3%), divided into training (n = 133) and test (n = 57) sets, were enrolled. In the test set, the radiomics model using the Ktrans map exhibited the highest area under the receiver operating characteristic curve (AUROC), 0.80 (95% confidence interval [CI], 0.65-0.95). The AUROC for the Ve map-based and conventional MRI-based models were 0.74 (95% CI, 0.58-0.90) and 0.76 (95% CI, 0.61-0.91). CONCLUSION The DCE MRI-based radiomics model that predicts EGFR amplification in glioblastoma, IDH wildtype, was developed and validated. The MRI-based radiomics model using the Ktrans map has higher AUROC than conventional MRI.
Collapse
Affiliation(s)
- Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kisung Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Ahn SH, Ahn SS, Park YW, Park CJ, Lee SK. Association of dynamic susceptibility contrast- and dynamic contrast-enhanced magnetic resonance imaging parameters with molecular marker status in lower-grade gliomas: A retrospective study. Neuroradiol J 2023; 36:49-58. [PMID: 35532193 PMCID: PMC9893160 DOI: 10.1177/19714009221098369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Molecular marker status is clinically relevant for treatment planning and predicting the prognosis of gliomas. This study aimed to assess whether quantitative imaging parameters from dynamic susceptibility contrast- (DSC-) and dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) can predict the molecular marker status of lower-grade gliomas (LGGs). MATERIALS AND METHODS Overall, 132 patients with LGGs who underwent DSC- and DCE-MRI were retrospectively enrolled. Statuses of relevant molecular markers including isocitrate dehydrogenase isoenzyme (IDH), 1p19q codeletion, epidermal growth factor receptor (EGFR), O6-methylguanine-DNA methyltransferase (MGMT), and telomerase reverse transcriptase (TERT) were collected. For each molecular marker, age, tumor diameter and location, and DSC- and DCE-MRI parameters, including the normalized cerebral blood volume (nCBV), volume transfer constant (Ktrans), rate transfer coefficient (Kep), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp), were compared. Multivariable logistic regression analyses were performed. RESULTS The nCBV was significantly lower in LGGs with IDH mutation (p = .001) and TERT mutation (p = .027) than those without these mutations. Ktrans (p = .034), Ve (p = .023), and Vp (p = .044) values were significantly lower in MGMT methylated LGGs than in MGMT unmethylated LGGs. Perfusion parameters were not significantly associated with EGFR amplification and 1p19q codeletion. Young age (p < .001) and small diameter (p = .001) were significantly associated with IDH mutation. The nCBV was independently associated with IDH status (AUC, 0.817; 95% CI: 0.739-0.894). CONCLUSIONS DSC- and DCE-MRI parameters demonstrated correlations with molecular markers of LGGs. Especially, the nCBV can be helpful in predicting the IDH mutation status.
Collapse
Affiliation(s)
- Sung Hee Ahn
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Yae Won Park
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Chae Jung Park
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| |
Collapse
|
9
|
Yao J, Hagiwara A, Oughourlian TC, Wang C, Raymond C, Pope WB, Salamon N, Lai A, Ji M, Nghiemphu PL, Liau LM, Cloughesy TF, Ellingson BM. Diagnostic and Prognostic Value of pH- and Oxygen-Sensitive Magnetic Resonance Imaging in Glioma: A Retrospective Study. Cancers (Basel) 2022; 14:2520. [PMID: 35626127 PMCID: PMC9139712 DOI: 10.3390/cancers14102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/19/2023] Open
Abstract
Characterization of hypoxia and tissue acidosis could advance the understanding of glioma biology and improve patient management. In this study, we evaluated the ability of a pH- and oxygen-sensitive magnetic resonance imaging (MRI) technique to differentiate glioma genotypes, including isocitrate dehydrogenase (IDH) mutation, 1p/19q co-deletion, and epidermal growth factor receptor (EGFR) amplification, and investigated its prognostic value. A total of 159 adult glioma patients were scanned with pH- and oxygen-sensitive MRI at 3T. We quantified the pH-sensitive measure of magnetization transfer ratio asymmetry (MTRasym) and oxygen-sensitive measure of R2’ within the tumor region-of-interest. IDH mutant gliomas showed significantly lower MTRasym × R2’ (p < 0.001), which differentiated IDH mutation status with sensitivity and specificity of 90.0% and 71.9%. Within IDH mutants, 1p/19q codeletion was associated with lower tumor acidity (p < 0.0001, sensitivity 76.9%, specificity 91.3%), while IDH wild-type, EGFR-amplified gliomas were more hypoxic (R2’ p = 0.024, sensitivity 66.7%, specificity 76.9%). Both R2’ and MTRasym × R2’ were significantly associated with patient overall survival (R2’: p = 0.045; MTRasym × R2’: p = 0.002) and progression-free survival (R2’: p = 0.010; MTRasym × R2’: p < 0.0001), independent of patient age, treatment status, and IDH status. The pH- and oxygen-sensitive MRI is a clinically feasible and potentially valuable imaging technique for distinguishing glioma subtypes and providing additional prognostic value to clinical practice.
Collapse
Affiliation(s)
- Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Talia C. Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Whitney B. Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
| | - Albert Lai
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Matthew Ji
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Phioanh L. Nghiemphu
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA;
| | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, CA 90024, USA; (J.Y.); (A.H.); (T.C.O.); (C.W.); (C.R.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA; (W.B.P.); (N.S.)
- UCLA Neuro-Oncology Program, University of California, Los Angeles, CA 90024, USA; (A.L.); (M.J.); (P.L.N.); (T.F.C.)
| |
Collapse
|
10
|
Stumpo V, Guida L, Bellomo J, Van Niftrik CHB, Sebök M, Berhouma M, Bink A, Weller M, Kulcsar Z, Regli L, Fierstra J. Hemodynamic Imaging in Cerebral Diffuse Glioma-Part B: Molecular Correlates, Treatment Effect Monitoring, Prognosis, and Future Directions. Cancers (Basel) 2022; 14:1342. [PMID: 35267650 PMCID: PMC8909110 DOI: 10.3390/cancers14051342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas, and glioblastoma in particular, exhibit an extensive intra- and inter-tumoral molecular heterogeneity which represents complex biological features correlating to the efficacy of treatment response and survival. From a neuroimaging point of view, these specific molecular and histopathological features may be used to yield imaging biomarkers as surrogates for distinct tumor genotypes and phenotypes. The development of comprehensive glioma imaging markers has potential for improved glioma characterization that would assist in the clinical work-up of preoperative treatment planning and treatment effect monitoring. In particular, the differentiation of tumor recurrence or true progression from pseudoprogression, pseudoresponse, and radiation-induced necrosis can still not reliably be made through standard neuroimaging only. Given the abundant vascular and hemodynamic alterations present in diffuse glioma, advanced hemodynamic imaging approaches constitute an attractive area of clinical imaging development. In this context, the inclusion of objective measurable glioma imaging features may have the potential to enhance the individualized care of diffuse glioma patients, better informing of standard-of-care treatment efficacy and of novel therapies, such as the immunotherapies that are currently increasingly investigated. In Part B of this two-review series, we assess the available evidence pertaining to hemodynamic imaging for molecular feature prediction, in particular focusing on isocitrate dehydrogenase (IDH) mutation status, MGMT promoter methylation, 1p19q codeletion, and EGFR alterations. The results for the differentiation of tumor progression/recurrence from treatment effects have also been the focus of active research and are presented together with the prognostic correlations identified by advanced hemodynamic imaging studies. Finally, the state-of-the-art concepts and advancements of hemodynamic imaging modalities are reviewed together with the advantages derived from the implementation of radiomics and machine learning analyses pipelines.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Lelio Guida
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jacopo Bellomo
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Christiaan Hendrik Bas Van Niftrik
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, 69500 Lyon, France;
| | - Andrea Bink
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zsolt Kulcsar
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
- Department of Neuroradiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland; (L.G.); (J.B.); (C.H.B.V.N.); (M.S.); (L.R.); (J.F.)
- Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, 8057 Zurich, Switzerland; (A.B.); (M.W.); (Z.K.)
| |
Collapse
|
11
|
Corr F, Grimm D, Saß B, Pojskić M, Bartsch JW, Carl B, Nimsky C, Bopp MHA. Radiogenomic Predictors of Recurrence in Glioblastoma—A Systematic Review. J Pers Med 2022; 12:jpm12030402. [PMID: 35330402 PMCID: PMC8952807 DOI: 10.3390/jpm12030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma, as the most aggressive brain tumor, is associated with a poor prognosis and outcome. To optimize prognosis and clinical therapy decisions, there is an urgent need to stratify patients with increased risk for recurrent tumors and low therapeutic success to optimize individual treatment. Radiogenomics establishes a link between radiological and pathological information. This review provides a state-of-the-art picture illustrating the latest developments in the use of radiogenomic markers regarding prognosis and their potential for monitoring recurrence. Databases PubMed, Google Scholar, and Cochrane Library were searched. Inclusion criteria were defined as diagnosis of glioblastoma with histopathological and radiological follow-up. Out of 321 reviewed articles, 43 articles met these inclusion criteria. Included studies were analyzed for the frequency of radiological and molecular tumor markers whereby radiogenomic associations were analyzed. Six main associations were described: radiogenomic prognosis, MGMT status, IDH, EGFR status, molecular subgroups, and tumor location. Prospective studies analyzing prognostic features of glioblastoma together with radiological features are lacking. By reviewing the progress in the development of radiogenomic markers, we provide insights into the potential efficacy of such an approach for clinical routine use eventually enabling early identification of glioblastoma recurrence and therefore supporting a further personalized monitoring and treatment strategy.
Collapse
Affiliation(s)
- Felix Corr
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
- Correspondence:
| | - Dustin Grimm
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
| | - Jörg W. Bartsch
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Strasse 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
12
|
Li G, Li L, Li Y, Qian Z, Wu F, He Y, Jiang H, Li R, Wang D, Zhai Y, Wang Z, Jiang T, Zhang J, Zhang W. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain 2022; 145:1151-1161. [PMID: 35136934 PMCID: PMC9050568 DOI: 10.1093/brain/awab340] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Preoperative MRI is one of the most important clinical results for the diagnosis and treatment of glioma patients. The objective of this study was to construct a stable and validatable preoperative T2-weighted MRI-based radiomics model for predicting the survival of gliomas. A total of 652 glioma patients across three independent cohorts were covered in this study including their preoperative T2-weighted MRI images, RNA-seq and clinical data. Radiomic features (1731) were extracted from preoperative T2-weighted MRI images of 167 gliomas (discovery cohort) collected from Beijing Tiantan Hospital and then used to develop a radiomics prediction model through a machine learning-based method. The performance of the radiomics prediction model was validated in two independent cohorts including 261 gliomas from the The Cancer Genomae Atlas database (external validation cohort) and 224 gliomas collected in the prospective study from Beijing Tiantan Hospital (prospective validation cohort). RNA-seq data of gliomas from discovery and external validation cohorts were applied to establish the relationship between biological function and the key radiomics features, which were further validated by single-cell sequencing and immunohistochemical staining. The 14 radiomic features-based prediction model was constructed from preoperative T2-weighted MRI images in the discovery cohort, and showed highly robust predictive power for overall survival of gliomas in external and prospective validation cohorts. The radiomic features in the prediction model were associated with immune response, especially tumour macrophage infiltration. The preoperative T2-weighted MRI radiomics prediction model can stably predict the survival of glioma patients and assist in preoperatively assessing the extent of macrophage infiltration in glioma tumours.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lin Li
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zenghui Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yufei He
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Haoyu Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Renpeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.,Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, China
| | - Jing Zhang
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.,Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas Network, Beijing, China
| |
Collapse
|
13
|
Singh M, Jindal D, Agarwal V, Pathak D, Sharma M, Pancham P, Mani S, Rachana. New phase therapeutic pursuits for targeted drug delivery in glioblastoma multiforme. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:866-888. [PMID: 36654821 PMCID: PMC9834280 DOI: 10.37349/etat.2022.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/19/2022] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is known as the most aggressive and prevalent brain tumor with a high mortality rate. It is reported in people who are as young as 10 years old to as old as over 70 years old, exhibiting inter and intra tumor heterogeneity. There are several genomic and proteomic investigations that have been performed to find the unexplored potential targets of the drug against GBM. Therefore, certain effective targets have been taken to further validate the studies embarking on the robustness in the field of medicinal chemistry followed by testing in clinical trials. Also, The Cancer Genome Atlas (TCGA) project has identified certain overexpressed targets involved in the pathogenesis of GBM in three major pathways, i.e., tumor protein 53 (p53), retinoblastoma (RB), and receptor tyrosine kinase (RTK)/rat sarcoma virus (Ras)/phosphoinositide 3-kinase (PI3K) pathways. This review focuses on the compilation of recent developments in the fight against GBM thus, directing future research into the elucidation of pathogenesis and potential cure for GBM. Also, it highlights the potential biomarkers that have undergone extensive research and have promising prognostic and predictive values. Additionally, this manuscript analyses the advent of gene therapy and immunotherapy, unlocking the way to consider treatment approaches other than, or in addition to, conventional chemo-radiation therapies. This review study encompasses all the relevant research studies associated with the pathophysiology, occurrence, diagnostic tools, and therapeutic intervention for GBM. It highlights the evolution of various therapeutic perspectives against GBM from the most conventional form of radiotherapy to the recent advancement of gene/cell/immune therapy. Further, the review focuses on various targeted therapies for GBM including chemotherapy sensitization, radiotherapy, nanoparticles based, immunotherapy, cell therapy, and gene therapy which would offer a comprehensive account for exploring several facets related to GBM prognostics.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India,Correspondence: Manisha Singh, Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India.
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Vinayak Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Deepanshi Pathak
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Mansi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| | - Rachana
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida 201301, India
| |
Collapse
|
14
|
Galijašević M, Steiger R, Radović I, Birkl-Toeglhofer AM, Birkl C, Deeg L, Mangesius S, Rietzler A, Regodić M, Stockhammer G, Freyschlag CF, Kerschbaumer J, Haybaeck J, Grams AE, Gizewski ER. Phosphorous Magnetic Resonance Spectroscopy and Molecular Markers in IDH1 Wild Type Glioblastoma. Cancers (Basel) 2021; 13:cancers13143569. [PMID: 34298788 PMCID: PMC8305039 DOI: 10.3390/cancers13143569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Gliobastoma is one of the deadliest tumors overall, yet the most common malignant brain tumor. The new World Health Organization Classification of Brain Tumors brought changes in how we look at this type of malignancy. Now we know that glioblastoma is rather a spectrum of similar tumors, but with some distinct characteristics that include molecular footprint, response to therapy and with that overall survival, among others. We hypothesised that by employing phosphorous magnetic resonance we will be able to show differences in cellular energy metabolism in these various subtypes of glioblastoma. For example, we found indices of faster cell reproduction and tumor growth in MGMT-methylated and EGFR-amplified tumors. These tumors also could have reduced energetic state or tissue oxygenation due to the increased necrosis. Tumors with EGFR-amplification could have increased apoptotic activity regardless of their MGMT status. Our study indicated various differences in energetic metabolism in tumors with different molecular characteristics, which could potentially be important in future therapeutic strategies. Abstract The World Health Organisation’s (WHO) classification of brain tumors requires consideration of both histological appearance and molecular characteristics. Possible differences in brain energy metabolism could be important in designing future therapeutic strategies. Forty-three patients with primary, isocitrate dehydrogenase 1 (IDH1) wild type glioblastomas (GBMs) were included in this study. Pre-operative standard MRI was obtained with additional phosphorous magnetic resonance spectroscopy (31-P-MRS) imaging. Following microsurgical resection of the tumors, biopsy specimens underwent neuropathological diagnostics including standard molecular diagnosis. The spectroscopy results were correlated with epidermal growth factor (EGFR) and O6-Methylguanine-DNA methyltransferase (MGMT) status. EGFR amplified tumors had significantly lower phosphocreatine (PCr) to adenosine triphosphate (ATP)-PCr/ATP and PCr to inorganic phosphate (Pi)-PCr/Pi ratios, and higher Pi/ATP and phosphomonoesters (PME) to phosphodiesters (PDE)-PME/PDE ratio than those without the amplification. Patients with MGMT-methylated tumors had significantly higher cerebral magnesium (Mg) values and PME/PDE ratio, while their PCr/ATP and PCr/Pi ratios were lower than in patients without the methylation. In survival analysis, not-EGFR-amplified, MGMT-methylated GBMs showed the longest survival. This group had lower PCr/Pi ratio when compared to MGMT-methylated, EGFR-amplified group. PCr/Pi ratio was lower also when compared to the MGMT-unmethylated, EGFR not-amplified group, while PCr/ATP ratio was lower than all other examined groups. Differences in energy metabolism in various molecular subtypes of wild-type-GBMs could be important information in future precision medicine approach.
Collapse
Affiliation(s)
- Malik Galijašević
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| | - Ivan Radović
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
| | - Anna Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.M.B.-T.); (J.H.)
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Deeg
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Rietzler
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Milovan Regodić
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Radiation Oncology, Medical University of Vienna, 1010 Vienna, Austria
| | - Guenther Stockhammer
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | | | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.F.F.); (J.K.)
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.M.B.-T.); (J.H.)
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
15
|
Park YW, Park JE, Ahn SS, Kim EH, Kang SG, Chang JH, Kim SH, Choi SH, Kim HS, Lee SK. Magnetic Resonance Imaging Parameters for Noninvasive Prediction of Epidermal Growth Factor Receptor Amplification in Isocitrate Dehydrogenase-Wild-Type Lower-Grade Gliomas: A Multicenter Study. Neurosurgery 2021; 89:257-265. [PMID: 33913501 DOI: 10.1093/neuros/nyab136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) amplification status of isocitrate dehydrogenase-wild-type (IDHwt) lower-grade gliomas (LGGs; grade II/III) is one of the key markers for diagnosing molecular glioblastoma. However, the association between EGFR status and imaging parameters is unclear. OBJECTIVE To identify noninvasive imaging parameters from diffusion-weighted and dynamic susceptibility contrast imaging for predicting the EGFR amplification status of IDHwt LGGs. METHODS A total of 86 IDHwt LGG patients with known EGFR amplification status (62 nonamplified and 24 amplified) from 3 tertiary institutions were included. Qualitative and quantitative imaging features, including histogram parameters from apparent diffusion coefficient (ADC), normalized cerebral blood volume (nCBV), and normalized cerebral blood flow (nCBF), were assessed. Univariable and multivariable logistic regression models were constructed. RESULTS On multivariable analysis, multifocal/multicentric distribution (odds ratio [OR] = 11.77, P = .006), mean ADC (OR = 0.01, P = .044), 5th percentile of ADC (OR = 0.01, P = .046), and 95th percentile of nCBF (OR = 1.24, P = .031) were independent predictors of EGFR amplification. The diagnostic performance of the model with qualitative imaging parameters increased significantly when quantitative imaging parameters were added, with areas under the curves of 0.81 and 0.93, respectively (P = .004). CONCLUSION The presence of multifocal/multicentric distribution patterns, lower mean ADC, lower 5th percentile of ADC, and higher 95th percentile of nCBF may be useful imaging biomarkers for EGFR amplification in IDHwt LGGs. Moreover, quantitative imaging biomarkers may add value to qualitative imaging parameters.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Correlation between dynamic susceptibility contrast perfusion MRI and genomic alterations in glioblastoma. Neuroradiology 2021; 63:1801-1810. [PMID: 33738509 DOI: 10.1007/s00234-021-02674-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/07/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine if dynamic susceptibility contrast perfusion MR imaging (DSC-pMRI) can predict significant genomic alterations in glioblastoma (GB). METHODS A total of 47 patients with treatment-naive GB (M/F: 23/24, mean age: 54 years, age range: 20-90 years) having DSC-pMRI with leakage correction and genomic analysis were reviewed. Mean relative cerebral blood volume (rCBV), maximum rCBV, relative percent signal recovery (rPSR), and relative peak height (rPH) were derived from T2* signal intensity-time curves by ROI analysis. Major genomic alterations of IDH1-132H, MGMT, p53, EGFR, ATRX, and PTEN status were correlated with DSC-pMRI-derived GB parameters. Statistical analysis was performed utilizing the independent-samples t-test, ROC (receiver operating characteristic) curve analysis, and multivariable stepwise regression model. RESULTS rCBVmean and rCBVmax were significantly different in relation to the IDH1, MGMT, p53, and PTEN mutation status (all p < 0.05). The rPH of the p53 mutation-positive GBs (mean 5.8 ± 2.8) was significantly higher than those of the p53 mutation-negative GBs (mean 4.0 ± 1.5) (p = 0.022). Multivariable stepwise regression analysis revealed that the presence of IDH-1 mutation (B = - 2.81, p = 0.005) was associated with decreased rCBVmean; PTEN mutation (B = - 1.21, p = 0.003) and MGMT methylation (B = - 1.47, p = 0.038) were associated with decreased rCBVmax; and ATRX loss (B = - 1.05, p = 0.008) was associated with decreased rPH. CONCLUSION Significant associations were identified between DSC-pMRI-derived parameters and major genomic alterations, including IDH-1 mutation, MGMT methylation, ATRX loss, and PTEN mutation status in GB.
Collapse
|
17
|
Hu LS, Wang L, Hawkins-Daarud A, Eschbacher JM, Singleton KW, Jackson PR, Clark-Swanson K, Sereduk CP, Peng S, Wang P, Wang J, Baxter LC, Smith KA, Mazza GL, Stokes AM, Bendok BR, Zimmerman RS, Krishna C, Porter AB, Mrugala MM, Hoxworth JM, Wu T, Tran NL, Swanson KR, Li J. Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma. Sci Rep 2021; 11:3932. [PMID: 33594116 PMCID: PMC7886858 DOI: 10.1038/s41598-021-83141-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target in GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor-a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA. .,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA. .,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| | - Lujia Wang
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Jennifer M Eschbacher
- Department of Pathology, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Kyle W Singleton
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Pamela R Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Kamala Clark-Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| | - Christopher P Sereduk
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,Department of Cancer Biology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Panwen Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Leslie C Baxter
- Department of Neuropsychology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Gina L Mazza
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Ashley M Stokes
- Department of Imaging Research, Barrow Neurological Institute-St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Bernard R Bendok
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Richard S Zimmerman
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Chandan Krishna
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Alyx B Porter
- Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Maciej M Mrugala
- Department of Neuro-Oncology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Joseph M Hoxworth
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Teresa Wu
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Nhan L Tran
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,Department of Cancer Biology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA.,Department of Neurosurgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jing Li
- Department of Radiology, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ, 85054, USA.,School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.,Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic Arizona, 5777 East Mayo Blvd, Support Services Building Suite 2-700, Phoenix, AZ, 85054, USA
| |
Collapse
|
18
|
Prognostic and Predictive Value of Integrated Qualitative and Quantitative Magnetic Resonance Imaging Analysis in Glioblastoma. Cancers (Basel) 2021; 13:cancers13040722. [PMID: 33578746 PMCID: PMC7916478 DOI: 10.3390/cancers13040722] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most malignant primary brain tumor, for which improving patient outcome is limited by a substantial amount of tumor heterogeneity. Magnetic resonance imaging (MRI) in combination with machine learning offers the possibility to collect qualitative and quantitative imaging features which can be used to predict patient prognosis and relevant tumor markers which can aid in selecting the right treatment. This study showed that combining these MRI features with clinical features has the highest prognostic value for GBM patients; this model performed similarly in an independent GBM cohort, showing its reproducibility. The prediction of tumor markers showed promising results in the training set but not could be validated in the independent dataset. This study shows the potential of using MRI to predict prognosis and tumor markers, but further optimization and prospective studies are warranted. Abstract Glioblastoma (GBM) is the most malignant primary brain tumor for which no curative treatment options exist. Non-invasive qualitative (Visually Accessible Rembrandt Images (VASARI)) and quantitative (radiomics) imaging features to predict prognosis and clinically relevant markers for GBM patients are needed to guide clinicians. A retrospective analysis of GBM patients in two neuro-oncology centers was conducted. The multimodal Cox-regression model to predict overall survival (OS) was developed using clinical features with VASARI and radiomics features in isocitrate dehydrogenase (IDH)-wild type GBM. Predictive models for IDH-mutation, 06-methylguanine-DNA-methyltransferase (MGMT)-methylation and epidermal growth factor receptor (EGFR) amplification using imaging features were developed using machine learning. The performance of the prognostic model improved upon addition of clinical, VASARI and radiomics features, for which the combined model performed best. This could be reproduced after external validation (C-index 0.711 95% CI 0.64–0.78) and used to stratify Kaplan–Meijer curves in two survival groups (p-value < 0.001). The predictive models performed significantly in the external validation for EGFR amplification (area-under-the-curve (AUC) 0.707, 95% CI 0.582–8.25) and MGMT-methylation (AUC 0.667, 95% CI 0.522–0.82) but not for IDH-mutation (AUC 0.695, 95% CI 0.436–0.927). The integrated clinical and imaging prognostic model was shown to be robust and of potential clinical relevance. The prediction of molecular markers showed promising results in the training set but could not be validated after external validation in a clinically relevant manner. Overall, these results show the potential of combining clinical features with imaging features for prognostic and predictive models in GBM, but further optimization and larger prospective studies are warranted.
Collapse
|
19
|
Park CJ, Han K, Kim H, Ahn SS, Choi D, Park YW, Chang JH, Kim SH, Cha S, Lee SK. MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas. AJNR Am J Neuroradiol 2021; 42:448-456. [PMID: 33509914 DOI: 10.3174/ajnr.a6983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Isocitrate dehydrogenase (IDH) wild-type lower-grade gliomas (histologic grades II and III) with epidermal growth factor receptor (EGFR) amplification or telomerase reverse transcriptase (TERT) promoter mutation are reported to behave similar to glioblastoma. We aimed to evaluate whether MR imaging features could identify a subset of IDH wild-type lower-grade gliomas that carry molecular features of glioblastoma. MATERIALS AND METHODS In this multi-institutional retrospective study, pathologically confirmed IDH wild-type lower-grade gliomas from 2 tertiary institutions and The Cancer Genome Atlas constituted the training set (institution 1 and The Cancer Genome Atlas, 64 patients) and the independent test set (institution 2, 57 patients). Preoperative MRIs were analyzed using the Visually AcceSAble Rembrandt Images and radiomics. The molecular glioblastoma status was determined on the basis of the presence of EGFR amplification and TERT promoter mutation. Molecular glioblastoma was present in 73.4% and 56.1% in the training and test sets, respectively. Models using clinical, Visually AcceSAble Rembrandt Images, and radiomic features were built to predict the molecular glioblastoma status in the training set; then they were validated in the test set. RESULTS In the test set, a model using both Visually AcceSAble Rembrandt Images and radiomic features showed superior predictive performance (area under the curve = 0.854) than that with only clinical features or Visually AcceSAble Rembrandt Images (areas under the curve = 0.514 and 0.648, respectively; P < . 001, both). When both Visually AcceSAble Rembrandt Images and radiomics were added to clinical features, the predictive performance significantly increased (areas under the curve = 0.514 versus 0.863, P < .001). CONCLUSIONS MR imaging features integrated with machine learning classifiers may predict a subset of IDH wild-type lower-grade gliomas that carry molecular features of glioblastoma.
Collapse
Affiliation(s)
- C J Park
- From the Department of Radiology (C.J.P.), Yonsei University College of Medicine, Seoul, Korea
| | - K Han
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | - H Kim
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | - S S Ahn
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | - D Choi
- Department of Computer Science (D.C.), Yonsei University, Seoul, Korea
| | - Y W Park
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| | | | - S H Kim
- Department of Pathology (S.H.K.), Yonsei University College of Medicine, Seoul, Korea
| | - S Cha
- Department of Radiology and Biomedical Imaging (S.C.), University of California San Francisco, San Francisco, California
| | - S-K Lee
- Department of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
| |
Collapse
|
20
|
Sanvito F, Castellano A, Falini A. Advancements in Neuroimaging to Unravel Biological and Molecular Features of Brain Tumors. Cancers (Basel) 2021; 13:cancers13030424. [PMID: 33498680 PMCID: PMC7865835 DOI: 10.3390/cancers13030424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Advanced neuroimaging is gaining increasing relevance for the characterization and the molecular profiling of brain tumor tissue. On one hand, for some tumor types, the most widespread advanced techniques, investigating diffusion and perfusion features, have been proven clinically feasible and rather robust for diagnosis and prognosis stratification. In addition, 2-hydroxyglutarate spectroscopy, for the first time, offers the possibility to directly measure a crucial molecular marker. On the other hand, numerous innovative approaches have been explored for a refined evaluation of tumor microenvironments, particularly assessing microstructural and microvascular properties, and the potential applications of these techniques are vast and still to be fully explored. Abstract In recent years, the clinical assessment of primary brain tumors has been increasingly dependent on advanced magnetic resonance imaging (MRI) techniques in order to infer tumor pathophysiological characteristics, such as hemodynamics, metabolism, and microstructure. Quantitative radiomic data extracted from advanced MRI have risen as potential in vivo noninvasive biomarkers for predicting tumor grades and molecular subtypes, opening the era of “molecular imaging” and radiogenomics. This review presents the most relevant advancements in quantitative neuroimaging of advanced MRI techniques, by means of radiomics analysis, applied to primary brain tumors, including lower-grade glioma and glioblastoma, with a special focus on peculiar oncologic entities of current interest. Novel findings from diffusion MRI (dMRI), perfusion-weighted imaging (PWI), and MR spectroscopy (MRS) are hereby sifted in order to evaluate the role of quantitative imaging in neuro-oncology as a tool for predicting molecular profiles, stratifying prognosis, and characterizing tumor tissue microenvironments. Furthermore, innovative technological approaches are briefly addressed, including artificial intelligence contributions and ultra-high-field imaging new techniques. Lastly, after providing an overview of the advancements, we illustrate current clinical applications and future perspectives.
Collapse
Affiliation(s)
- Francesco Sanvito
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-02-2643-3015
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.S.); (A.F.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
21
|
Hu LS, Brat DJ, Bloch O, Ramkissoon S, Lesser GJ. The Practical Application of Emerging Technologies Influencing the Diagnosis and Care of Patients With Primary Brain Tumors. Am Soc Clin Oncol Educ Book 2020; 40:1-12. [PMID: 32324425 DOI: 10.1200/edbk_280955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, a variety of new and innovative technologies has led to important advances in the diagnosis and management of patients with primary malignant brain tumors. New approaches to surgical navigation and tumor localization, advanced imaging to define tumor biology and treatment response, and the widespread adoption of a molecularly defined integrated diagnostic paradigm that complements traditional histopathologic diagnosis continue to impact the day-to-day care of these patients. In the neuro-oncology clinic, discussions with patients about the role of tumor treating fields (TTFields) and the incorporation of next-generation sequencing (NGS) data into therapeutic decision-making are now a standard practice. This article summarizes newer applications of technology influencing the pathologic, neuroimaging, neurosurgical, and medical management of patients with malignant primary brain tumors.
Collapse
Affiliation(s)
- Leland S Hu
- Neuroradiology Section, Department of Radiology, Mayo Clinic, Phoenix, AZ
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Orin Bloch
- Department of Neurologic Surgery, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Shakti Ramkissoon
- Foundation Medicine, Inc., Morrisville, NC.,Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Glenn J Lesser
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC
| |
Collapse
|
22
|
|
23
|
Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas. Eur Radiol 2020; 30:6475-6484. [PMID: 32785770 DOI: 10.1007/s00330-020-07090-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Epidermal growth factor receptor (EGFR) amplification and telomerase reverse transcriptase promoter (TERTp) mutation status of isocitrate dehydrogenase-wildtype (IDHwt) lower-grade gliomas (LGGs; grade II/III) are crucial for identifying IDHwt LGG with an aggressive clinical course. The purpose of this study was to assess whether parameters from diffusion tensor imaging, dynamic susceptibility contrast (DSC), and diffusion tensor imaging, dynamic contrast-enhanced imaging can predict the EGFR amplification and TERTp mutation status of IDHwt LGGs. METHODS A total of 49 patients with IDHwt LGGs with either known EGFR amplification (39 non-amplified, 10 amplified) or TERTp mutation (19 wildtype, 21 mutant) statuses underwent MRI. The mean ADC, fractional anisotropy (FA), normalized cerebral blood volume (nCBV), normalized cerebral blood flow (nCBF), volume transfer constant (Ktrans), rate transfer coefficient (Kep), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp) values were assessed. Univariate and multivariate logistic regression models were constructed. RESULTS EGFR-amplified tumors showed lower mean ADC values than EGFR-non-amplified tumors (p = 0.019). Mean ADC was an independent predictor of EGFR amplification, with an AUC of 0.75. TERTp mutant tumors showed higher mean nCBV (p = 0.020), higher mean nCBF (p = 0.017), and higher mean Vp (p = 0.002) than TERTp wildtype tumors. With multivariate logistic regression, mean Vp was the independent predictor of TERTp mutation status, with an AUC of 0.85. CONCLUSION This exploratory pilot study shows that lower ADC values may be useful for prediction of EGFR amplification, whereas higher Vp values may be useful for prediction of the TERTp mutation status of IDHwt LGGs. KEY POINTS • EGFR amplification and TERTp mutation are key molecular markers that predict an aggressive clinical course of IDHwt LGGs. • EGFR-amplified tumors showed lower ADC values than EGFR-non-amplified tumors, suggesting higher cellularity. • TERTp mutant tumors showed a higher plasma volume fraction than TERTp wildtype tumors, suggesting higher vascular proliferation and tumor angiogenesis.
Collapse
|
24
|
Hu LS, Hawkins-Daarud A, Wang L, Li J, Swanson KR. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett 2020; 477:97-106. [PMID: 32112907 DOI: 10.1016/j.canlet.2020.02.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
High-grade glioma (HGG), and particularly Glioblastoma (GBM), can exhibit pronounced intratumoral heterogeneity that confounds clinical diagnosis and management. While conventional contrast-enhanced MRI lacks the capability to resolve this heterogeneity, advanced MRI techniques and PET imaging offer a spectrum of physiologic and biophysical image features to improve the specificity of imaging diagnoses. Published studies have shown how integrating these advanced techniques can help better define histologically distinct targets for surgical and radiation treatment planning, and help evaluate the regional heterogeneity of tumor recurrence and response assessment following standard adjuvant therapy. Application of texture analysis and machine learning (ML) algorithms has also enabled the emerging field of radiogenomics, which can spatially resolve the regional and genetically distinct subpopulations that coexist within a single GBM tumor. This review focuses on the latest advances in neuro-oncologic imaging and their clinical applications for the assessment of intratumoral heterogeneity.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| | - Lujia Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Jing Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| |
Collapse
|
25
|
A Comparison of the Efficiency of Using a Deep CNN Approach with Other Common Regression Methods for the Prediction of EGFR Expression in Glioblastoma Patients. J Digit Imaging 2019; 33:391-398. [PMID: 31797142 DOI: 10.1007/s10278-019-00290-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To estimate epithermal growth factor receptor (EGFR) expression level in glioblastoma (GBM) patients using radiogenomic analysis of magnetic resonance images (MRI). A comparative study using a deep convolutional neural network (CNN)-based regression, deep neural network, least absolute shrinkage and selection operator (LASSO) regression, elastic net regression, and linear regression with no regularization was carried out to estimate EGFR expression of 166 GBM patients. Except for the deep CNN case, overfitting was prevented by using feature selection, and loss values for each method were compared. The loss values in the training phase for deep CNN, deep neural network, Elastic net, LASSO, and the linear regression with no regularization were 2.90, 8.69, 7.13, 14.63, and 21.76, respectively, while in the test phase, the loss values were 5.94, 10.28, 13.61, 17.32, and 24.19 respectively. These results illustrate that the efficiency of the deep CNN approach is better than that of the other methods, including Lasso regression, which is a regression method known for its advantage in high-dimension cases. A comparison between deep CNN, deep neural network, and three other common regression methods was carried out, and the efficiency of the CNN deep learning approach, in comparison with other regression models, was demonstrated.
Collapse
|
26
|
AlRayahi J, Zapotocky M, Ramaswamy V, Hanagandi P, Branson H, Mubarak W, Raybaud C, Laughlin S. Pediatric Brain Tumor Genetics: What Radiologists Need to Know. Radiographics 2019; 38:2102-2122. [PMID: 30422762 DOI: 10.1148/rg.2018180109] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain tumors are the most common solid tumors in the pediatric population. Pediatric neuro-oncology has changed tremendously during the past decade owing to ongoing genomic advances. The diagnosis, prognosis, and treatment of pediatric brain tumors are now highly reliant on the genetic profile and histopathologic features of the tumor rather than the histopathologic features alone, which previously were the reference standard. The clinical information expected to be gleaned from radiologic interpretations also has evolved. Imaging is now expected to not only lead to a relevant short differential diagnosis but in certain instances also aid in predicting the specific tumor and subtype and possibly the prognosis. These processes fall under the umbrella of radiogenomics. Therefore, to continue to actively participate in patient care and/or radiogenomic research, it is important that radiologists have a basic understanding of the molecular mechanisms of common pediatric central nervous system tumors. The genetic features of pediatric low-grade gliomas, high-grade gliomas, medulloblastomas, and ependymomas are reviewed; differences between pediatric and adult gliomas are highlighted; and the critical oncogenic pathways of each tumor group are described. The role of the mitogen-activated protein kinase pathway in pediatric low-grade gliomas and of histone mutations as epigenetic regulators in pediatric high-grade gliomas is emphasized. In addition, the oncogenic drivers responsible for medulloblastoma, the classification of ependymomas, and the associated imaging correlations and clinical implications are discussed. ©RSNA, 2018.
Collapse
Affiliation(s)
- Jehan AlRayahi
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Michal Zapotocky
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Vijay Ramaswamy
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Prasad Hanagandi
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Helen Branson
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Walid Mubarak
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Charles Raybaud
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Suzanne Laughlin
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| |
Collapse
|
27
|
Arterial spin labeling perfusion-weighted imaging aids in prediction of molecular biomarkers and survival in glioblastomas. Eur Radiol 2019; 30:1202-1211. [PMID: 31468161 DOI: 10.1007/s00330-019-06379-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Prediction of progression-free survival (PFS) and overall survival (OS) and early identification of molecular biomarkers with prognostic information are clinically important in glioblastoma (GBM) patients. We aimed to explore the utility of arterial spin labeling perfusion-weighted imaging (ASL-PWI) in the prediction of molecular biomarkers and survival in GBM patients. METHODS We retrospectively analyzed 149 consecutive GBM patients, who had undergone maximal surgical resection or biopsy followed by concurrent chemoradiotherapy and adjuvant chemotherapy using temozolomide between November 2010 and June 2016. On preoperative ASL-PWI, cerebral blood flow (CBF) within contrast-enhancing (CE) and nonenhancing (NE) portions were evaluated both qualitatively (perfusion pattern[CE] and perfusion pattern[NE]) and quantitatively (nCBFCE and nCBFNE). ASL-PWI findings were correlated with molecular biomarkers, including isocitrate dehydrogenase (IDH) and O6-methylguanine-DNA methyltransferase (MGMT) methylation statuses, and survival, using the Mann-Whitney U-test, Spearman rank correlation, Kaplan-Meier analysis, and receiver operating characteristics analysis. RESULTS nCBFCE was significantly higher in the IDH wild-type group than in the IDH mutant group (p = .013) and in the MGMT unmethylated group than in the methylated group (p = .047). Areas under the receiver operating characteristic curve were 0.678 for IDH mutation (p = .022) and 0.601 for MGMT promoter methylation (p = .043). Hyperperfusion was associated with the shortest median PFS for both perfusion pattern[CE] (7.6 months) and perfusion pattern[NE] (4.0 months). The perfusion pattern[NE] remained an independent predictor for PFS and OS even after adjusting for clinical and molecular predictors, unlike perfusion pattern[CE]. CONCLUSIONS ASL-PWI can aid to predict survival and molecular biomarkers including IDH mutation and MGMT promoter methylation statuses in GBM patients. KEY POINTS • ASL-PWI can aid to predict survival in GBM patients. • ASL-PWI can aid to predict IDH and MGMT promoter methylation statuses in GBM.
Collapse
|
28
|
Fathi Kazerooni A, Bakas S, Saligheh Rad H, Davatzikos C. Imaging signatures of glioblastoma molecular characteristics: A radiogenomics review. J Magn Reson Imaging 2019; 52:54-69. [PMID: 31456318 DOI: 10.1002/jmri.26907] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, the advent and development of genomic assessment methods and computational approaches have raised the hopes for identifying therapeutic targets that may aid in the treatment of glioblastoma. However, the targeted therapies have barely been successful in their effort to cure glioblastoma patients, leaving them with a grim prognosis. Glioblastoma exhibits high heterogeneity, both spatially and temporally. The existence of different genetic subpopulations in glioblastoma allows this tumor to adapt itself to environmental forces. Therefore, patients with glioblastoma respond poorly to the prescribed therapies, as treatments are directed towards the whole tumor and not to the specific genetic subregions. Genomic alterations within the tumor develop distinct radiographic phenotypes. In this regard, MRI plays a key role in characterizing molecular signatures of glioblastoma, based on regional variations and phenotypic presentation of the tumor. Radiogenomics has emerged as a (relatively) new field of research to explore the connections between genetic alterations and imaging features. Radiogenomics offers numerous advantages, including noninvasive and global assessment of the tumor and its response to therapies. In this review, we summarize the potential role of radiogenomic techniques to stratify patients according to their specific tumor characteristics with the goal of designing patient-specific therapies. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:54-69.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hamidreza Saligheh Rad
- Quantitative MR Imaging and Spectroscopy Group (QMISG), Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
What Neuroradiologists Need to Know About Radiation Treatment for Neural Tumors. Top Magn Reson Imaging 2019; 28:37-47. [PMID: 31022047 DOI: 10.1097/rmr.0000000000000196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Radiation oncologists and radiologists have a unique and mutually dependent relationship. Radiation oncologists rely on diagnostic imaging to locate the tumor and define the treatment target volume, evaluation of response to therapy, and follow-up. Accurate interpretation of post-treatment imaging requires diagnostic radiologists to have a basic understanding of radiation treatment planning and delivery. There are various radiation treatment modalities such as 3D conformal radiation therapy, intensity modulated radiation therapy and stereotactic radiosurgery as well as different radiation modalities such as photons and protons that can be used for treatment. All of these have subtle differences in how the treatment is planned and how the imaging findings might be affected. This paper provides an overview of the basic principles of radiation oncology, different radiation treatment modalities, how radiation therapy is planned and delivered, how knowledge of this process can help interpretation of images, and how the radiologist can contribute to this process.
Collapse
|
30
|
Hou BL, Wen S, Katsevman GA, Liu H, Urhie O, Turner RC, Carpenter J, Bhatia S. Magnetic Resonance Imaging Parameters and Their Impact on Survival of Patients with Glioblastoma: Tumor Perfusion Predicts Survival. World Neurosurg 2019; 124:e285-e295. [PMID: 30593971 PMCID: PMC6597330 DOI: 10.1016/j.wneu.2018.12.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Many prognostic factors influence overall survival (OS) of patients with glioblastoma. Despite gross total resection and Stupp protocol adherence, many patients have poor survival. Perfusion magnetic resonance imaging may assist in diagnosis, treatment monitoring, and prognostication. METHODS This retrospective study of 36 patients with glioblastoma assessed influence of preoperative magnetic resonance imaging parameters reflecting tumor cell density and vascularity and patient age on OS. RESULTS The area under curve based on optimal receiver operating characteristic curves for the perfusion parameters normalized relative tumor blood volume (n_rTBV) and normalized relative tumor blood flow (n_rTBF) were 0.92 and 0.89, respectively, and the highest among all imaging parameters and age. OS showed strongly negative correlations with corrected n_rTBV (R = -0.70; P < 0.001) and n_rTBF (R = -0.67; P < 0.001). The Cox model, which included age and imaging parameters, demonstrated that n_rTBV and n_rTBF were most predictive of OS, with hazard ratios of 5.97 (P = 0.0001) and 8.76 (P = 0.0001), respectively, compared with 1.63 (P = 0.19) for age. Eighteen patients with corrected n_rTBV ≤2.5 (best cutoff value) had a median OS of 15.1 months (95% confidence interval (CI), 11.34-21.25) compared with 2.8 months (95% CI, 1.48-4.03; P < 0.001) for 18 patients with corrected n_rTBV >2.5. Twenty-four patients with n_rTBF ≤2.79 had a median OS of 12 months (95% CI, 10.46-17.9) compared with 2.8 months for 12 patients with n_rTBF >2.79 (95% CI, 1.31-4.2; P < 0.001). CONCLUSIONS The dominant predictors of OS are normalized perfusion parameters n_rTBV and n_rTBF. Preoperative perfusion imaging may be used as a surrogate to predict glioblastoma aggressiveness and survival independent of treatment.
Collapse
Affiliation(s)
- Bob L Hou
- Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia, USA
| | - Gennadiy A Katsevman
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA.
| | - Hui Liu
- Department of Biostatistics, West Virginia University, Morgantown, West Virginia, USA
| | - Ogaga Urhie
- West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA
| | - Jeffrey Carpenter
- Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Sanjay Bhatia
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
31
|
Seow P, Wong JHD, Ahmad-Annuar A, Mahajan A, Abdullah NA, Ramli N. Quantitative magnetic resonance imaging and radiogenomic biomarkers for glioma characterisation: a systematic review. Br J Radiol 2018; 91:20170930. [PMID: 29902076 PMCID: PMC6319852 DOI: 10.1259/bjr.20170930] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE: The diversity of tumour characteristics among glioma patients, even within same tumour grade, is a big challenge for disease outcome prediction. A possible approach for improved radiological imaging could come from combining information obtained at the molecular level. This review assembles recent evidence highlighting the value of using radiogenomic biomarkers to infer the underlying biology of gliomas and its correlation with imaging features. METHODS: A literature search was done for articles published between 2002 and 2017 on Medline electronic databases. Of 249 titles identified, 38 fulfilled the inclusion criteria, with 14 articles related to quantifiable imaging parameters (heterogeneity, vascularity, diffusion, cell density, infiltrations, perfusion, and metabolite changes) and 24 articles relevant to molecular biomarkers linked to imaging. RESULTS: Genes found to correlate with various imaging phenotypes were EGFR, MGMT, IDH1, VEGF, PDGF, TP53, and Ki-67. EGFR is the most studied gene related to imaging characteristics in the studies reviewed (41.7%), followed by MGMT (20.8%) and IDH1 (16.7%). A summary of the relationship amongst glioma morphology, gene expressions, imaging characteristics, prognosis and therapeutic response are presented. CONCLUSION: The use of radiogenomics can provide insights to understanding tumour biology and the underlying molecular pathways. Certain MRI characteristics that show strong correlations with EGFR, MGMT and IDH1 could be used as imaging biomarkers. Knowing the pathways involved in tumour progression and their associated imaging patterns may assist in diagnosis, prognosis and treatment management, while facilitating personalised medicine. ADVANCES IN KNOWLEDGE: Radiogenomics can offer clinicians better insight into diagnosis, prognosis, and prediction of therapeutic responses of glioma.
Collapse
Affiliation(s)
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
| | - Nor Aniza Abdullah
- Department of Computer System and Technology, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
32
|
Seow P, Narayanan V, Hernowo AT, Wong JHD, Ramli N. Quantification and visualization of lipid landscape in glioma using in -and opposed-phase imaging. NEUROIMAGE-CLINICAL 2018; 20:531-536. [PMID: 30167373 PMCID: PMC6111041 DOI: 10.1016/j.nicl.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022]
Abstract
Objectives This study maps the lipid distributions based on magnetic resonance imaging (MRI) in-and opposed-phase (IOP) sequence and correlates the findings generated from lipid map to histological grading of glioma. Methods Forty histologically proven glioma patients underwent a standard MRI tumour protocol with the addition of IOP sequence. The regions of tumour (solid enhancing, solid non-enhancing, and cystic regions) were delineated using snake model (ITK-SNAP) with reference to structural and diffusion MRI images. The lipid distribution map was constructed based on signal loss ratio (SLR) obtained from the IOP imaging. The mean SLR values of the regions were computed and compared across the different glioma grades. Results The solid enhancing region of glioma had the highest SLR for both Grade II and III. The mean SLR of solid non-enhancing region of tumour demonstrated statistically significant difference between the WHO grades (grades II, III & IV) (mean SLRII = 0.04, mean SLRIII = 0.06, mean SLRIV = 0.08, & p < .01). A strong positive correlation was seen between WHO grades with mean SLR on lipid map of solid non-enhancing (ρ=0.68, p < .01). Conclusion Lipid quantification via lipid map provides useful information on lipid landscape in tumour heterogeneity characterisation of glioma. This technique adds to the surgical diagnostic yield by identifying biopsy targets. It can also be used as an adjunct grading tool for glioma as well as to provide information about lipidomics landscape in glioma development. In- and opposed-phase imaging is useful in gliomas characterisation and grading. Signal loss ratio in the solid non-enhancing region is a potential imaging marker for discriminating between the WHO grades. Lipid quantification via lipid distribution mapping provides useful information on lipid landscape in tumour heterogeneity.
Collapse
Affiliation(s)
- Pohchoo Seow
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aditya Tri Hernowo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jeannie Hsiu Ding Wong
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlisah Ramli
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Nam L, Coll C, Erthal LCS, de la Torre C, Serrano D, Martínez-Máñez R, Santos-Martínez MJ, Ruiz-Hernández E. Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E779. [PMID: 29751640 PMCID: PMC5978156 DOI: 10.3390/ma11050779] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood⁻brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood⁻brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma.
Collapse
Affiliation(s)
- L Nam
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C Coll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - L C S Erthal
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - D Serrano
- Departamento de Farmacia Galenica y Tecnologia Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - R Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - M J Santos-Martínez
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
- School of Medicine, Trinity College Dublin (TCD), Dublin 2, Ireland.
| | - E Ruiz-Hernández
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| |
Collapse
|
34
|
Jansen RW, van Amstel P, Martens RM, Kooi IE, Wesseling P, de Langen AJ, Menke-Van der Houven van Oordt CW, Jansen BHE, Moll AC, Dorsman JC, Castelijns JA, de Graaf P, de Jong MC. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 2018; 9:20134-20155. [PMID: 29732009 PMCID: PMC5929452 DOI: 10.18632/oncotarget.24893] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
With targeted treatments playing an increasing role in oncology, the need arises for fast non-invasive genotyping in clinical practice. Radiogenomics is a rapidly evolving field of research aimed at identifying imaging biomarkers useful for non-invasive genotyping. Radiogenomic genotyping has the advantage that it can capture tumor heterogeneity, can be performed repeatedly for treatment monitoring, and can be performed in malignancies for which biopsy is not available. In this systematic review of 187 included articles, we compiled a database of radiogenomic associations and unraveled networks of imaging groups and gene pathways oncology-wide. Results indicated that ill-defined tumor margins and tumor heterogeneity can potentially be used as imaging biomarkers for 1p/19q codeletion in glioma, relevant for prognosis and disease profiling. In non-small cell lung cancer, FDG-PET uptake and CT-ground-glass-opacity features were associated with treatment-informing traits including EGFR-mutations and ALK-rearrangements. Oncology-wide gene pathway analysis revealed an association between contrast enhancement (imaging) and the targetable VEGF-signalling pathway. Although the need of independent validation remains a concern, radiogenomic biomarkers showed potential for prognosis prediction and targeted treatment selection. Quantitative imaging enhanced the potential of multiparametric radiogenomic models. A wealth of data has been compiled for guiding future research towards robust non-invasive genomic profiling.
Collapse
Affiliation(s)
- Robin W Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul van Amstel
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adrianus J de Langen
- Department of Respiratory Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernard H E Jansen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annette C Moll
- Department of Ophthalmology, VU University Medical Center, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Imaging Genetic Heterogeneity in Glioblastoma and Other Glial Tumors: Review of Current Methods and Future Directions. AJR Am J Roentgenol 2018; 210:30-38. [DOI: 10.2214/ajr.17.18754] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Abstract
Radiogenomics is a relatively new and exciting field within radiology that links different imaging features with diverse genomic events. Genomics advances provided by the Cancer Genome Atlas and the Human Genome Project have enabled us to harness and integrate this information with noninvasive imaging phenotypes to create a better 3-dimensional understanding of tumor behavior and biology. Beyond imaging-histopathology, imaging genomic linkages provide an important layer of complexity that can help in evaluating and stratifying patients into clinical trials, monitoring treatment response, and enhancing patient outcomes. This article reviews some of the important radiogenomic literatures in brain tumors.
Collapse
|
37
|
Heiland DH, Demerath T, Kellner E, Kiselev VG, Pfeifer D, Schnell O, Staszewski O, Urbach H, Weyerbrock A, Mader I. Molecular differences between cerebral blood volume and vessel size in glioblastoma multiforme. Oncotarget 2017; 8:11083-11093. [PMID: 27613830 PMCID: PMC5355248 DOI: 10.18632/oncotarget.11522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
The purpose of this study was to investigate the molecular background of cerebral blood volume (CBV) and vessel size (VS) of capillaries in glioblastoma multiforme (GBM). Both parameters are derived from extended perfusion MR imaging.A prospective case study including 21 patients (median age 66 years, 10 females) was performed. Before operation, CBV and VS of contrast enhancing tumor were assessed. Tissue was sampled from the assessed areas under neuronavigation control. After RNA extraction, transcriptional data was analyzed by Weighted Gene Co-Expression Network Analysis (WGCNA) and split into modules based on its network affiliations. Gene Set Enrichment Analysis (GSEA) identified biological functions or pathways of the genetic modules. These were applied on 484 GBM samples of the TCGA database.Ten modules were highly correlated to CBV and VS. One module was exclusively associated to VS and highly correlated to hypoxia, another one exclusively to CBV showing strong enrichments in the Epithelial Growth Factor (EGF) pathway and Epithelial-to-Mesenchymal-Transition (EMT). Moreover, patients with increased CBV and VS predominantly showed a mesenchymal gene-expression, a finding that could be corroborated by TCGA data.In conclusion, CBV and VS mirror different genetic pathways and reflect certain molecular subclasses of GBM.
Collapse
Affiliation(s)
- Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Theo Demerath
- Department of Neuroradiology, Medical Center University of Freiburg, Freiburg, Germany.,Department of Radiology, Kantonsspital, Medical Center Universtiy of Basel, Switzerland
| | - Elias Kellner
- Medical Physics, Department of Radiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Valerij G Kiselev
- Medical Physics, Department of Radiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Department of Neuropathology, Medical Center University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, Medical Center University of Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis. Eur Radiol 2017; 28:356-362. [PMID: 28755054 DOI: 10.1007/s00330-017-4964-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/05/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To identify the magnetic resonance imaging (MRI) features associated with epidermal growth factor (EGFR) expression level in lower grade gliomas using radiomic analysis. METHODS 270 lower grade glioma patients with known EGFR expression status were randomly assigned into training (n=200) and validation (n=70) sets, and were subjected to feature extraction. Using a logistic regression model, a signature of MRI features was identified to be predictive of the EGFR expression level in lower grade gliomas in the training set, and the accuracy of prediction was assessed in the validation set. RESULTS A signature of 41 MRI features achieved accuracies of 82.5% (area under the curve [AUC] = 0.90) in the training set and 90.0% (AUC = 0.95) in the validation set. This radiomic signature consisted of 25 first-order statistics or related wavelet features (including range, standard deviation, uniformity, variance), one shape and size-based feature (spherical disproportion), and 15 textural features or related wavelet features (including sum variance, sum entropy, run percentage). CONCLUSIONS A radiomic signature allowing for the prediction of the EGFR expression level in patients with lower grade glioma was identified, suggesting that using tumour-derived radiological features for predicting genomic information is feasible. KEY POINTS • EGFR expression status is an important biomarker for gliomas. • EGFR in lower grade gliomas could be predicted using radiogenomic analysis. • A logistic regression model is an efficient approach for analysing radiomic features.
Collapse
|
39
|
Zhang J, Liu H, Tong H, Wang S, Yang Y, Liu G, Zhang W. Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7064120. [PMID: 29097933 PMCID: PMC5612612 DOI: 10.1155/2017/7064120] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Abstract
Gliomas possess complex and heterogeneous vasculatures with abnormal hemodynamics. Despite considerable advances in diagnostic and therapeutic techniques for improving tumor management and patient care in recent years, the prognosis of malignant gliomas remains dismal. Perfusion-weighted magnetic resonance imaging techniques that could noninvasively provide superior information on vascular functionality have attracted much attention for evaluating brain tumors. However, nonconsensus imaging protocols and postprocessing analysis among different institutions impede their integration into standard-of-care imaging in clinic. And there have been very few studies providing a comprehensive evidence-based and systematic summary. This review first outlines the status of glioma theranostics and tumor-associated vascular pathology and then presents an overview of the principles of dynamic contrast-enhanced MRI (DCE-MRI) and dynamic susceptibility contrast-MRI (DSC-MRI), with emphasis on their recent clinical applications in gliomas including tumor grading, identification of molecular characteristics, differentiation of glioma from other brain tumors, treatment response assessment, and predicting prognosis. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Heng Liu
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Haipeng Tong
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Sumei Wang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yizeng Yang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weiguo Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing 400042, China
| |
Collapse
|
40
|
Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8013575. [PMID: 28316990 PMCID: PMC5337853 DOI: 10.1155/2017/8013575] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) is a primary neuroepithelial tumor of the central nervous system, characterized by an extremely aggressive clinical phenotype. Patients with GBM have a poor prognosis and only 3–5% of them survive for more than 5 years. The current GBM treatment standards include maximal resection followed by radiotherapy with concomitant and adjuvant therapies. Despite these aggressive therapeutic regimens, the majority of patients suffer recurrence due to molecular heterogeneity of GBM. Consequently, a number of potential diagnostic, prognostic, and predictive biomarkers have been investigated. Some of them, such as IDH mutations, 1p19q deletion, MGMT promoter methylation, and EGFRvIII amplification are frequently tested in routine clinical practice. With the development of sequencing technology, detailed characterization of GBM molecular signatures has facilitated a more personalized therapeutic approach and contributed to the development of a new generation of anti-GBM therapies such as molecular inhibitors targeting growth factor receptors, vaccines, antibody-based drug conjugates, and more recently inhibitors blocking the immune checkpoints. In this article, we review the exciting progress towards elucidating the potential of current and novel GBM biomarkers and discuss their implications for clinical practice.
Collapse
|
41
|
Lin X, Lee M, Buck O, Woo KM, Zhang Z, Hatzoglou V, Omuro A, Arevalo-Perez J, Thomas AA, Huse J, Peck K, Holodny AI, Young RJ. Diagnostic Accuracy of T1-Weighted Dynamic Contrast-Enhanced-MRI and DWI-ADC for Differentiation of Glioblastoma and Primary CNS Lymphoma. AJNR Am J Neuroradiol 2016; 38:485-491. [PMID: 27932505 DOI: 10.3174/ajnr.a5023] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/07/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Glioblastoma and primary CNS lymphoma dictate different neurosurgical strategies; it is critical to distinguish them preoperatively. However, current imaging modalities do not effectively differentiate them. We aimed to examine the use of DWI and T1-weighted dynamic contrast-enhanced-MR imaging as potential discriminative tools. MATERIALS AND METHODS We retrospectively reviewed 18 patients with primary CNS lymphoma and 36 matched patients with glioblastoma with pretreatment DWI and dynamic contrast-enhanced-MR imaging. VOIs were drawn around the tumor on contrast-enhanced T1WI and FLAIR images; these images were transferred onto coregistered ADC maps to obtain the ADC and onto dynamic contrast-enhanced perfusion maps to obtain the plasma volume and permeability transfer constant. Histogram analysis was performed to determine the mean and relative ADCmean and relative 90th percentile values for plasma volume and the permeability transfer constant. Nonparametric tests were used to assess differences, and receiver operating characteristic analysis was performed for optimal threshold calculations. RESULTS The enhancing component of primary CNS lymphoma was found to have significantly lower ADCmean (1.1 × 10-3 versus 1.4 × 10-3; P < .001) and relative ADCmean (1.5 versus 1.9; P < .001) and relative 90th percentile values for plasma volume (3.7 versus 5.0; P < .05) than the enhancing component of glioblastoma, but not significantly different relative 90th percentile values for the permeability transfer constant (5.4 versus 4.4; P = .83). The nonenhancing portions of glioblastoma and primary CNS lymphoma did not differ in these parameters. On the basis of receiver operating characteristic analysis, mean ADC provided the best threshold (area under the curve = 0.83) to distinguish primary CNS lymphoma from glioblastoma, which was not improved with normalized ADC or the addition of perfusion parameters. CONCLUSIONS ADC was superior to dynamic contrast-enhanced-MR imaging perfusion, alone or in combination, in differentiating primary CNS lymphoma from glioblastoma.
Collapse
Affiliation(s)
- X Lin
- From the Departments of Neurology (X.L., A.O., A.A.T.).,Department of Neurology (X.L.), National Neuroscience Institute, Singapore
| | - M Lee
- Radiology (M.L., O.B., V.H., J.A.-P., A.I.H., R.J.Y.)
| | - O Buck
- Radiology (M.L., O.B., V.H., J.A.-P., A.I.H., R.J.Y.)
| | - K M Woo
- Epidemiology and Biostatistics (K.M.W., Z.Z.)
| | - Z Zhang
- Epidemiology and Biostatistics (K.M.W., Z.Z.)
| | - V Hatzoglou
- Radiology (M.L., O.B., V.H., J.A.-P., A.I.H., R.J.Y.).,The Brain Tumor Center (V.H., A.O., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Omuro
- From the Departments of Neurology (X.L., A.O., A.A.T.).,The Brain Tumor Center (V.H., A.O., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - A A Thomas
- From the Departments of Neurology (X.L., A.O., A.A.T.)
| | | | | | - A I Holodny
- Radiology (M.L., O.B., V.H., J.A.-P., A.I.H., R.J.Y.).,The Brain Tumor Center (V.H., A.O., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - R J Young
- Radiology (M.L., O.B., V.H., J.A.-P., A.I.H., R.J.Y.) .,The Brain Tumor Center (V.H., A.O., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
42
|
Demerath T, Simon-Gabriel CP, Kellner E, Schwarzwald R, Lange T, Heiland DH, Reinacher P, Staszewski O, Mast H, Kiselev VG, Egger K, Urbach H, Weyerbrock A, Mader I. Mesoscopic imaging of glioblastomas: Are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiol J 2016; 30:36-47. [PMID: 27864578 DOI: 10.1177/1971400916678225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study was to identify markers from perfusion, diffusion, and chemical shift imaging in glioblastomas (GBMs) and to correlate them with genetically determined and previously published patterns of structural magnetic resonance (MR) imaging. Twenty-six patients (mean age 60 years, 13 female) with GBM were investigated. Imaging consisted of native and contrast-enhanced 3D data, perfusion, diffusion, and spectroscopic imaging. In the presence of minor necrosis, cerebral blood volume (CBV) was higher (median ± SD, 2.23% ± 0.93) than in pronounced necrosis (1.02% ± 0.71), pcorr = 0.0003. CBV adjacent to peritumoral fluid-attenuated inversion recovery (FLAIR) hyperintensity was lower in edema (1.72% ± 0.31) than in infiltration (1.91% ± 0.35), pcorr = 0.039. Axial diffusivity adjacent to peritumoral FLAIR hyperintensity was lower in severe mass effect (1.08*10-3 mm2/s ± 0.08) than in mild mass effect (1.14*10-3 mm2/s ± 0.06), pcorr = 0.048. Myo-inositol was positively correlated with a marker for mitosis (Ki-67) in contrast-enhancing tumor, r = 0.5, pcorr = 0.0002. Changed CBV and axial diffusivity, even outside FLAIR hyperintensity, in adjacent normal-appearing matter can be discussed as to be related to angiogenesis pathways and to activated proliferation genes. The correlation between myo-inositol and Ki-67 might be attributed to its binding to cell surface receptors regulating tumorous proliferation of astrocytic cells.
Collapse
Affiliation(s)
- Theo Demerath
- 1 Department of Neuroradiology, Medical Centre-University of Freiburg, Germany.,2 Department of Radiology, University Medical Centre Basel, Switzerland.,3 Faculty of Medicine, University of Freiburg, Germany
| | - Carl Philipp Simon-Gabriel
- 1 Department of Neuroradiology, Medical Centre-University of Freiburg, Germany.,3 Faculty of Medicine, University of Freiburg, Germany
| | - Elias Kellner
- 3 Faculty of Medicine, University of Freiburg, Germany.,4 Medical Physics, Department of Radiology, Medical Centre-University of Freiburg, Germany
| | - Ralf Schwarzwald
- 1 Department of Neuroradiology, Medical Centre-University of Freiburg, Germany.,3 Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Lange
- 3 Faculty of Medicine, University of Freiburg, Germany.,4 Medical Physics, Department of Radiology, Medical Centre-University of Freiburg, Germany
| | - Dieter Henrik Heiland
- 3 Faculty of Medicine, University of Freiburg, Germany.,5 Department of Neurosurgery, Medical Centre-University of Freiburg, Germany
| | - Peter Reinacher
- 3 Faculty of Medicine, University of Freiburg, Germany.,6 Department of Functional and Stereotactic Neurosurgery, Medical Centre-University of Freiburg, Germany
| | - Ori Staszewski
- 3 Faculty of Medicine, University of Freiburg, Germany.,7 Institute of Neuropathology, Medical Centre-University of Freiburg, Germany
| | - Hansjörg Mast
- 1 Department of Neuroradiology, Medical Centre-University of Freiburg, Germany.,3 Faculty of Medicine, University of Freiburg, Germany
| | - Valerij G Kiselev
- 3 Faculty of Medicine, University of Freiburg, Germany.,4 Medical Physics, Department of Radiology, Medical Centre-University of Freiburg, Germany
| | - Karl Egger
- 1 Department of Neuroradiology, Medical Centre-University of Freiburg, Germany.,3 Faculty of Medicine, University of Freiburg, Germany
| | - Horst Urbach
- 1 Department of Neuroradiology, Medical Centre-University of Freiburg, Germany.,3 Faculty of Medicine, University of Freiburg, Germany
| | - Astrid Weyerbrock
- 3 Faculty of Medicine, University of Freiburg, Germany.,5 Department of Neurosurgery, Medical Centre-University of Freiburg, Germany
| | - Irina Mader
- 1 Department of Neuroradiology, Medical Centre-University of Freiburg, Germany.,3 Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
43
|
Hu LS, Ning S, Eschbacher JM, Baxter LC, Gaw N, Ranjbar S, Plasencia J, Dueck AC, Peng S, Smith KA, Nakaji P, Karis JP, Quarles CC, Wu T, Loftus JC, Jenkins RB, Sicotte H, Kollmeyer TM, O'Neill BP, Elmquist W, Hoxworth JM, Frakes D, Sarkaria J, Swanson KR, Tran NL, Li J, Mitchell JR. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol 2016; 19:128-137. [PMID: 27502248 DOI: 10.1093/neuonc/now135] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. METHODS We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). RESULTS We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). CONCLUSION MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Shuluo Ning
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Jennifer M Eschbacher
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Leslie C Baxter
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Nathan Gaw
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Sara Ranjbar
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Jonathan Plasencia
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Amylou C Dueck
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Sen Peng
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Kris A Smith
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Peter Nakaji
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - John P Karis
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - C Chad Quarles
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Teresa Wu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Joseph C Loftus
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Robert B Jenkins
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Hugues Sicotte
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Thomas M Kollmeyer
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Brian P O'Neill
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - William Elmquist
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Joseph M Hoxworth
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - David Frakes
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Jann Sarkaria
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Kristin R Swanson
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Nhan L Tran
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - Jing Li
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| | - J Ross Mitchell
- Department of Radiology, Mayo Clinic, Phoenix, Arizona (L.S.H., T.W., J.M.H.); Department of Biostatistics, Mayo Clinic, Phoenix, Arizona (A.C.D.); Department of Research, Mayo Clinic, Arizona (J.R.M., K.S.); Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona (K.R.S.); Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, Arizona (J.C.L.); Department of Pathology, Mayo Clinic, Rochester, Minnesota (R.B.J., T.M.K.); Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota (H.S.); Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota (B.P.O.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.S.); Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota (W.E.); Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona (S.P., N.L.T.); School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona (J.L., T.W., S.N., N.G.); Department of Biomedical Informatics, Arizona State University, Tempe, Arizona (S.R.); School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona (J.P., D.F.); Department of Pathology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (J.M.E.); Department of Neurosurgery, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (K.A.S., P.N.); Department of Radiology, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (L.C.B., J.P. K., L.S.H.); Department of Imaging Research, Barrow Neurological Institute - St. Joseph's Hospital and Medical Center, Phoenix, Arizona (C.C.Q.)
| |
Collapse
|
44
|
Heiland DH, Mader I, Schlosser P, Pfeifer D, Carro MS, Lange T, Schwarzwald R, Vasilikos I, Urbach H, Weyerbrock A. Integrative Network-based Analysis of Magnetic Resonance Spectroscopy and Genome Wide Expression in Glioblastoma multiforme. Sci Rep 2016; 6:29052. [PMID: 27350391 PMCID: PMC4924099 DOI: 10.1038/srep29052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to identify correlations between metabolites from proton MR spectroscopy and genetic pathway activity in glioblastoma multiforme (GBM). Twenty patients with primary GBM were analysed by short echo-time chemical shift imaging and genome-wide expression analyses. Weighed Gene Co-Expression Analysis was used for an integrative analysis of imaging and genetic data. N-acetylaspartate, normalised to the contralateral healthy side (nNAA), was significantly correlated to oligodendrocytic and neural development. For normalised creatine (nCr), a group with low nCr was linked to the mesenchymal subtype, while high nCr could be assigned to the proneural subtype. Moreover, clustering of normalised glutamine and glutamate (nGlx) revealed two groups, one with high nGlx being attributed to the neural subtype, and one with low nGlx associated with the classical subtype. Hence, the metabolites nNAA, nCr, and nGlx correlate with a specific gene expression pattern reflecting the previously described subtypes of GBM. Moreover high nNAA was associated with better clinical prognosis, whereas patients with lower nNAA revealed a shorter progression-free survival (PFS).
Collapse
Affiliation(s)
- Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Irina Mader
- Department of Neuroradiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute for Medical Biometry and Statistics, Medical Center University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Freiburg, Germany
| | - Maria Stella Carro
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Lange
- Department of Medical Physics, Diagnostic Radiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Ralf Schwarzwald
- Department of Neuroradiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Ioannis Vasilikos
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Bai HX, Lee AM, Yang L, Zhang P, Davatzikos C, Maris JM, Diskin SJ. Imaging genomics in cancer research: limitations and promises. Br J Radiol 2016; 89:20151030. [PMID: 26864054 DOI: 10.1259/bjr.20151030] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, radiogenomics or imaging genomics has emerged as a novel high-throughput method of associating imaging features with genomic data. Radiogenomics has the potential to provide comprehensive intratumour, intertumour and peritumour information non-invasively. This review article summarizes the current state of radiogenomic research in tumour characterization, discusses some of its limitations and promises and projects its future directions. Semi-radiogenomic studies that relate specific gene expressions to imaging features will also be briefly reviewed.
Collapse
Affiliation(s)
- Harrison X Bai
- 1 Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M Lee
- 1 Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Li Yang
- 2 Department of Neurology, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Paul Zhang
- 3 Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- 1 Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John M Maris
- 4 Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,5 Abramson Family Cancer Research Institute, PerelmanSchool of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- 4 Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,5 Abramson Family Cancer Research Institute, PerelmanSchool of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Arevalo-Perez J, Thomas AA, Kaley T, Lyo J, Peck KK, Holodny AI, Mellinghoff IK, Shi W, Zhang Z, Young RJ. T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status. AJNR Am J Neuroradiol 2015; 36:2256-61. [PMID: 26338913 DOI: 10.3174/ajnr.a4484] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Epidermal growth factor receptor variant III is a common mutation in glioblastoma, found in approximately 25% of tumors. Epidermal growth factor receptor variant III may accelerate angiogenesis in malignant gliomas. We correlated T1-weighted dynamic contrast-enhanced MR imaging perfusion parameters with epidermal growth factor receptor variant III status. MATERIALS AND METHODS Eighty-two consecutive patients with glioblastoma and known epidermal growth factor receptor variant III status who had dynamic contrast-enhanced MR imaging before surgery were evaluated. Volumes of interest were drawn around the entire enhancing tumor on contrast T1-weighted images and then were transferred onto coregistered dynamic contrast-enhanced MR imaging perfusion maps. Histogram analysis with normalization was performed to determine the relative mean, 75th percentile, and 90th percentile values for plasma volume and contrast transfer coefficient. A Wilcoxon rank sum test was applied to assess the relationship between baseline perfusion parameters and positive epidermal growth factor receptor variant III status. The receiver operating characteristic method was used to select the cutoffs of the dynamic contrast-enhanced MR imaging perfusion parameters. RESULTS Increased relative plasma volume and increased relative contrast transfer coefficient parameters were both significantly associated with positive epidermal growth factor receptor variant III status. For epidermal growth factor receptor variant III-positive tumors, relative plasma volume mean was 9.3 and relative contrast transfer coefficient mean was 6.5; for epidermal growth factor receptor variant III-negative tumors, relative plasma volume mean was 3.6 and relative contrast transfer coefficient mean was 3.7 (relative plasma volume mean, P < .001, and relative contrast transfer coefficient mean, P = .008). The predictive powers of relative plasma volume histogram metrics outperformed those of the relative contrast transfer coefficient histogram metrics (P < = .004). CONCLUSIONS Dynamic contrast-enhanced MR imaging shows greater perfusion and leakiness in epidermal growth factor receptor variant III-positive glioblastomas than in epidermal growth factor receptor variant III-negative glioblastomas, consistent with the known effect of epidermal growth factor receptor variant III on angiogenesis. Quantitative evaluation of dynamic contrast-enhanced MR imaging may be useful as a noninvasive tool for correlating epidermal growth factor receptor variant III expression and related tumor neoangiogenesis. This potential may have implications for monitoring response to epidermal growth factor receptor variant III-targeted therapies.
Collapse
Affiliation(s)
- J Arevalo-Perez
- From the Departments of Radiology (J.A.-P., J.L., A.I.H., R.J.Y.)
| | | | - T Kaley
- Neurology (A.A.T., T.K., I.K.M.) the Brain Tumor Center (T.K., J.L., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - J Lyo
- From the Departments of Radiology (J.A.-P., J.L., A.I.H., R.J.Y.) the Brain Tumor Center (T.K., J.L., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - A I Holodny
- From the Departments of Radiology (J.A.-P., J.L., A.I.H., R.J.Y.) the Brain Tumor Center (T.K., J.L., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - W Shi
- Epidemiology and Biostatistics (W.S., Z.Z.)
| | - Z Zhang
- Epidemiology and Biostatistics (W.S., Z.Z.)
| | - R J Young
- From the Departments of Radiology (J.A.-P., J.L., A.I.H., R.J.Y.) the Brain Tumor Center (T.K., J.L., A.I.H., R.J.Y.), Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
47
|
Barajas RF, Cha S. Benefits of dynamic susceptibility-weighted contrast-enhanced perfusion MRI for glioma diagnosis and therapy. CNS Oncol 2015; 3:407-19. [PMID: 25438812 DOI: 10.2217/cns.14.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioma are the most common supra-tentorial brain tumor in the USA with an estimated annual incidence of 17,000 new cases per year. Dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion MRI noninvasively characterizes tumor biology allowing for the diagnosis and therapeutic monitoring of glioma. This MRI technique utilizes the rapid changes in signal intensity caused by a rapid intravascular bolus of paramagnetic contrast agent to calculate physiologic perfusion metrics. DSC perfusion MRI has increasingly become an integrated part of glioma imaging. The specific aim of this article is to review the benefits of DSC perfusion MRI in the therapy of glioma.
Collapse
Affiliation(s)
- Ramon Francisco Barajas
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, Long L200B, Box 0628, San Francisco, CA 94143, USA
| | | |
Collapse
|
48
|
Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2015; 6:1359-70. [PMID: 25312641 PMCID: PMC4237465 DOI: 10.15252/emmm.201302627] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumor with a more than 90% 5-year mortality. GBM has a paltry median survival of 12.6 months attributed to the unique treatment limitations such as the high average age of onset, tumor location, and poor current understandings of the tumor pathophysiology. The resection techniques, chemotherapic strategies, and radiation therapy currently used to treat GBM have slowly evolved, but the improvements have not translated to marked increases in patient survival. Here, we will discuss the recent progress in our understanding of GBM pathophysiology, and the diagnostic techniques and treatment options. The discussion will include biomarkers, tumor imaging, novel therapies such as monoclonal antibodies and small-molecule inhibitors, and the heterogeneity resulting from the GBM cancer stem cell population.
Collapse
Affiliation(s)
- Steven K Carlsson
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|