1
|
Pons-Escoda A, Naval-Baudin P, Viveros M, Flores-Casaperalta S, Martinez-Zalacaín I, Plans G, Vidal N, Cos M, Majos C. DSC-PWI presurgical differentiation of grade 4 astrocytoma and glioblastoma in young adults: rCBV percentile analysis across enhancing and non-enhancing regions. Neuroradiology 2024; 66:1267-1277. [PMID: 38834877 PMCID: PMC11246293 DOI: 10.1007/s00234-024-03385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE The presurgical discrimination of IDH-mutant astrocytoma grade 4 from IDH-wildtype glioblastoma is crucial for patient management, especially in younger adults, aiding in prognostic assessment, guiding molecular diagnostics and surgical planning, and identifying candidates for IDH-targeted trials. Despite its potential, the full capabilities of DSC-PWI remain underexplored. This research evaluates the differentiation ability of relative-cerebral-blood-volume (rCBV) percentile values for the enhancing and non-enhancing tumor regions compared to the more commonly used mean or maximum preselected rCBV values. METHODS This retrospective study, spanning 2016-2023, included patients under 55 years (age threshold based on World Health Organization recommendations) with grade 4 astrocytic tumors and known IDH status, who underwent presurgical MR with DSC-PWI. Enhancing and non-enhancing regions were 3D-segmented to calculate voxel-level rCBV, deriving mean, maximum, and percentile values. Statistical analyses were conducted using the Mann-Whitney U test and AUC-ROC. RESULTS The cohort consisted of 59 patients (mean age 46; 34 male): 11 astrocytoma-4 and 48 glioblastoma. While glioblastoma showed higher rCBV in enhancing regions, the differences were not significant. However, non-enhancing astrocytoma-4 regions displayed notably higher rCBV, particularly in lower percentiles. The 30th rCBV percentile for non-enhancing regions was 0.705 in astrocytoma-4, compared to 0.458 in glioblastoma (p = 0.001, AUC-ROC = 0.811), outperforming standard mean and maximum values. CONCLUSION Employing an automated percentile-based approach for rCBV selection enhances differentiation capabilities, with non-enhancing regions providing more insightful data. Elevated rCBV in lower percentiles of non-enhancing astrocytoma-4 is the most distinguishable characteristic and may indicate lowly vascularized infiltrated edema, contrasting with glioblastoma's pure edema.
Collapse
Affiliation(s)
- Albert Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain.
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain.
- Facultat de Medicina i Ciències de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Pablo Naval-Baudin
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Facultat de Medicina i Ciències de La Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| | - Mildred Viveros
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | - Ignacio Martinez-Zalacaín
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| | - Gerard Plans
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
- Neurosurgery Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Noemi Vidal
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
- Pathology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Monica Cos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Carles Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| |
Collapse
|
2
|
Lee J, Chen MM, Liu HL, Ucisik FE, Wintermark M, Kumar VA. MR Perfusion Imaging for Gliomas. Magn Reson Imaging Clin N Am 2024; 32:73-83. [PMID: 38007284 DOI: 10.1016/j.mric.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Accurate diagnosis and treatment evaluation of patients with gliomas is imperative to make clinical decisions. Multiparametric MR perfusion imaging reveals physiologic features of gliomas that can help classify them according to their histologic and molecular features as well as distinguish them from other neoplastic and nonneoplastic entities. It is also helpful in distinguishing tumor recurrence or progression from radiation necrosis, pseudoprogression, and pseudoresponse, which is difficult with conventional MR imaging. This review provides an update on MR perfusion imaging for the diagnosis and treatment monitoring of patients with gliomas following standard-of-care chemoradiation therapy and other treatment regimens such as immunotherapy.
Collapse
Affiliation(s)
- Jina Lee
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Melissa M Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Yang ZC, Yin CD, Yeh FC, Xue BW, Song XY, Li G, Sun SJ, Deng ZH, Hou ZG, Xie J. Exploring MGMT methylation-driven structural connectivity changes in insular gliomas: a tractography and graph theoretical analysis. J Neurooncol 2024; 166:155-165. [PMID: 38150062 DOI: 10.1007/s11060-023-04539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Zuo-Cheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Chuan-Dong Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo-Wen Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Xin-Yu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Sheng-Jun Sun
- Neuroimaging Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-Hai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Zong-Gang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China.
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China.
| |
Collapse
|
4
|
Yang X, Hu C, Xing Z, Lin Y, Su Y, Wang X, Cao D. Prediction of Ki-67 labeling index, ATRX mutation, and MGMT promoter methylation status in IDH-mutant astrocytoma by morphological MRI, SWI, DWI, and DSC-PWI. Eur Radiol 2023; 33:7003-7014. [PMID: 37133522 DOI: 10.1007/s00330-023-09695-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Noninvasive detection of molecular status of astrocytoma is of great clinical significance for predicting therapeutic response and prognosis. We aimed to evaluate whether morphological MRI (mMRI), SWI, DWI, and DSC-PWI could predict Ki-67 labeling index (LI), ATRX mutation, and MGMT promoter methylation status in IDH mutant (IDH-mut) astrocytoma. METHODS We retrospectively analyzed mMRI, SWI, DWI, and DSC-PWI in 136 patients with IDH-mut astrocytoma.The features of mMRI and intratumoral susceptibility signals (ITSS) were compared using Fisher exact test or chi-square tests. Wilcoxon rank sum test was used to compare the minimum ADC (ADCmin), and minimum relative ADC (rADCmin) of IDH-mut astrocytoma in different molecular markers status. Mann-Whitney U test was used to compare the rCBVmax of IDH-mut astrocytoma with different molecular markers status. Receiver operating characteristic curves was performed to evaluate their diagnostic performances. RESULTS ITSS, ADCmin, rADCmin, and rCBVmax were significantly different between high and low Ki-67 LI groups. ITSS, ADCmin, and rADCmin were significantly different between ATRX mutant and wild-type groups. Necrosis, edema, enhancement, and margin pattern were significantly different between low and high Ki-67 LI groups. Peritumoral edema was significantly different between ATRX mutant and wild-type groups. Grade 3 IDH-mut astrocytoma with unmethylated MGMT promoter was more likely to show enhancement compared to the methylated group. CONCLUSIONS mMRI, SWI, DWI, and DSC-PWI were shown to have the potential to predict Ki-67 LI and ATRX mutation status in IDH-mut astrocytoma. A combination of mMRI and SWI may improve diagnostic performance for predicting Ki-67 LI and ATRX mutation status. CLINICAL RELEVANCE STATEMENT Conventional MRI and functional MRI (SWI, DWI, and DSC-PWI) can predict Ki-67 expression and ATRX mutation status of IDH mutant astrocytoma, which may help clinicians determine personalized treatment plans and predict patient outcomes. KEY POINTS • A combination of multimodal MRI may improve the diagnostic performance to predict Ki-67 LI and ATRX mutation status. • Compared with IDH-mutant astrocytoma with low Ki-67 LI, IDH-mutant astrocytoma with high Ki-67 LI was more likely to show necrosis, edema, enhancement, poorly defined margin, higher ITSS levels, lower ADC, and higher rCBV. • ATRX wild-type IDH-mutant astrocytoma was more likely to show edema, higher ITSS levels, and lower ADC compared to ATRX mutant IDH-mutant astrocytoma.
Collapse
Affiliation(s)
- Xiefeng Yang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Chengcong Hu
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, 20 Cha-Zhong Road, Fuzhou, 350005, People's Republic of China
| | - Zhen Xing
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Yu Lin
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Yan Su
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Xingfu Wang
- Department of Pathology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, 20 Cha-Zhong Road, Fuzhou, 350005, People's Republic of China.
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People's Republic of China.
| |
Collapse
|
5
|
Schregel K, Heinz L, Hunger J, Pan C, Bode J, Fischer M, Sturm V, Venkataramani V, Karimian-Jazi K, Agardy DA, Streibel Y, Zerelles R, Wick W, Heiland S, Bunse T, Tews B, Platten M, Winkler F, Bendszus M, Breckwoldt MO. A Cellular Ground Truth to Develop MRI Signatures in Glioma Models by Correlative Light Sheet Microscopy and Atlas-Based Coregistration. J Neurosci 2023; 43:5574-5587. [PMID: 37429718 PMCID: PMC10376935 DOI: 10.1523/jneurosci.1470-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.
Collapse
Affiliation(s)
- Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lennart Heinz
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jessica Hunger
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chenchen Pan
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Volker Sturm
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Kianush Karimian-Jazi
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Yannik Streibel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Roland Zerelles
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Siakallis L, Topriceanu CC, Panovska-Griffiths J, Bisdas S. The role of DSC MR perfusion in predicting IDH mutation and 1p19q codeletion status in gliomas: meta-analysis and technical considerations. Neuroradiology 2023:10.1007/s00234-023-03154-5. [PMID: 37173578 DOI: 10.1007/s00234-023-03154-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE Isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion status are important for managing glioma patients. However, current practice dictates invasive tissue sampling for histomolecular classification. We investigated the current value of dynamic susceptibility contrast (DSC) MR perfusion imaging as a tool for the non-invasive identification of these biomarkers. METHODS A systematic search of PubMed, Medline, and Embase up to 2023 was performed, and meta-analyses were conducted. We removed studies employing machine learning models or using multiparametric imaging. We used random-effects standardized mean difference (SMD) and bivariate sensitivity-specificity meta-analyses, calculated the area under the hierarchical summary receiver operating characteristic curve (AUC) and performed meta-regressions using technical acquisition parameters (e.g., time to echo [TE], repetition time [TR]) as moderators to explore sources of heterogeneity. For all estimates, 95% confidence intervals (CIs) are provided. RESULTS Sixteen eligible manuscripts comprising 1819 patients were included in the quantitative analyses. IDH mutant (IDHm) gliomas had lower rCBV values compared to their wild-type (IDHwt) counterparts. The highest SMD was observed for rCBVmean, rCBVmax, and rCBV 75th percentile (SMD≈ - 0.8, 95% CI ≈ [- 1.2, - 0.5]). In meta-regression, shorter TEs, shorter TRs, and smaller slice thicknesses were linked to higher absolute SMDs. When discriminating IDHm from IDHwt, the highest pooled specificity was observed for rCBVmean (82% [72, 89]), and the highest pooled sensitivity (i.e., 92% [86, 93]) and AUC (i.e., 0.91) for rCBV 10th percentile. In the bivariate meta-regression, shorter TEs and smaller slice gaps were linked to higher pooled sensitivities. In IDHm, 1p19q codeletion was associated with higher rCBVmean (SMD = 0.9 [0.2, 1.5]) and rCBV 90th percentile (SMD = 0.9 [0.1, 1.7]) values. CONCLUSIONS Identification of vascular signatures predictive of IDH and 1p19q status is a novel promising application of DSC perfusion. Standardization of acquisition protocols and post-processing of DSC perfusion maps are warranted before widespread use in clinical practice.
Collapse
Affiliation(s)
- Loizos Siakallis
- University College London (UCL) Queen Square Institute of Neurology, London, UK.
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals (UCLH) NHS Foundation Trust, London, UK.
| | - Constantin-Cristian Topriceanu
- University College London (UCL) Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals (UCLH) NHS Foundation Trust, London, UK
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Jasmina Panovska-Griffiths
- The Big Data Institute and the Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Queen's College, University of Oxford, Oxford, UK
| | - Sotirios Bisdas
- Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals (UCLH) NHS Foundation Trust, London, UK
- Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
7
|
Ahn SH, Ahn SS, Park YW, Park CJ, Lee SK. Association of dynamic susceptibility contrast- and dynamic contrast-enhanced magnetic resonance imaging parameters with molecular marker status in lower-grade gliomas: A retrospective study. Neuroradiol J 2023; 36:49-58. [PMID: 35532193 PMCID: PMC9893160 DOI: 10.1177/19714009221098369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Molecular marker status is clinically relevant for treatment planning and predicting the prognosis of gliomas. This study aimed to assess whether quantitative imaging parameters from dynamic susceptibility contrast- (DSC-) and dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) can predict the molecular marker status of lower-grade gliomas (LGGs). MATERIALS AND METHODS Overall, 132 patients with LGGs who underwent DSC- and DCE-MRI were retrospectively enrolled. Statuses of relevant molecular markers including isocitrate dehydrogenase isoenzyme (IDH), 1p19q codeletion, epidermal growth factor receptor (EGFR), O6-methylguanine-DNA methyltransferase (MGMT), and telomerase reverse transcriptase (TERT) were collected. For each molecular marker, age, tumor diameter and location, and DSC- and DCE-MRI parameters, including the normalized cerebral blood volume (nCBV), volume transfer constant (Ktrans), rate transfer coefficient (Kep), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp), were compared. Multivariable logistic regression analyses were performed. RESULTS The nCBV was significantly lower in LGGs with IDH mutation (p = .001) and TERT mutation (p = .027) than those without these mutations. Ktrans (p = .034), Ve (p = .023), and Vp (p = .044) values were significantly lower in MGMT methylated LGGs than in MGMT unmethylated LGGs. Perfusion parameters were not significantly associated with EGFR amplification and 1p19q codeletion. Young age (p < .001) and small diameter (p = .001) were significantly associated with IDH mutation. The nCBV was independently associated with IDH status (AUC, 0.817; 95% CI: 0.739-0.894). CONCLUSIONS DSC- and DCE-MRI parameters demonstrated correlations with molecular markers of LGGs. Especially, the nCBV can be helpful in predicting the IDH mutation status.
Collapse
Affiliation(s)
- Sung Hee Ahn
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Yae Won Park
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Chae Jung Park
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Yonsei University College of
Medicine, Seoul, Korea
| |
Collapse
|
8
|
Kouwenberg V, van Santwijk L, Meijer FJA, Henssen D. Reliability of dynamic susceptibility contrast perfusion metrics in pre- and post-treatment glioma. Cancer Imaging 2022; 22:28. [PMID: 35715866 PMCID: PMC9205029 DOI: 10.1186/s40644-022-00466-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background In neuro-oncology, dynamic susceptibility contrast magnetic resonance (DSC-MR) perfusion imaging emerged as a tool to aid in the diagnostic work-up and to surveil effectiveness of treatment. However, it is believed that a significant variability exists with regard to the measured in DSC-MR perfusion parameters. The aim of this study was to assess the observer variability in measured DSC-MR perfusion parameters in patients before and after treatment. In addition, we investigated whether region-of-interest (ROI) shape impacted the observer variability. Materials and methods Twenty non-treated patients and a matched group of twenty patients post-treatment (neurosurgical resection and post-chemoradiotherapy) were included. Six ROIs were independently placed by three readers: circular ROIs and polygonal ROIs covering 1) the tumor hotspot; 2) the peritumoral region (T2/FLAIR-hyperintense region) and 3) the whole tumor region. A two-way random Intra-class coefficient (ICC) model was used to assess variability in measured DSC-MRI perfusion parameters. The perfusion metrics as assessed by the circular and the polygonal ROI were compared by use of the dependent T-test. Results In the non-treated group, circular ROIs showed good–excellent overlap (ICC-values ranging from 0.741–0.963) with the exception of those representing the tumor hotspot. Polygonal ROIs showed lower ICC-values, ranging from 0.113 till 0.856. ROI-placement in the posttreatment group showed to be highly variable with a significant deterioration of ICC-values. Furthermore, perfusion metric assessment in similar tumor regions was not impacted by ROI shape. Discussion This study shows that posttreatment quantitative interpretation of DSC-MR perfusion imaging is highly variable and should be carried out with precaution. Pretreatment assessment of DSC-MR images, however, could be carried out be a single reader in order to provide valid data for further analyses. • DSC-MR perfusion imaging measurements in non-treated glioma is highly reliable between readers, even readers with little experience. • DSC-MR perfusion imaging measurements in treated glioma is show to be inconsistent between readers. • When using DSC-MR perfusion imaging as a quantitative surveillance tool for the recurrence of glioma after treatment, double-reading should be preferred.
Collapse
Affiliation(s)
- Valentina Kouwenberg
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Lusien van Santwijk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
van Santwijk L, Kouwenberg V, Meijer F, Smits M, Henssen D. A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging. Insights Imaging 2022; 13:102. [PMID: 35670981 PMCID: PMC9174367 DOI: 10.1186/s13244-022-01230-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 01/17/2023] Open
Abstract
Background Molecular characterization plays a crucial role in glioma classification which impacts treatment strategy and patient outcome. Dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) perfusion imaging have been suggested as methods to help characterize glioma in a non-invasive fashion. This study set out to review and meta-analyze the evidence on the accuracy of DSC and/or DCE perfusion MRI in predicting IDH genotype and 1p/19q integrity status. Methods After systematic literature search on Medline, EMBASE, Web of Science and the Cochrane Library, a qualitative meta-synthesis and quantitative meta-analysis were conducted. Meta-analysis was carried out on aggregated AUC data for different perfusion metrics. Results Of 680 papers, twelve were included for the qualitative meta-synthesis, totaling 1384 patients. It was observed that CBV, ktrans, Ve and Vp values were, in general, significantly higher in IDH wildtype compared to IDH mutated glioma. Meta-analysis comprising of five papers (totaling 316 patients) showed that the AUC of CBV, ktrans, Ve and Vp were 0.85 (95%-CI 0.75–0.93), 0.81 (95%-CI 0.74–0.89), 0.84 (95%-CI 0.71–0.97) and 0.76 (95%-CI 0.61–0.90), respectively. No conclusive data on the prediction of 1p/19q integrity was available from these studies. Conclusions Future research should aim to predict 1p/19q integrity based on perfusion MRI data. Additionally, correlations with other clinically relevant outcomes should be further investigated, including patient stratification for treatment and overall survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01230-7.
Collapse
Affiliation(s)
- Lusien van Santwijk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Valentina Kouwenberg
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Cindil E, Sendur HN, Cerit MN, Erdogan N, Celebi F, Dag N, Celtikci E, Inan A, Oner Y, Tali T. Prediction of IDH Mutation Status in High-grade Gliomas Using DWI and High T1-weight DSC-MRI. Acad Radiol 2022; 29 Suppl 3:S52-S62. [PMID: 33685792 DOI: 10.1016/j.acra.2021.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 01/09/2023]
Abstract
RATIONALE AND OBJECTIVES We aimed to evaluate the diagnostic performance of diffusion-weighted imaging (DWI) and dynamic susceptibility contrast-enhanced (DSC) magnetic resonance imaging (MRI) parameters in the noninvasive prediction of the isocitrate dehydrogenase (IDH) mutation status in high-grade gliomas (HGGs). MATERIALS AND METHODS A total of 58 patients with histopathologically proved HGGs were included in this retrospective study. All patients underwent multiparametric MRI on 3-T, including DSC-MRI and DWI before surgery. The mean apparent diffusion coefficient (ADC), relative maximum cerebral blood volume (rCBV), and percentage signal recovery (PSR) of the tumor core were measured and compared depending on the IDH mutation status and tumor grade. The Mann-Whitney U test was used to detect statistically significant differences in parameters between IDH-mutant-type (IDH-m-type) and IDH-wild-type (IDH-w-type) HGGs. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic performance. RESULTS The rCBV was significantly higher, and the PSR value was significantly lower in IDH-w-type tumors than in the IDH-m group (p = 0.002 and <0.001, respectively).The ADC value in IDH-w-type tumors was significantly lower compared with the one in IDH-m types (p = 0.023), but remarkable overlaps were found between the groups. The PSR showed the best diagnostic performance with an AUC of 0.938 and with an accuracy rate of 0.87 at the optimal cutoff value of 86.85. The combination of the PSR and the rCBV for the identification of the IDH mutation status increased the discrimination ability at the AUC level of 0.955. In terms of each tumor grade, the PSR and rCBV showed significant differences between the IDH-m and IDH-w groups (p ≤0.001). CONCLUSION The rCBV and PSR from DSC-MRI may be feasible noninvasive imaging parameters for predicting the IDH mutation status in HGGs. The standardization of the imaging protocol is indispensable to the utility of DSC perfusion MRI in wider clinical usage.
Collapse
|
11
|
Correlation between dynamic susceptibility contrast perfusion MRI and genomic alterations in glioblastoma. Neuroradiology 2021; 63:1801-1810. [PMID: 33738509 DOI: 10.1007/s00234-021-02674-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/07/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine if dynamic susceptibility contrast perfusion MR imaging (DSC-pMRI) can predict significant genomic alterations in glioblastoma (GB). METHODS A total of 47 patients with treatment-naive GB (M/F: 23/24, mean age: 54 years, age range: 20-90 years) having DSC-pMRI with leakage correction and genomic analysis were reviewed. Mean relative cerebral blood volume (rCBV), maximum rCBV, relative percent signal recovery (rPSR), and relative peak height (rPH) were derived from T2* signal intensity-time curves by ROI analysis. Major genomic alterations of IDH1-132H, MGMT, p53, EGFR, ATRX, and PTEN status were correlated with DSC-pMRI-derived GB parameters. Statistical analysis was performed utilizing the independent-samples t-test, ROC (receiver operating characteristic) curve analysis, and multivariable stepwise regression model. RESULTS rCBVmean and rCBVmax were significantly different in relation to the IDH1, MGMT, p53, and PTEN mutation status (all p < 0.05). The rPH of the p53 mutation-positive GBs (mean 5.8 ± 2.8) was significantly higher than those of the p53 mutation-negative GBs (mean 4.0 ± 1.5) (p = 0.022). Multivariable stepwise regression analysis revealed that the presence of IDH-1 mutation (B = - 2.81, p = 0.005) was associated with decreased rCBVmean; PTEN mutation (B = - 1.21, p = 0.003) and MGMT methylation (B = - 1.47, p = 0.038) were associated with decreased rCBVmax; and ATRX loss (B = - 1.05, p = 0.008) was associated with decreased rPH. CONCLUSION Significant associations were identified between DSC-pMRI-derived parameters and major genomic alterations, including IDH-1 mutation, MGMT methylation, ATRX loss, and PTEN mutation status in GB.
Collapse
|
12
|
Mikkelsen VE, Dai HY, Stensjøen AL, Berntsen EM, Salvesen Ø, Solheim O, Torp SH. MGMT Promoter Methylation Status Is Not Related to Histological or Radiological Features in IDH Wild-type Glioblastomas. J Neuropathol Exp Neurol 2021; 79:855-862. [PMID: 32688383 DOI: 10.1093/jnen/nlaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/25/2020] [Accepted: 06/03/2020] [Indexed: 11/15/2022] Open
Abstract
O6-methylguanine DNA methyltransferase (MGMT) promoter methylation is an important favorable predictive marker in patients with glioblastoma (GBM). We hypothesized that MGMT status could be a surrogate marker of pretreatment tumor biology observed as histopathological and radiological features. Apart from some radiological studies aiming to noninvasively predict the MGMT status, few studies have investigated relationships between MGMT status and phenotypical tumor biology. We have therefore aimed to investigate such relationships in 85 isocitrate dehydrogenase (IDH) wild-type GBMs. MGMT status was determined by methylation-specific PCR and was assessed for associations with 22 histopathological features, immunohistochemical proliferative index and microvessel density measurements, conventional magnetic resonance imaging characteristics, preoperative speed of tumor growth, and overall survival. None of the investigated histological or radiological features were significantly associated with MGMT status. Methylated MGMT status was a significant independent predictor of improved overall survival. In conclusion, our results suggest that MGMT status is not related to the pretreatment phenotypical biology in IDH wild-type GBMs. Furthermore, our findings suggest the survival benefit of MGMT methylated GBMs is not due to an inherently less aggressive tumor biology, and that conventional magnetic resonance imaging features cannot be used to noninvasively predict the MGMT status.
Collapse
Affiliation(s)
- Vilde Elisabeth Mikkelsen
- From the Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology
| | - Hong Yan Dai
- Department of Pathology, St Olav's University Hospital
| | - Anne Line Stensjøen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology.,Department of Radiology and Nuclear Medicine, St. Olav's University Hospital
| | | | - Ole Solheim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology.,Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway
| | - Sverre Helge Torp
- From the Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology.,Department of Pathology, St Olav's University Hospital
| |
Collapse
|
13
|
He W, Li X, Hua J, Liao S, Guo L, Xiao X, Liu X, Zhou J, Wang W, Xu Y, Wu Y. Noninvasive Assessment of O(6)-Methylguanine-DNA Methyltransferase Promoter Methylation Status in World Health Organization Grade II-IV Glioma Using Histogram Analysis of Inflow-Based Vascular-Space-Occupancy Combined with Structural Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 54:227-236. [PMID: 33590929 DOI: 10.1002/jmri.27514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation is an important prognostic factor for gliomas and is associated with tumor angiogenesis. Arteriolar cerebral blood volume (CBVa) obtained from inflow-based vascular-space-occupancy (iVASO) magnetic resonance imaging (MRI) is assumed to be an indicator of tumor microvasculature. Its preoperative predictive ability for MGMT promoter methylation remains unclear. PURPOSE To investigate the role of iVASO-CBVa histogram features in determining MGMT promoter methylation status of grade II-IV gliomas. STUDY TYPE Retrospective SUBJECTS: Forty-six patients consisting of 20 MGMT methylated and 26 unmethylated gliomas. FIELD STRENGTH/SEQUENCE 3.0 T magnetic resonance images containing iVASO MRI, T1 -weighted image (T1 WI), T2 -weighted image, T2 -weighted fluid attenuated inversion recovery image images, and enhanced T1 WI. ASSESSMENT Sixteen structural imaging features were visually evaluated on structural MRI and 14 CBVa histogram features were extracted from iVASO-CBVa maps. STATISTICAL TESTS Imaging features were screened and ranked using Fisher's exact test, Mann-Whitney U-test, and randomforest algorithm. Features with higher importance were selected to develop logistic regression models to determine MGMT methylation status. Receiver operating characteristics (ROC) curve with the area under the curve (AUC) and leave-one-out cross-validation (LOOCV) were used to assess effectiveness and stability. RESULTS The top two CBVa histogram features were root mean squared (RMS) and variance. The top two structural imaging features were contrast-enhancing component of the tumor (CET) location and tumor location. Both the CBVa model of RMS and variance (ROC, AUC = 0.867; LOOCV, AUC = 0.819) and the model of structural features (ROC, AUC = 0.882; LOOCV, AUC = 0.802) accurately identified MGMT methylation. The fusion model of CBVa RMS and CET location improved diagnostic performance (ROC, AUC = 0.931; LOOCV, AUC =0.906). DATA CONCLUSION: iVASO-CBVa has potential in evaluating MGMT methylation status in grade II-IV gliomas. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Wenle He
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xiaodan Li
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Hua
- Neurosection, Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shukun Liao
- Division of CT & MR, Radiology Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liuji Guo
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Xiao
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Liu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wensheng Wang
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Application of Distributed Parameter Model to Assessment of Glioma IDH Mutation Status by Dynamic Contrast-Enhanced Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:8843084. [PMID: 33299387 PMCID: PMC7704178 DOI: 10.1155/2020/8843084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 11/07/2020] [Indexed: 01/08/2023]
Abstract
Previous studies using contrast-enhanced imaging for glioma isocitrate dehydrogenase (IDH) mutation assessment showed promising yet inconsistent results, and this study attempts to explore this problem by using an advanced tracer kinetic model, the distributed parameter model (DP). Fifty-five patients with glioma examined using dynamic contrast-enhanced imaging sequence at a 3.0 T scanner were retrospectively reviewed. The imaging data were processed using DP, yielding the following parameters: blood flow F, permeability-surface area product PS, fractional volume of interstitial space Ve, fractional volume of intravascular space Vp, and extraction ratio E. The results were compared with the Tofts model. The Wilcoxon test and boxplot were utilized for assessment of differences of model parameters between IDH-mutant and IDH-wildtype gliomas. Spearman correlation r was employed to investigate the relationship between DP and Tofts parameters. Diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis and quantified using the area under the ROC curve (AUC). Results showed that IDH-mutant gliomas were significantly lower in F (P = 0.018), PS (P < 0.001), Vp (P < 0.001), E (P < 0.001), and Ve (P = 0.002) than IDH-wildtype gliomas. In differentiating IDH-mutant and IDH-wildtype gliomas, Vp had the best performance (AUC = 0.92), and the AUCs of PS and E were 0.82 and 0.80, respectively. In comparison, Tofts parameters were lower in Ktrans (P = 0.013) and Ve (P < 0.001) for IDH-mutant gliomas. No significant difference was observed in Kep (P = 0.525). The AUCs of Ktrans, Ve, and Kep were 0.69, 0.79, and 0.55, respectively. Tofts-derived Ve showed a strong correlation with DP-derived Ve (r > 0.9, P < 0.001). Ktrans showed a weak correlation with F (r < 0.3, P > 0.16) and a very weak correlation with PS (r < 0.06, P > 0.8), both of which were not statistically significant. The findings by DP revealed a tissue environment with lower vascularity, lower vessel permeability, and lower blood flow in IDH-mutant than in IDH-wildtype gliomas, being hostile to cellular differentiation of oncogenic effects in IDH-mutated gliomas, which might help to explain the better outcomes in IDH-mutated glioma patients than in glioma patients of IDH-wildtype. The advantage of DP over Tofts in glioma DCE data analysis was demonstrated in terms of clearer elucidation of tissue microenvironment and better performance in IDH mutation assessment.
Collapse
|
15
|
Chelebian E, Fuster-Garcia E, Álvarez-Torres MDM, Juan-Albarracín J, García-Gómez JM. Higher vascularity at infiltrated peripheral edema differentiates proneural glioblastoma subtype. PLoS One 2020; 15:e0232500. [PMID: 33052913 PMCID: PMC7556526 DOI: 10.1371/journal.pone.0232500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Genetic classifications are crucial for understanding the heterogeneity of glioblastoma. Recently, perfusion MRI techniques have demonstrated associations molecular alterations. In this work, we investigated whether perfusion markers within infiltrated peripheral edema were associated with proneural, mesenchymal, classical and neural subtypes. MATERIALS AND METHODS ONCOhabitats open web services were used to obtain the cerebral blood volume at the infiltrated peripheral edema for MRI studies of 50 glioblastoma patients from The Cancer Imaging Archive: TCGA-GBM. ANOVA and Kruskal-Wallis tests were carried out in order to assess the association between vascular features and the Verhaak subtypes. For assessing specific differences, Mann-Whitney U-test was conducted. Finally, the association of overall survival with molecular and vascular features was assessed using univariate and multivariate Cox models. RESULTS ANOVA and Kruskal-Wallis tests for the maximum cerebral blood volume at the infiltrated peripheral edema between the four subclasses yielded false discovery rate corrected p-values of <0.001 and 0.02, respectively. This vascular feature was significantly higher (p = 0.0043) in proneural patients compared to the rest of the subtypes while conducting Mann-Whitney U-test. The multivariate Cox model pointed to redundant information provided by vascular features at the peripheral edema and proneural subtype when analyzing overall survival. CONCLUSIONS Higher relative cerebral blood volume at infiltrated peripheral edema is associated with proneural glioblastoma subtype suggesting underlying vascular behavior related to molecular composition in that area.
Collapse
Affiliation(s)
- Eduard Chelebian
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain.,Department of Information Technology, Uppsala University, Uppsala, Sweden
| | | | - María Del Mar Álvarez-Torres
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| | - Javier Juan-Albarracín
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| | - Juan M García-Gómez
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| |
Collapse
|
16
|
Fuster-Garcia E, Lorente Estellés D, Álvarez-Torres MDM, Juan-Albarracín J, Chelebian E, Rovira A, Acosta CA, Pineda J, Oleaga L, Mollá-Olmos E, Filice S, Due-Tønnessen P, Meling TR, Emblem KE, García-Gómez JM. MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas. Eur Radiol 2020; 31:1738-1747. [PMID: 33001310 PMCID: PMC7880975 DOI: 10.1007/s00330-020-07297-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
Objectives To assess the combined role of tumor vascularity, estimated from perfusion MRI, and MGMT methylation status on overall survival (OS) in patients with glioblastoma. Methods A multicentric international dataset including 96 patients from NCT03439332 clinical study were used to study the prognostic relationships between MGMT and perfusion markers. Relative cerebral blood volume (rCBV) in the most vascularized tumor regions was automatically obtained from preoperative MRIs using ONCOhabitats online analysis service. Cox survival regression models and stratification strategies were conducted to define a subpopulation that is particularly favored by MGMT methylation in terms of OS. Results rCBV distributions did not differ significantly (p > 0.05) in the methylated and the non-methylated subpopulations. In patients with moderately vascularized tumors (rCBV < 10.73), MGMT methylation was a positive predictive factor for OS (HR = 2.73, p = 0.003, AUC = 0.70). In patients with highly vascularized tumors (rCBV > 10.73), however, there was no significant effect of MGMT methylation (HR = 1.72, p = 0.10, AUC = 0.56). Conclusions Our results indicate the existence of complementary prognostic information provided by MGMT methylation and rCBV. Perfusion markers could identify a subpopulation of patients who will benefit the most from MGMT methylation. Not considering this information may lead to bias in the interpretation of clinical studies. Key Points • MRI perfusion provides complementary prognostic information to MGMT methylation. • MGMT methylation improves prognosis in glioblastoma patients with moderate vascular profile. • Failure to consider these relations may lead to bias in the interpretation of clinical studies. Electronic supplementary material The online version of this article (10.1007/s00330-020-07297-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elies Fuster-Garcia
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway.
| | - David Lorente Estellés
- Medical Oncology Service, Hospital Provinicial de Castellón, Castellón de La Plana, Castellón, Spain
| | - María Del Mar Álvarez-Torres
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| | - Javier Juan-Albarracín
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| | - Eduard Chelebian
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| | - Alex Rovira
- Section of Neuroradiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | - Silvano Filice
- Department of Medical Physics, University Hospital of Parma, Parma, Italy
| | | | - Torstein R Meling
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - Kyrre E Emblem
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Juan M García-Gómez
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| |
Collapse
|
17
|
Brendle C, Klose U, Hempel JM, Schittenhelm J, Skardelly M, Tabatabai G, Ernemann U, Bender B. Association of dynamic susceptibility magnetic resonance imaging at initial tumor diagnosis with the prognosis of different molecular glioma subtypes. Neurol Sci 2020; 41:3625-3632. [PMID: 32462389 PMCID: PMC8203510 DOI: 10.1007/s10072-020-04474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose The updated 2016 CNS World Health Organization classification differentiates three main groups of diffuse glioma according to their molecular characteristics: astrocytic tumors with and without isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deleted oligodendrogliomas. The present study aimed to determine whether dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is an independent prognostic marker within the molecular subgroups of diffuse glioma. Methods Fifty-six patients with treatment-naive gliomas and advanced preoperative MRI examination were assessed retrospectively. The mean and maximal normalized cerebral blood volume values from DSC-MRI within the tumors were measured. Optimal cutoff values for the 1-year progression-free survival (PFS) were defined, and Kaplan-Meier analyses were performed separately for the three glioma subgroups. Results IDH wild-type astrocytic tumors had a higher mean and maximal perfusion than IDH-mutant astrocytic tumors and oligodendrogliomas. Patients with IDH wild-type astrocytic tumors and a low mean or maximal perfusion had a significantly shorter PFS than patients of the same group with high perfusion (p = 0.0159/0.0112). Furthermore, they had a significantly higher risk for early progression (hazard ratio = 5.6/5.1). This finding was independent of the methylation status of O6-methylguanin-DNA-methyltransferase and variations of the therapy. Within the groups of IDH-mutant astrocytic tumors and oligodendrogliomas, the PFS of low and highly perfused tumors did not differ. Conclusion High perfusion upon initial diagnosis is not compellingly associated with worse short-term prognosis within the different molecular subgroups of diffuse glioma. Particularly, the overall highly perfused group of IDH wild-type astrocytic tumors contains tumors with low perfusion but unfavorable prognosis.
Collapse
Affiliation(s)
- Cornelia Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Uwe Klose
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Johann-Martin Hempel
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Jens Schittenhelm
- Neuropathology, Department of Pathology and Neuropathology, Eberhard Karls University, Calwerstr. 3, 72076, Tuebingen, Germany
| | - Marco Skardelly
- University Hospital for Neurosurgery, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- Interdisciplinary Section of Neurooncology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Ulrike Ernemann
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Benjamin Bender
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
18
|
The Impact of MRI Features and Observer Confidence on the Treatment Decision-Making for Patients with Untreated Glioma. Sci Rep 2019; 9:19898. [PMID: 31882644 PMCID: PMC6934740 DOI: 10.1038/s41598-019-56333-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
In a blind, dual-center, multi-observer setting, we here identify the pre-treatment radiologic features by Magnetic Resonance Imaging (MRI) associated with subsequent treatment options in patients with glioma. Study included 220 previously untreated adult patients from two institutions (94 + 126 patients) with a histopathologically confirmed diagnosis of glioma after surgery. Using a blind, cross-institutional and randomized setup, four expert neuroradiologists recorded radiologic features, suggested glioma grade and corresponding confidence. The radiologic features were scored using the Visually AcceSAble Rembrandt Images (VASARI) standard. Results were retrospectively compared to patient treatment outcomes. Our findings show that patients receiving a biopsy or a subtotal resection were more likely to have a tumor with pathological MRI-signal (by T2-weighted Fluid-Attenuated Inversion Recovery) crossing the midline (Hazard Ratio; HR = 1.30 [1.21–1.87], P < 0.001), and those receiving a biopsy sampling more often had multifocal lesions (HR = 1.30 [1.16–1.64], P < 0.001). For low-grade gliomas (N = 50), low observer confidence in the radiographic readings was associated with less chance of a total resection (P = 0.002) and correlated with the use of a more comprehensive adjuvant treatment protocol (Spearman = 0.48, P < 0.001). This study may serve as a guide to the treating physician by identifying the key radiologic determinants most likely to influence the treatment decision-making process.
Collapse
|
19
|
Prediction of survival in patients affected by glioblastoma: histogram analysis of perfusion MRI. J Neurooncol 2018; 139:455-460. [DOI: 10.1007/s11060-018-2887-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/08/2018] [Indexed: 01/20/2023]
|