1
|
Hong S, Kim OJ, Jung SK, Jeon HL, Kim S, Kil J. The Exposure Status of Environmental Chemicals in South Korea: The Korean National Environmental Health Survey 2018-2020. TOXICS 2024; 12:829. [PMID: 39591007 PMCID: PMC11597996 DOI: 10.3390/toxics12110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
In South Korea, a Human Biomonitoring (HBM) program, known as the Korean National Environmental Health Survey (KoNEHS), was launched in 2009. This study aims to provide an overview of environmental chemical exposures in South Korea based on data from the KoNEHS cycle 4 (2018-2020). To ensure population representativeness, Koreans aged 3 years and older were recruited from 426 sites across the country. A total of 6381 participants joined in the collection of biospecimens, which were subsequently analyzed for 33 environmental chemicals or their metabolites, including nine that were not included in the previous cycle. The five most common PFASs were detected in more than 99.7% of the participants. The GM of serum PFOS was the highest in adults at 15.1 µg/L (13.9, 16.4) and in adolescents at 7.97 µg/L (7.42, 8.56). In adults, there was a gradual decrease in the detection rate and concentration of some heavy metals and phthalate metabolites. In children and adolescents, the detection rate of BPA in urine decreased, while the rate of its substitutes BPF and BPS increased, and the rate of propyl paraben in urine decreased significantly. The results of the KoNEHS cycle 4 indicate that exposure levels to certain environmental chemicals are still high, highlighting further monitoring and on-going surveys to determine their trends, especially for newly investigated substances, such as PFASs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jihyon Kil
- Environmental Health Research Department, National Institute of Environmental Research, Ministry of Environment, Incheon 22689, Republic of Korea (S.K.)
| |
Collapse
|
2
|
Hron LMC, Wöckner M, Fuchs V, Fembacher L, Aschenbrenner B, Herr C, Schober W, Heinze S, Völkel W. Monitoring of per- and polyfluoroalkyl substances (PFAS) in human blood samples collected in three regions with known PFAS releases in the environment and three control regions in South Germany. Arch Toxicol 2024; 98:3727-3738. [PMID: 39167139 DOI: 10.1007/s00204-024-03843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are known as persistent and bioaccumulative chemicals. The present paper describes the analysis of 969 human blood samples collected in South Germany aiming to determine whether there are statistic significant differences in internal PFAS burden between three regions with known PFAS releases in the environment (study regions) and three regions without known PFAS releases in the environment (control regions). Nine environmental relevant PFAS were analyzed, including the perfluorooctanoic acid (PFOA) substitute 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid] ammonium salt (ADONA). We found that concentrations of PFOA and perfluorooctane sulfonate (PFOS) were higher than for all other PFAS in all of the six regions, but all medians of PFOA (between 0.8 and 0.9 ng/ml for the study and control regions) and PFOS (between 1.3 and 1.5 ng/ml for the study regions and between 1.4 and 1.5 ng/ml for the control regions) were below the human biomonitoring values (HBM) I for PFOA (2 ng/ml) und for PFOS (5 ng/ml) derived by the German HBM Commission. Concentrations of ADONA were below the limit of quantification in all samples. Minor differences were observed in PFAS blood levels between study and control regions. Especially for PFOS and PFOA the medians for women are slightly lower compared to men. In summary, individuals living in regions with known environmental PFAS contaminations show no higher internal PFAS exposure to controls and in comparison to other studies in the literature.
Collapse
Affiliation(s)
- Lorena M Cursino Hron
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany.
| | - Mandy Wöckner
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
| | - Veronika Fuchs
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
| | - Ludwig Fembacher
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
| | - Bettina Aschenbrenner
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
| | - Caroline Herr
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstrasse 1, 80336, Munich, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
| | - Stefanie Heinze
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstrasse 1, 80336, Munich, Germany
| | - Wolfgang Völkel
- Bavarian Health and Food Safety Authority, Institute of Occupational and Environmental Health Protection and Product Safety, Pfarrstrasse 3, 80538, Munich, Germany
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| |
Collapse
|
3
|
PFAS im Trinkwasser – Sachstand und Aspekte zur Bewertung. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:971-974. [PMID: 39060682 DOI: 10.1007/s00103-024-03906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
4
|
Immunomodulation and exposure to per- and polyfluoroalkyl substances: an overview of the current evidence from animal and human studies. Arch Toxicol 2022; 96:2261-2285. [PMID: 35695909 DOI: 10.1007/s00204-022-03303-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used and represent a class of environmental persistent chemicals. An association of a reduction of vaccination efficacy with PFAS serum levels in humans was used by the European Food Safety Authority as a key effect for PFAS risk assessment. The data support for using this association is reviewed by a critical analysis of the respective human epidemiology and the available animal studies on the immunomodulation of PFAS. Based on an analysis of the available human epidemiology, the overall level of evidence regarding associations between PFAS serum levels and reduced antibody response remains weak. Absence of an association between an increase in clinical infections and PFAS serum levels and the limited understanding of the importance of antibody levels as an isolated data point further support this conclusion. Animal toxicity studies with PFAS focusing on immunomodulation also provide only limited support for immunomodulation as an important endpoint in PFAS toxicity. While immunomodulation is observed after PFAS administration, generally at blood concentrations several orders of magnitude above those seen in environmentally exposed humans, the relevance of these observation is hampered by the high doses required to influence immune endpoints, the limited number of endpoints assessed, and inconsistent results. The limitations of the current database on associations of human PFAS exposures outlined here indicate that more evidence is required to select immunomodulation as a critical endpoint for human PFAS risk assessment.
Collapse
|
5
|
Abraham K, Koletzko B, Mildenberger E, Rouw E, von Gartzen A, Ensenauer R. Per- und polyfluorierte Alkylsubstanzen (PFAS) und Stillen: Nutzen-Risiken-Abwägungen. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Göckener B, Weber T, Rüdel H, Bücking M, Kolossa-Gehring M. Human biomonitoring of per- and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. ENVIRONMENT INTERNATIONAL 2020; 145:106123. [PMID: 32949877 DOI: 10.1016/j.envint.2020.106123] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 05/20/2023]
Abstract
The findings of per- and polyfluoroalkyl substances (PFAS) in humans and the environment all over the world have raised concerns and public awareness for this group of man-made chemicals. In the last three decades, this led to different regulatory restrictions for specific PFAS as well as shifts in the production and usage of these substances. In this study, we analyzed the PFAS levels of 100 human blood plasma samples collected from 2009 to 2019 for the German Environmental Specimen Bank (ESB) to further elucidate the time course of exposure towards this substance group as shown by Schröter-Kermani et al., (2013) with samples from 1982 to 2010. A spectrum of 37 PFAS, including perfluorocarboxylic (PFCA) and -sulfonic acids (PFSA) as well as potential precursors and substitutes like ADONA, GenX or F-53B was analyzed by UHPLC coupled with high-resolution mass spectrometry. Validation was successful for 33 of the substances. The two legacy substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were detected in every sample of the 2009-2019 dataset and showed the highest concentrations with ranges of 0.27-14.0 ng/mL and 1.21-14.1 ng/mL, respectively. A significant portion of total PFOS analytes was present as branched isomers (mean: 34 ± 7%). High detection frequencies of 95% and 82% were also found for perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA), respectively, but in lower concentrations (PFHxS: <LOQ - 4.62 ng/mL; PFNA: <LOQ - 3.66 ng/mL) than PFOA and PFOS. Besides other PFCA and PFSA only 8:2 fluorotelomer sulfonic acid (8:2 FtS) and N-methyl perfluorooctane sulfonamidoacetic acid were detected in very few samples. In combination with the previous results from 1982 to 2010, declining temporal trends were observed for all PFAS (PFOA, PFNA, PFHxS, and PFOS) frequently detected in the ESB samples. The results of this study indicate a decrease in human exposure to known PFAS in Germany over the last three decades and emphasize the importance of long-term human biomonitoring studies for investigating the effects of chemical regulation.
Collapse
Affiliation(s)
- Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Till Weber
- German Environment Agency (Umweltbundesamt), Corrensplatz 1, 14195 Berlin, Germany
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Mark Bücking
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Monash University, School of Chemistry, 13 Rainforest Walk, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
7
|
Huppertz HI, von Mühlendahl KE, Lob-Corzilius T, Koletzko B, Mühlbauer B. Exposition von gestillten Säuglingen gegenüber perfluorierten Tensiden über die Muttermilch. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Duffek A, Conrad A, Kolossa-Gehring M, Lange R, Rucic E, Schulte C, Wellmitz J. Per- and polyfluoroalkyl substances in blood plasma - Results of the German Environmental Survey for children and adolescents 2014-2017 (GerES V). Int J Hyg Environ Health 2020; 228:113549. [PMID: 32502942 DOI: 10.1016/j.ijheh.2020.113549] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 01/16/2023]
Abstract
The 5th cycle of the German Environmental Survey (GerES V) investigated the internal human exposure of children and adolescents aged 3-17 years in Germany to per- and polyfluoroalkyl substances (PFAS). The fieldwork of the population-representative GerES V was performed from 2014 to 2017. In total, 1109 blood plasma samples were analysed for 12 PFAS including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonic acid (PFHxS). PFOS was quantified in all and PFOA in almost all samples, demonstrating ubiquitous exposure. The highest geometric mean concentrations measured were 2.49 ng/mL for PFOS, followed by PFOA (1.12 ng/mL) and PFHxS (0.36 ng/mL), while concentrations of other PFAS were found in much lower concentrations. The 95th percentile levels of PFOS and PFOA were 6.00 and 3.24 ng/mL, respectively. The results document a still considerable exposure of the young generation to the phased out chemicals PFOS and PFOA. The observed exposure levels vary substantially between individuals and might be due to different multiple sources. The relative contribution of various exposure parameters such as diet or the specific use of consumer products need to be further explored. Although additional investigations on the time trend of human exposure are warranted, GerES V underlines the need for an effective and sustainable regulation of PFAS as a whole.
Collapse
Affiliation(s)
- Anja Duffek
- German Environment Agency, Laboratory for Water Analysis, Corrensplatz 1, Berlin, 14195, Germany.
| | - André Conrad
- German Environment Agency, Toxicology, Health-related Environmental Monitoring, Corrensplatz 1, Berlin, 14195, Germany
| | - Marike Kolossa-Gehring
- German Environment Agency, Toxicology, Health-related Environmental Monitoring, Corrensplatz 1, Berlin, 14195, Germany
| | - Rosa Lange
- German Environment Agency, Toxicology, Health-related Environmental Monitoring, Corrensplatz 1, Berlin, 14195, Germany
| | - Enrico Rucic
- German Environment Agency, Toxicology, Health-related Environmental Monitoring, Corrensplatz 1, Berlin, 14195, Germany
| | - Christoph Schulte
- German Environment Agency, Department Water and Soil, Wörlitzer Platz 1, Dessau-Roßlau, 06844, Germany
| | - Jörg Wellmitz
- German Environment Agency, Laboratory for Water Analysis, Corrensplatz 1, Berlin, 14195, Germany
| |
Collapse
|