1
|
Santaolalla Sanchez FJ, Gutierrez Posso JD, Santaolalla Montoya F, Zabala JA, Arrizabalaga-Iriondo A, Revuelta M, Sánchez Del Rey A. Pathogenesis and New Pharmacological Approaches to Noise-Induced Hearing Loss: A Systematic Review. Antioxidants (Basel) 2024; 13:1105. [PMID: 39334764 PMCID: PMC11428627 DOI: 10.3390/antiox13091105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is responsible for significant adverse effects on cognition, quality of life and work, social relationships, motor skills, and other psychological aspects. The severity of NIHL depends on individual patient characteristics, sound intensity, and mainly the duration of sound exposure. NIHL leads to the production of a reactive oxygen (ROS) inflammatory response and the activation of apoptotic pathways, DNA fragmentation, and cell death. In this situation, antioxidants can interact with free radicals as well as anti-apoptotics or anti-inflammatory substances and stop the reaction before vital molecules are damaged. Therefore, the aim of this study was to analyze the effects of different pharmacological treatments, focusing on exogenous antioxidants, anti-inflammatories, and anti-apoptotics to reduce the cellular damage caused by acoustic trauma in the inner ear. Experimental animal studies using these molecules have shown that they protect hair cells and reduce hearing loss due to acoustic trauma. However, there is a need for more conclusive evidence demonstrating the protective effects of antioxidant/anti-inflammatory or anti-apoptotic drugs' administration, the timeline in which they exert their pharmacological action, and the dose in which they should be used in order to consider them as therapeutic drugs. Further studies are needed to fully understand the potential of these drugs as they may be a promising option to prevent and treat noise-induced hearing loss.
Collapse
Affiliation(s)
| | - Juan David Gutierrez Posso
- Otorhinolaryngology Service, Basurto University Hospital, OSI Bilbao-Basurto, BioBizkaia, 48013 Bilbao, Bizkaia, Spain
| | - Francisco Santaolalla Montoya
- Otorhinolaryngology Service, Basurto University Hospital, OSI Bilbao-Basurto, BioBizkaia, 48013 Bilbao, Bizkaia, Spain
- Otorhinolaryngology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Javier Aitor Zabala
- Otorhinolaryngology Service, Basurto University Hospital, OSI Bilbao-Basurto, BioBizkaia, 48013 Bilbao, Bizkaia, Spain
- Otorhinolaryngology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Ane Arrizabalaga-Iriondo
- Physiology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Miren Revuelta
- Physiology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Ana Sánchez Del Rey
- Otorhinolaryngology Department, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
2
|
Li J, Yang J, Xia Y, Wang J, Xia Y. Effects of Astragaloside IV on Hearing, Inflammatory Factors, and Intestinal Flora in Mice Exposed to Noise. Metabolites 2024; 14:122. [PMID: 38393014 PMCID: PMC10890247 DOI: 10.3390/metabo14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Long-term exposure to noise can cause irreversible hearing loss. Considering that there is no effective drug treatment, it is important to seek preventive treatment for noise-induced hearing loss (NIHL). Although astragaloside IV (AS-IV) protects against NIHL by reducing serum inflammatory factors, there is scarce information on the regulation of inflammatory factors by AS-IV to prevent NIHL. We investigated the hearing thresholds and relationship between the serum levels of inflammatory cytokines and intestinal microbiota of c57bl/6j mice exposed to noise (103 dB SPL 4 h·d-1) for 7 days, treated with or without AS-IV. Our results revealed a lower hearing threshold and lower serum levels of TNF-α, TNF-γ, IL-6, IL-1β, and IFN-γ in the mice treated with AS-IV. Additionally, AS-IV increased the abundance levels of the phylum Firmicutes, class Bacillus, order Lactobacillus, and family Lactobacillus (p < 0.05), and decreased those of the phylum Bacteroidetes and order Bacteroidales (p < 0.05). Lactobacillus and Bacilli negatively correlated with TNF-α, TNF-γ, and IL-1β; Erysipelotrichaceae negatively correlated with INF-γ; and Clostridiales positively correlated with IL-1β. In conclusion, AS-IV reduces the elevation of hearing thresholds in mice, preventing hearing loss in mice exposed to noise, and under the intervention of AS-IV, changes in the levels of inflammatory factors correlate with intestinal flora. We suggest that AS-IV improves intestinal flora and reduces inflammation levels in c57bl/6j mice exposed to noise.
Collapse
Affiliation(s)
- Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yun Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
3
|
Liu YC, Xu K. Macrophage-related immune responses in inner ear: a potential therapeutic target for sensorineural hearing loss. Front Neurosci 2024; 17:1339134. [PMID: 38274500 PMCID: PMC10808290 DOI: 10.3389/fnins.2023.1339134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Hearing loss is the most common sensory disorder in human beings. Cochlear sensory cells are the basis of hearing. Cochlear sensory cells suffer from various acute or chronic injuries, such as excessive sound stimulation, ototoxic drugs, and age-related degeneration. In response to these stresses, the cochlea develops an immune response. In recent years, studies have shown that the immune response of the inner ear has been regarded as one of the important pathological mechanisms of inner ear injury. Therapeutic interventions for inflammatory responses can effectively alleviate different types of inner ear injury. As the main immune cells in the inner ear, macrophages are involved in the process of inner ear injury caused by various exogenous factors. However, its specific role in the immune response of the inner ear is still unclear. This review focuses on discusses the dynamic changes of macrophages during different types of inner ear injury, and clarifies the potential role of macrophage-related immune response in inner ear injury.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Behrends W, Ahrens D, Bankstahl JP, Esser KH, Paasche G, Lenarz T, Scheper V. Refinement of systemic guinea pig deafening in hearing research: Sensorineural hearing loss induced by co-administration of kanamycin and furosemide via the leg veins. Lab Anim 2023; 57:631-641. [PMID: 37070340 DOI: 10.1177/00236772231167679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Auditory disabilities have a large impact on the human population worldwide. Research into understanding and treating hearing disabilities has increased significantly in recent years. One of the most relevant animal species in this context is the guinea pig, which has to be deafened to study several of the hearing pathologies and develop novel therapies. Applying kanamycin subcutaneously and furosemide intravenously is a long-established method in hearing research, leading to permanent hearing loss without surgical intervention at the ear. The intravenous application of furosemide requires invasive surgery in the cervical area of the animals to expose the jugular vein, since a relatively large volume (1 ml per 500 g body weight) must be injected over a period of about 2.5 min. We have established a gentler alternative by applying the furosemide by puncture of the leg veins. For this, custom-made cannula-needle devices were built to allow the vein puncture and subsequent slow injection of the furosemide. This approach was tested in 11 guinea pigs through the foreleg via the cephalic antebrachial vein and through the hind leg via the saphenous vein. Frequency-specific hearing thresholds were measured before and after the procedure to verify normal hearing and successful deafening, respectively. The novel approach of systemic deafening was successfully implemented in 10 out of 11 animals. The Vena saphena was best suited to the application. Since the animals' condition, post leg vein application, was better in comparison to animals deafened by exposure of the Vena jugularis, the postulated refinement that reduced animal stress was deemed successful.
Collapse
Affiliation(s)
- Wiebke Behrends
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Auditory Neuroethology and Neurobiology, Institute of Zoology, University of Veterinary Medicine Hannover Foundation, Germany
| | - Daniel Ahrens
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Karl-Heinz Esser
- Auditory Neuroethology and Neurobiology, Institute of Zoology, University of Veterinary Medicine Hannover Foundation, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Germany
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Germany
| |
Collapse
|
5
|
Ernst BP, Heinrich UR, Fries M, Meuser R, Rader T, Eckrich J, Stauber RH, Strieth S. Cochlear implantation impairs intracochlear microcirculation and counteracts iNOS induction in guinea pigs. Front Cell Neurosci 2023; 17:1189980. [PMID: 37448696 PMCID: PMC10336219 DOI: 10.3389/fncel.2023.1189980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Preservation of residual hearing remains a great challenge during cochlear implantation. Cochlear implant (CI) electrode array insertion induces changes in the microvasculature as well as nitric oxide (NO)-dependent vessel dysfunction which have been identified as possible mediators of residual hearing loss after cochlear implantation. Methods A total of 24 guinea pigs were randomized to receive either a CI (n = 12) or a sham procedure (sham) by performing a cochleostomy without electrode array insertion (n = 12). The hearing threshold was determined using frequency-specific compound action potentials. To gain visual access to the stria vascularis, a microscopic window was created in the osseous cochlear lateral wall. Cochlear blood flow (CBF) and cochlear microvascular permeability (CMP) were evaluated immediately after treatment, as well as after 1 and 2 h, respectively. Finally, cochleae were resected for subsequent immunohistochemical analysis of the iNOS expression. Results The sham control group showed no change in mean CBF after 1 h (104.2 ± 0.7%) and 2 h (100.8 ± 3.6%) compared to baseline. In contrast, cochlear implantation resulted in a significant continuous decrease in CBF after 1 h (78.8 ± 8.1%, p < 0.001) and 2 h (60.6 ± 11.3%, p < 0.001). Additionally, the CI group exhibited a significantly increased CMP (+44.9% compared to baseline, p < 0.0001) and a significant increase in median hearing threshold (20.4 vs. 2.5 dB SPL, p = 0.0009) compared to sham after 2 h. Intriguingly, the CI group showed significantly lower iNOS-expression levels in the organ of Corti (329.5 vs. 54.33 AU, p = 0.0003), stria vascularis (596.7 vs. 48.51 AU, p < 0.0001), interdental cells (564.0 vs. 109.1 AU, p = 0.0003) and limbus fibrocytes (119.4 vs. 18.69 AU, p = 0.0286). Conclusion Mechanical and NO-dependent microvascular dysfunction seem to play a pivotal role in residual hearing loss after CI electrode array insertion. This may be facilitated by the implantation associated decrease in iNOS expression. Therefore, stabilization of cochlear microcirculation could be a therapeutic strategy to preserve residual hearing.
Collapse
Affiliation(s)
| | - Ulf-Rüdiger Heinrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mathias Fries
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Regina Meuser
- Institute for Medical Biometry, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tobias Rader
- Division of Audiology, Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland H. Stauber
- Department of Otorhinolaryngology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
6
|
Bai X, Chen S, Xu K, Jin Y, Niu X, Xie L, Qiu Y, Liu XZ, Sun Y. N-Acetylcysteine Combined With Dexamethasone Treatment Improves Sudden Sensorineural Hearing Loss and Attenuates Hair Cell Death Caused by ROS Stress. Front Cell Dev Biol 2021; 9:659486. [PMID: 33816510 PMCID: PMC8014036 DOI: 10.3389/fcell.2021.659486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sudden sensorineural hearing loss (SSNHL) is a common emergency in the world. Increasing evidence of imbalance of oxidant–antioxidant were found in SSNHL patients. Steroids combined with antioxidants may be a potential strategy for the treatment of SSNHL. In cochlear explant experiment, we found that N-acetylcysteine (NAC) combined with dexamethasone can effectively protect hair cells from oxidative stress when they were both at ineffective concentrations alone. A clinic trial was designed to explore whether oral NAC combined with intratympanic dexamethasone (ITD) as a salvage treatment has a better therapeutic effect. 41 patients with SSNHL were randomized to two groups. 23 patients in control group received ITD therapy alone, while 18 patient s in NAC group were treated with oral NAC and ITD. The patients were followed-up on day 1st (initiation of treatment) and day 14th. Overall, there was no statistical difference in final pure-tone threshold average (PTA) improvement between those two groups. However, a significant hearing gain at 8,000 Hz was observed in NAC group. Moreover, the hearing recovery rates of NAC group is much higher than that in control group. These results demonstrated that oral NAC in combination with ITD therapy is a more effective therapy for SSNHL than ITD alone.
Collapse
Affiliation(s)
- Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Jin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Niu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Varela-Nieto I, Murillo-Cuesta S, Calvino M, Cediel R, Lassaletta L. Drug development for noise-induced hearing loss. Expert Opin Drug Discov 2020; 15:1457-1471. [PMID: 32838572 DOI: 10.1080/17460441.2020.1806232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies. AREAS COVERED In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials. EXPERT OPINION Whilst experimental research in animal models has helped to unravel the mechanisms of noise-induced hearing loss, there are often methodological variations and conflicting results between animal and human studies which make it difficult to integrate data and translate basic outcomes to clinical practice. Standardization of exposure paradigms and application of -omic technologies will contribute to improving the effectiveness of transferring newly gained knowledge to clinical practice.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Silvia Murillo-Cuesta
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Miryam Calvino
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| | - Rafael Cediel
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Animal Medicine and Surgery, Complutense University of Madrid , Madrid, Spain
| | - Luis Lassaletta
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| |
Collapse
|
8
|
Bielefeld EC, Harrison RT, Riley DeBacker J. Pharmaceutical otoprotection strategies to prevent impulse noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3790. [PMID: 31795721 DOI: 10.1121/1.5132285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the ongoing challenges for hearing researchers is successful protection of the ear from noise injury. For decades, the most effective methods have been based on modifying the acoustic properties of the noise, either by reducing noise output from various sources, interfering in the acoustic exposure path with environmental controls, or altering the noise dose for the individual with personal hearing protection devices. Because of the inefficiencies of some of the acoustic modification procedures, pharmaceutical otoprotection is targeted at making the cochlea less susceptible to injury. Short-duration, high-level impulse noises, typically caused by small-scale explosions, cause different sets of injuries in the ear than long-duration, low-variance noise exposures. Therefore, the expectation is that the ears exposed to impulse noise may need different pharmaceutical interventions, both in type of compounds used and the time course of administration of the compounds. The current review discusses four different classes of compounds that have been tested as impulse noise otoprotectants. In the process of describing those experiments, particular emphasis is placed on the acoustic properties of the impulses used, with the goal of providing context for evaluating the relevance of these different models to human impulse noise-induced hearing loss.
Collapse
Affiliation(s)
- Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| | - Ryan T Harrison
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| | - J Riley DeBacker
- Department of Speech and Hearing Science, The Ohio State University, 110 Pressey Hall, 1070 Carmack Road, Columbus, Ohio 43220, USA
| |
Collapse
|
9
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4051. [PMID: 31795668 PMCID: PMC7195863 DOI: 10.1121/1.5132951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
Animal models have been used to gain insight into the risk of noise-induced hearing loss (NIHL) and its potential prevention using investigational new drug agents. A number of compounds have yielded benefit in pre-clinical (animal) models. However, the acute traumatic injury models commonly used in pre-clinical testing are fundamentally different from the chronic and repeated exposures experienced by many human populations. Diverse populations that are potentially at risk and could be considered for enrollment in clinical studies include service members, workers exposed to occupational noise, musicians and other performing artists, and children and young adults exposed to non-occupational (including recreational) noise. Both animal models and clinical populations were discussed in this special issue, followed by discussion of individual variation in vulnerability to NIHL. In this final contribution, study design considerations for NIHL otoprotection in pre-clinical and clinical testing are integrated and broadly discussed with evidence-based guidance offered where possible, drawing on the contributions to this special issue as well as other existing literature. The overarching goals of this final paper are to (1) review and summarize key information across contributions and (2) synthesize information to facilitate successful translation of otoprotective drugs from animal models into human application.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinanati, Ohio 45226-1998, USA
| |
Collapse
|
10
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
11
|
Ishikawa M, García-Mateo N, Čusak A, López-Hernández I, Fernández-Martínez M, Müller M, Rüttiger L, Singer W, Löwenheim H, Kosec G, Fujs Š, Martínez-Martínez L, Schimmang T, Petković H, Knipper M, Durán-Alonso MB. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Sci Rep 2019; 9:2410. [PMID: 30787404 PMCID: PMC6382871 DOI: 10.1038/s41598-019-38634-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022] Open
Abstract
Spread of antimicrobial resistance and shortage of novel antibiotics have led to an urgent need for new antibacterials. Although aminoglycoside antibiotics (AGs) are very potent anti-infectives, their use is largely restricted due to serious side-effects, mainly nephrotoxicity and ototoxicity. We evaluated the ototoxicity of various AGs selected from a larger set of AGs on the basis of their strong antibacterial activities against multidrug-resistant clinical isolates of the ESKAPE panel: gentamicin, gentamicin C1a, apramycin, paromomycin and neomycin. Following local round window application, dose-dependent effects of AGs on outer hair cell survival and compound action potentials showed gentamicin C1a and apramycin as the least toxic. Strikingly, although no changes were observed in compound action potential thresholds and outer hair cell survival following treatment with low concentrations of neomycin, gentamicin and paromomycin, the number of inner hair cell synaptic ribbons and the compound action potential amplitudes were reduced. This indication of hidden hearing loss was not observed with gentamicin C1a or apramycin at such concentrations. These findings identify the inner hair cells as the most vulnerable element to AG treatment, indicating that gentamicin C1a and apramycin are promising bases for the development of clinically useful antibiotics.
Collapse
Affiliation(s)
- Masaaki Ishikawa
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany
- Graduate School of Medicine, Department of Otolaryngology, Kyoto University, Kyoto, Japan
| | - Nadia García-Mateo
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | | | - Iris López-Hernández
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Marta Fernández-Martínez
- University Hospital Marqués de Valdecilla IDIVAL, Santander, Spain
- Universidad de Cantabria, Santander, Spain
| | - Marcus Müller
- Department of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Regenerative Medicine, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Tübingen Hearing Research Centre (THRC), Regenerative Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Luis Martínez-Martínez
- Unit of Microbiology, University Hospital Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | - Thomas Schimmang
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Hrvoje Petković
- Acies Bio d.o.o., Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), University of Tübingen, Tübingen, Germany.
| | - M Beatriz Durán-Alonso
- Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain.
| |
Collapse
|
12
|
Singer W, Kasini K, Manthey M, Eckert P, Armbruster P, Vogt MA, Jaumann M, Dotta M, Yamahara K, Harasztosi C, Zimmermann U, Knipper M, Rüttiger L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats. FASEB J 2018; 32:3005-3019. [PMID: 29401591 DOI: 10.1096/fj.201701041rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.
Collapse
Affiliation(s)
- Wibke Singer
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Kamyar Kasini
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Armbruster
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Miriam Annika Vogt
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Mirko Jaumann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michela Dotta
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Kohei Yamahara
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany.,Section of Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Csaba Harasztosi
- Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Department of Otolaryngology, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|