1
|
Sabit H, Arneth B, Altrawy A, Ghazy A, Abdelazeem RM, Adel A, Abdel-Ghany S, Alqosaibi AI, Deloukas P, Taghiyev ZT. Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions. Biomedicines 2025; 13:485. [PMID: 40002898 PMCID: PMC11852909 DOI: 10.3390/biomedicines13020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The intersection of COVID-19 and cardiovascular disease (CVD) has emerged as a significant area of research, particularly in understanding the impact of antiplatelet therapies like ticagrelor and clopidogrel. COVID-19 has been associated with acute cardiovascular complications, including myocardial infarction, thrombosis, and heart failure, exacerbated by the virus's ability to trigger widespread inflammation and endothelial dysfunction. MicroRNAs (miRNAs) play a critical role in regulating these processes by modulating the gene expressions involved in platelet function, inflammation, and vascular homeostasis. This study explores the potential of miRNAs such as miR-223 and miR-126 as biomarkers for predicting resistance or responsiveness to antiplatelet therapies in COVID-19 patients with cardiovascular disease. Identifying miRNA signatures linked to drug efficacy could optimize treatment strategies for patients at high risk of thrombotic events during COVID-19 infection. Moreover, understanding miRNA-mediated pathways offers new insights into how SARS-CoV-2 exacerbates CVD, particularly through mechanisms like cytokine storms and endothelial damage. The findings of this research could lead to personalized therapeutic approaches, improving patient outcomes and reducing mortality in COVID-19-associated cardiovascular events. With global implications, this study addresses the urgent need for effective management of CVD in the context of COVID-19, focusing on the integration of molecular biomarkers to enhance the precision of antiplatelet therapy.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Aysha Ghazy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amro Adel
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Zulfugar T. Taghiyev
- Department of Cardiovascular Surgery, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Santos KF, Assunção LP, Santos RS, Reis AAS. Machine learning approaches and genetic determinants that influence the development of type 2 diabetes mellitus: a genetic association study in Brazilian patients. Braz J Med Biol Res 2024; 57:e13957. [PMID: 39630807 DOI: 10.1590/1414-431x2024e13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
This genetic association study including 120 patients with type 2 diabetes mellitus (T2DM) and 166 non-diabetic individuals aimed to investigate the association of polymorphisms in the genes GSTM1 and GSTT1 (gene deletion), GSTP1 (rs1695), ACE (rs4646994), ACE2 (rs2285666), VEGF-A (rs28357093), and MTHFR (rs1801133) with the development of T2DM in the population of Goiás, Brazil. Additionally, the combined effects of these polymorphisms and the possible differences between sexes in susceptibility to the disease were evaluated. Finally, machine learning models were integrated to select the main risk characteristics for the T2DM diagnosis. Risk associations were found for the GSTT1-null genotype in the non-stratified sample and females, and for mutant C allele of the VEGF-A rs28357093 polymorphism in the non-stratified sample. Furthermore, an association of heterozygous (AG) and mutant (GG) GSTP1 genotypes was observed when combined with GSTT1-null. Machine learning approaches corroborated the results found. Therefore, these results suggested that GSTT1 and GSTP1 polymorphisms may contribute to T2DM susceptibility in a Brazilian sample.
Collapse
Affiliation(s)
- K F Santos
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - L P Assunção
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - R S Santos
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - A A S Reis
- Laboratório de Patologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil
| |
Collapse
|
3
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
4
|
Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS Goodfellas in Cardiovascular System. J Clin Med 2023; 12:6873. [PMID: 37959338 PMCID: PMC10649249 DOI: 10.3390/jcm12216873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
In the last two decades, the study of the renin-angiotensin-aldosterone system (RAAS) has revealed a counterregulatory protective axis. This protective arm is characterized by ACE2/Ang 1-7/MasR and Ang 1-9 that largely counteracts the classic arm of the RAAS mediated by ACE/Ang II/AT1R/aldosterone and plays an important role in the prevention of inflammation, oxidative stress, hypertension, and cardiovascular remodeling. A growing body of evidence suggests that enhancement of this counterregulatory arm of RAAS represents an important therapeutic approach to facing cardiovascular comorbidities. In this review, we provide an overview of the beneficial effects of ACE2, Ang 1-7/MasR, and Ang 1-9 in the context of oxidative stress, vascular dysfunction, and organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani, 2, 35128 Padova, Italy; (I.C.); (G.B.); (G.D.); (M.C.)
| |
Collapse
|
5
|
Nabi AHMN, Ebihara A, Shekhar HU. Impacts of SARS-CoV-2 on diabetes mellitus: A pre and post pandemic evaluation. World J Virol 2023; 12:151-171. [PMID: 37396707 PMCID: PMC10311579 DOI: 10.5501/wjv.v12.i3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 06/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crippled the whole world and has resulted in large number of morbidity and mortality. The origin of the SARS-CoV-2 is still disputed. The risk of infection with SARS-CoV-2 is dependent on several risk factors as observed in many studies. The severity of the disease depends on many factors including the viral strain, host immunogenetics, environmental factors, host genetics, host nutritional status and presence of comorbidities like hypertension, diabetes, Chronic Obstructive Pulmonary Disease, cardiovascular disease, renal impairment. Diabetes is a metabolic disorder mainly characterized by hyperglycemia. Diabetic individuals are intrinsically prone to infections. SARS-CoV-2 infection in patients with diabetes result in β-cell damage and cytokine storm. Damage to the cells impairs the equilibrium of glucose, leading to hyperglycemia. The ensuing cytokine storm causes insulin resistance, especially in the muscles and liver, which also causes a hyperglycemic state. All of these increase the severity of COVID-19. Genetics also play pivotal role in disease pathogenesis. This review article focuses from the probable sources of coronaviruses and SARS-CoV-2 to its impacts on individuals with diabetes and host genetics in pre- and post-pandemic era.
Collapse
Affiliation(s)
- A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
6
|
Adimulam T, Arumugam T, Gokul A, Ramsuran V. Genetic Variants within SARS-CoV-2 Human Receptor Genes May Contribute to Variable Disease Outcomes in Different Ethnicities. Int J Mol Sci 2023; 24:8711. [PMID: 37240057 PMCID: PMC10218380 DOI: 10.3390/ijms24108711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic effects on SARS-CoV-2 disease susceptibility and severity within Eurasian populations. These studies identified contrasting effects on the severity of disease between African populations. Genetic factors can explain some of the diversity observed within SARS-CoV-2 disease susceptibility and severity. Single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes have demonstrated detrimental and protective effects across ethnic groups. For example, the TT genotype of rs2285666 (Angiotensin-converting enzyme 2 (ACE2)) is associated with the severity of SARS-CoV-2 disease, which is found at higher frequency within Asian individuals compared to African and European individuals. In this study, we examined four SARS-CoV-2 receptors, ACE2, Transmembrane serine protease 2 (TMPRSS2), Neuropilin-1 (NRP1), and Basigin (CD147). A total of 42 SNPs located within the four receptors were reviewed: ACE2 (12), TMPRSS2 (10), BSG (CD147) (5), and NRP1 (15). These SNPs may be determining factors for the decreased disease severity observed within African individuals. Furthermore, we highlight the absence of genetic studies within the African population and emphasize the importance of further research. This review provides a comprehensive summary of specific variants within the SARS-CoV-2 receptor genes, which can offer a better understanding of the pathology of the SARS-CoV-2 pandemic and identify novel potential therapeutic targets.
Collapse
Affiliation(s)
- Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Anmol Gokul
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.A.); (T.A.); (A.G.)
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
7
|
Ferrario CM, Saha A, VonCannon JL, Meredith WJ, Ahmad S. Does the Naked Emperor Parable Apply to Current Perceptions of the Contribution of Renin Angiotensin System Inhibition in Hypertension? Curr Hypertens Rep 2022; 24:709-721. [PMID: 36272015 DOI: 10.1007/s11906-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To address contemporary hypertension challenges, a critical reexamination of therapeutic accomplishments using angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, and a greater appreciation of evidence-based shortcomings from randomized clinical trials are fundamental in accelerating future progress. RECENT FINDINGS Medications targeting angiotensin II mechanism of action are essential for managing primary hypertension, type 2 diabetes, heart failure, and chronic kidney disease. While the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to control blood pressure is undisputed, practitioners, hypertension specialists, and researchers hold low awareness of these drugs' limitations in preventing or reducing the risk of cardiovascular events. Biases in interpreting gained knowledge from data obtained in randomized clinical trials include a pervasive emphasis on using relative risk reduction over absolute risk reduction. Furthermore, recommendations for clinical practice in international hypertension guidelines fail to address the significance of a residual risk several orders of magnitude greater than the benefits. We analyze the limitations of the clinical trials that have led to current recommended treatment guidelines. We define and quantify the magnitude of the residual risk in published hypertension trials and explore how activation of alternate compensatory bioprocessing components within the renin angiotensin system bypass the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to achieve a significant reduction in total and cardiovascular deaths. We complete this presentation by outlining the current incipient but promising potential of immunotherapy to block angiotensin II pathology alone or possibly in combination with other antihypertensive drugs. A full appreciation of the magnitude of the residual risk associated with current renin angiotensin system-based therapies constitutes a vital underpinning for seeking new molecular approaches to halt or even reverse the cardiovascular complications of primary hypertension and encourage investigating a new generation of ACE inhibitors and ARBs with increased capacity to reach the intracellular compartments at which Ang II can be generated.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA.
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Jessica L VonCannon
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Wayne J Meredith
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| |
Collapse
|
8
|
Sienko J, Marczak I, Kotowski M, Bogacz A, Tejchman K, Sienko M, Kotfis K. Association of ACE2 Gene Variants with the Severity of COVID-19 Disease-A Prospective Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12622. [PMID: 36231922 PMCID: PMC9564490 DOI: 10.3390/ijerph191912622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2), has triggered an enormous scientific response. Many studies have focused on understanding the entry of the SARS-CoV-2 virus into the host cell. The angiotensin-converting enzyme-2 (ACE2) is recognized as the host receptor used by SARS-CoV-2 to enter its target cells. Recent studies suggest that ACE2 gene polymorphisms might be candidates for genetic susceptibility to SARS-CoV-2 infection. The aim of this study is to evaluate the influence of ACE2 polymorphisms on COVID-19 disease risk and severity. In our study, we confirmed that there is a statistically significant increased risk of a more severe disease course of SARS-CoV-2 infection associated with the need for hospitalization in intensive care for patients with specific polymorphisms of the ACE2 gene. The most significant correlation was found for variant ACE2 rs2285666 (AA allele, OR = 2.12, p = 0.0189) and ACE2 rs2074192 (TT allele, OR = 2.05, p = 0.0016), and for ACE2 rs4646174 (GG allele, OR = 1.93, p = 0.0016), ACE2 rs4646156 (TT allele OR = 1.71, p = 0.008) and ACE2 rs2158083 (TT allele OR = 1.84, p = 0.0025). In conclusion, our findings identify that certain ACE2 polymorphisms impact the severity of COVID-19 disease independently of other well-known risk factors.
Collapse
Affiliation(s)
- Jerzy Sienko
- Department of General Surgery and Transplantology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Izabela Marczak
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11023, USA
| | - Maciej Kotowski
- Department of General Surgery and Transplantology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Bogacz
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibers and Medicinal Plants, 62-064 Plewiska, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Magdalena Sienko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases, and Cardiology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
9
|
Edinur HA, Mat-Ghani SNA, Chambers GK. Ethnicity-based classifications and medical genetics: One Health approaches from a Western Pacific perspective. Front Genet 2022; 13:970549. [PMID: 36147511 PMCID: PMC9485872 DOI: 10.3389/fgene.2022.970549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
A new era presently dawns for medical genetics featuring individualised whole genome sequencing and promising personalised medical genetics. Accordingly, we direct readers attention to the continuing value of allele frequency data from Genome-Wide Association Surveys (GWAS) and single gene surveys in well-defined ethnic populations as a guide for best practice in diagnosis, therapy, and prescription. Supporting evidence is drawn from our experiences working with Austronesian volunteer subjects across the Western Pacific. In general, these studies show that their gene pool has been shaped by natural selection and become highly diverged from those of Europeans and Asians. These uniquely evolved patterns of genetic variation underlie contrasting schedules of disease incidence and drug response. Thus, recognition of historical bonds of kinship among Austronesian population groups across the Asia Pacific has distinct public health advantages from a One Health perspective. Other than diseases that are common among them like gout and diabetes, Austronesian populations face a wide range of climate-dependent infectious diseases including vector-borne pathogens as they are now scattered across the Pacific and Indian Oceans. However, we caution that the value of genetic survey data in Austronesians (and other groups too) is critically dependent on the accuracy of attached descriptive information in associated metadata, including ethnicity and admixture.
Collapse
Affiliation(s)
- Hisham A. Edinur
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Geoffrey K. Chambers
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
10
|
Lumpuy-Castillo J, Vales-Villamarín C, Mahíllo-Fernández I, Pérez-Nadador I, Soriano-Guillén L, Lorenzo O, Garcés C. Association of ACE2 Polymorphisms and Derived Haplotypes With Obesity and Hyperlipidemia in Female Spanish Adolescents. Front Cardiovasc Med 2022; 9:888830. [PMID: 35586646 PMCID: PMC9108422 DOI: 10.3389/fcvm.2022.888830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundIn the cardiovascular (CV) system, overactivation of the angiotensin converting enzyme (ACE) may trigger deleterious responses derived from angiotensin (Ang)-II, which can be attenuated by stimulation of ACE2 and subsequent Ang-(1-7) metabolite. However, ACE2 exhibits a high degree of genetic polymorphism that may affect its structure and stability, interfering with these cardioprotective actions. The aim of this study was to analyse the relationship of ACE2 polymorphisms with cardiovascular risk factors in children.MethodologyFive ACE2-single nucleotide polymorphisms (SNP), rs4646188, rs2158083, rs233575, rs879922, and rs2074192, previously related to CV risk factors, were analyzed in a representative sample of 12–16-year-old children and tested for their potential association with anthropometric parameters, insulin levels and the lipid profile.ResultsGirls (N = 461) exhibited lower rates of overweight, obesity, blood pressure, and glycemia than boys (N = 412), though increased plasma lipids. The triglycerides (TG)/HDL-C ratio was, however, lower in females. Interestingly, only in girls, the occurrence of overweight/obesity was associated with the SNPs rs879922 [OR 1.67 (1.02–2.75)], rs233575 [OR 1.98 (1.21- 3.22)] and rs2158083 [OR 1.67 (1.04–2.68)]. Also, TG levels were linked to the rs879922, rs233575, and rs2158083 SNPs, and the TG/HDL-C ratio was associated with rs879922 and rs233575. Levels of TC and LDL-C were associated with rs2074192 and rs2158083. Furthermore, the established cut-off level for TG ≥ 90 mg/dL was related to rs879922 [OR 1.78 (1.06–2.96)], rs2158083 [OR 1.75 (1.08–2.82)], and rs233575 [OR 1.62 (1.00–2.61)]. The cut-off level for TC ≥ 170 mg/dL was associated with rs2074192 OR 1.54 (1.04–2.28) and rs2158083 [OR 1.53 (1.04–2.25)]. Additionally, the haplotype (C-G-C) derived from rs879922-rs2158083-rs233575 was related to higher prevalence of overweight/obesity and TG elevation.ConclusionThe expression and activity of ACE2 may be essential for CV homeostasis. Interestingly, the ACE2-SNPs rs879922, rs233575, rs2158083 and rs2074192, and the haplotype (C-G-C) of the three former could induce vulnerability to obesity and hyperlipidemia in women. Thus, these SNPs might be used as predictive biomarkers for CV diseases and as molecular targets for CV therapy.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | | | | | - Iris Pérez-Nadador
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
- *Correspondence: Oscar Lorenzo
| | - Carmen Garcés
- Lipid Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| |
Collapse
|
11
|
Abstract
Coronavirus Disease 2019 (COVID-19) is characterized with a wide range of clinical presentations from asymptomatic to severe disease. In patients with severe disease, the main causes of mortality have been acute respiratory distress syndrome, cytokine storm and thrombotic events. Although all factors that may be associated with disease severity are not yet clear, older age remains a leading risk factor. While age-related immune changes may be at the bottom of severe course of COVID-19, age-related hormonal changes have considerable importance due to their interactions with these immune alterations, and also with endothelial dysfunction and comorbid cardiometabolic disorders. This review aims to provide the current scientific evidence on the pathogenetic mechanisms underlying the pathway to severe COVID-19, from a collaborative perspective of age-related immune and hormonal changes together, in accordance with the clinical knowledge acquired thus far.
Collapse
Affiliation(s)
- Seda Hanife Oguz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Meltem Koca
- Division of Geriatrics, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Bulent Okan Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| |
Collapse
|
12
|
Ng JW, Chong ETJ, Lee PC. An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect. Curr Pharm Biotechnol 2022; 23:1596-1611. [PMID: 35034591 DOI: 10.2174/1389201023666220114162347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual's risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.
Collapse
Affiliation(s)
- Jun Wei Ng
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Eric Tzyy Jiann Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| | - Ping-Chin Lee
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
13
|
Song W, Wang H, Ma L, Chen Y. Associations between the TNMD rs4828038 and ACE2 rs879922 polymorphisms and preeclampsia susceptibility: a case-control study. J OBSTET GYNAECOL 2022; 42:1132-1136. [PMID: 34996340 DOI: 10.1080/01443615.2021.2012438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A case-control study was designed to investigate the association between the angiotensin converting enzyme 2 (ACE2) rs879922, glucose-6-phosphate dehydrogenase (G6PD) rs1050828, and tenomodulin (TNMD) rs4828038 single nucleotide polymorphisms (SNPs), and preeclampsia. A total of 356 Han Chinese pregnant women (170 controls and 186 cases) were recruited into the study. ACE2 rs879922, G6PD rs1050828, and TNMD rs4828038 were tested by the targeted next-generation sequencing technology and the data were analyzed using SPSS version 18. Genotyping of results revealed that patients with the CC/CT genotype in SNP rs4828038 or CC/CG genotype in SNP rs879922 had a significantly decreased susceptibility to late-onset preeclampsia (CC/CT versus TT: OR = 0.543, 95% CI = 0.378 to 0.779, p = .001; CC/CG versus GG: OR = 0.510, 95% CI = 0.038 to 0.860, p = .012). Our study found that the polymorphisms TNMD rs4828038 and ACE2 rs879922 might be associated with late-onset preeclampsia.IMPACT STATEMENTWhat is already known on this subject? Preeclampsia is associated with multiple SNPs, and ACE2 rs879922, G6PD rs1050828, and TNMD rs4828038 are related to essential hypertension and glucose and lipid metabolism disorders. Essential hypertension, diabetes, and dyslipidemia are risks for preeclampsia. The associations between those three SNPs and preeclampsia have not been reported.What do the results of this study add? The polymorphisms of TNMD rs4828038 and ACE2 rs879922 might be associated with the risk of late-onset preeclampsia. There was no relationship between SNP rs1050828 and preeclampsia.What are the implications of these findings for clinical practice and/or further research? TNMD rs4828038 and ACE2 rs879922 might be target sites for genetic diagnosis and therapy, and the levels of mRNA and protein in pregnant women with preeclampsia should be further tested.
Collapse
Affiliation(s)
- Wei Song
- Department of Obstetrics and Gynecology, Changchun Obstetrics-Gynecology Hospital, Changchun, China
| | - He Wang
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Lingyu Ma
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Ying Chen
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Chen F, Zhang Y, Li X, Li W, Liu X, Xue X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Front Cell Infect Microbiol 2021; 11:753721. [PMID: 34746028 PMCID: PMC8569405 DOI: 10.3389/fcimb.2021.753721] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has currently spread worldwide, leading to high morbidity and mortality. As the putative receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) is widely distributed in various tissues and organs of the human body. Simultaneously, ACE2 acts as the physiological counterbalance of ACE providing homeostatic regulation of circulating angiotensin II levels. Given that some ACE2 variants are known to cause an increase in the ligand-receptor affinity, their roles in acquisition, progression and severity of COVID-19 disease have aroused widespread concerns. Therefore, we summarized the latest literature and explored how ACE2 variants and epigenetic factors influence an individual’s susceptibility to SARS-CoV-2 infection and disease outcome in aspects of ethnicity, gender and age. Meanwhile, the possible mechanisms for these phenomena were discussed. Notably, recombinant human ACE2 and ACE2-derived peptides may have special benefits for combating SARS-CoV-2 variants and further studies are warranted to confirm their effects in later stages of the disease process. As the uncertainty regarding the severity and transmissibility of disease rises, a more in-depth understanding of the host genetics and functional characteristics of ACE2 variants will not only help explain individual clinical differences of the disease, but also contribute to providing effective measures to develop solutions and manage future outbreaks of SARS-CoV-2.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, Jining, China
| | - Yankun Zhang
- Department of Physiology, Jining Medical University, Jining, China
| | - Xiaoyun Li
- Department of Physiology, Jining Medical University, Jining, China
| | - Wen Li
- Department of Physiology, Jining Medical University, Jining, China
| | - Xuan Liu
- Department of Physiology, Jining Medical University, Jining, China
| | - Xinyu Xue
- Department of Physiology, Jining Medical University, Jining, China
| |
Collapse
|
15
|
Qu L, Chen C, Yin T, Fang Q, Hong Z, Zhou R, Tang H, Dong H. ACE2 and Innate Immunity in the Regulation of SARS-CoV-2-Induced Acute Lung Injury: A Review. Int J Mol Sci 2021; 22:11483. [PMID: 34768911 PMCID: PMC8583933 DOI: 10.3390/ijms222111483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the protracted battle against coronavirus acute respiratory infection (COVID-19) and the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no specific and effective drugs have to date been reported. Angiotensin-converting enzyme 2 (ACE2) is a zinc metalloproteinase and a critical modulator of the renin-angiotensin system (RAS). In addition, ACE2 has anti-inflammatory and antifibrosis functions. ACE has become widely known in the past decade as it has been identified as the primary receptor for SARS-CoV and SARS-CoV-2, being closely associated with their infection. SARS-CoV-2 primarily targets the lung, which induces a cytokine storm by infecting alveolar cells, resulting in tissue damage and eventually severe acute respiratory syndrome. In the lung, innate immunity acts as a critical line of defense against pathogens, including SARS-CoV-2. This review aims to summarize the regulation of ACE2, and lung host cells resist SARS-CoV-2 invasion by activating innate immunity response. Finally, we discuss ACE2 as a therapeutic target, providing reference and enlightenment for the clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Lihua Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210013, China;
| | - Tong Yin
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Qian Fang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Zizhan Hong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Rui Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Hongbin Tang
- Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Huifen Dong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| |
Collapse
|
16
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than 235 million cases worldwide and 4.8 million deaths (October 2021), with various incidences and mortalities among regions/ethnicities. The coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize the angiotensin-converting enzyme 2 (ACE2) as the receptor to enter cells. We hypothesized that the genetic variability in ACE2 may contribute to the variable clinical outcomes of COVID-19. To test this hypothesis, we first conducted an in silico investigation of single-nucleotide polymorphisms (SNPs) in the coding region of ACE2. We then applied an integrated approach of genetics, biochemistry, and virology to explore the capacity of select ACE2 variants to bind coronavirus spike proteins and mediate viral entry. We identified the ACE2 D355N variant that restricts the spike protein-ACE2 interaction and consequently limits infection both in vitro and in vivo. In conclusion, ACE2 polymorphisms could modulate susceptibility to SARS-CoV-2, which may lead to variable disease severity. IMPORTANCE There is considerable variation in disease severity among patients infected with SARS-CoV-2, the virus that causes COVID-19. Human genetic variation can affect disease outcome, and the coronaviruses SARS-CoV, SARS-CoV-2, and HCoV-NL63 utilize human ACE2 as the receptor to enter cells. We found that several missense ACE2 single-nucleotide variants (SNVs) that showed significantly altered binding with the spike proteins of SARS-CoV, SARS-CoV-2, and NL63-HCoV. We identified an ACE2 SNP, D355N, that restricts the spike protein-ACE2 interaction and consequently has the potential to protect individuals against SARS-CoV-2 infection. Our study highlights that ACE2 polymorphisms could impact human susceptibility to SARS-CoV-2, which may contribute to ethnic and geographical differences in SARS-CoV-2 spread and pathogenicity.
Collapse
|
17
|
Phillips N, Park IW, Robinson JR, Jones HP. The Perfect Storm: COVID-19 Health Disparities in US Blacks. J Racial Ethn Health Disparities 2021; 8:1153-1160. [PMID: 32965660 PMCID: PMC7510013 DOI: 10.1007/s40615-020-00871-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) accounts for over 180,000 deaths in the USA. Although COVID-19 affects all racial ethnicities, non-Hispanic Blacks have the highest mortality rates. Evidence continues to emerge, linking the disproportion of contagion and mortality from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a result of adverse social determinants of health. Yet, genetic predisposition may also play a credible role in disease transmission. SARS-CoV-2 enters cells by interaction between SARS-CoV-2 spike protein and the receptor molecule angiotensin converting enzyme 2 (ACE2) expressed on the surface of the target cells, such that polymorphisms and the expression level of ACE2 influence infectivity and consequent pathogenesis of SARS-CoV-2. Genetic polymorphisms in other multiple genes, such as acetylcholinesterase (AChE) and interleukin-6, are also closely associated with underlying diseases, such as hypertension and type 2 diabetes mellitus, which substantially raise SARS-CoV-2 mortality. However, it is unknown how these genetic polymorphisms contribute to the disparate mortality rates, with or without underlying diseases. Of particular interest is the potential that genetic polymorphisms in these genes may be influencing the disparity of COVID-19 mortality rates in Black communities. Here, we review the evidence that biological predisposition for high-risk comorbid conditions may be relevant to our ability to fully understand and therefore address health disparities of COVID-19 deaths in Blacks.
Collapse
Affiliation(s)
- Nicole Phillips
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Harris College of Nursing & Health Sciences, Texas Christian University, TCU Box 298620, Fort Worth, TX, 76129, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Harris College of Nursing & Health Sciences, Texas Christian University, TCU Box 298620, Fort Worth, TX, 76129, USA
| | - Janie R Robinson
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Harlan P Jones
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
- Harris College of Nursing & Health Sciences, Texas Christian University, TCU Box 298620, Fort Worth, TX, 76129, USA.
| |
Collapse
|
18
|
Sharma B, Hussain T, Khan MA, Jaiswal V. Exploring AT2R and its polymorphism in different diseases: An approach to develop AT2R as a drug target beyond hypertension. Curr Drug Targets 2021; 23:99-113. [PMID: 34365920 DOI: 10.2174/1389450122666210806125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
The Angiotensin II type 2 receptor (AT2R) is one of the critical components of the renin-angiotensin system (RAS), which performs diverse functions like inhibiting cell differentiation, cell proliferation, vasodilatation, reduces oxidative stress and inflammation. AT2R is relatively less studied in comparison to other components of RAS despite its uniqueness (sex-linked) and diverse functions. The AT2R is differentially expressed in different tissues, and its gene polymorphisms are associated with several diseases. The molecular mechanism behind the association of AT2R and its gene polymorphisms with the diseases remains to be fully understood, which hinders the development of AT2R as a drug target. Single nucleotide polymorphisms (SNPs) in AT2R are found at different locations (exons, introns, promoter, and UTR regions) and were studied for association with different diseases. There may be different mechanisms behind these associations as some AT2R SNP variants were associated with differential expression, the SNPs (A1675G/A1332G) affect the alternate splicing of AT2R mRNA, A1332G genotype results in shortening of the AT2R mRNA and subsequently defective protein. Few SNPs were found to be associated with the diseases in either females (C4599A) or males (T1334C). Several other SNPs were expected to be associated with other similar/related diseases, but studies have not been done yet. The present review emphasizes on the significance of AT2R and its polymorphisms associated with the diseases to explore the precise role of AT2R in different diseases and the possibility to develop AT2R as a potential drug target.
Collapse
Affiliation(s)
- Bhanu Sharma
- Faculty of Applied Sciences and Biotechnology Shoolini University of Biotechnology and Management Sciences, Post Box No. 9, Head post Office, Solan, Himachal Pradesh. India
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas. United States
| | - Mohammed Azhar Khan
- Faculty of Applied Sciences and Biotechnology Shoolini University of Biotechnology and Management Sciences, Post Box No. 9, Head post Office, Solan, Himachal Pradesh. India
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120. South Korea
| |
Collapse
|
19
|
Shoily SS, Ahsan T, Fatema K, Sajib AA. Disparities in COVID-19 severities and casualties across ethnic groups around the globe and patterns of ACE2 and PIR variants. INFECTION GENETICS AND EVOLUTION 2021; 92:104888. [PMID: 33933634 PMCID: PMC8084605 DOI: 10.1016/j.meegid.2021.104888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mediated Coronavirus disease-19 (COVID-19) has affected millions of individuals around all corners of the globe. Symptoms and severities of infection with this highly contagious virus vary among individuals and there is disparity in the number of COVID-19-related casualties across different ethnic groups. The primary receptor for SARS-CoV-2 entry into the host cells is angiotensin-converting enzyme 2 (ACE2). Certain variants of ACE2 are known to be associated with COVID-19 comorbidities such as hypertension, cardiovascular complications, diabetes, chronic lung disease, etc. In this study, we looked into the geographic distribution of disease-associated variants of ACE2 as well as closely located PIR gene to explore any possible correlation with the disparities in COVID-19 severities and casualties across ethnic groups. Frequencies of the ACE2 variants associated with COVID-19 comorbidities are higher in the European and the admixed American populations. These variants are also present with stronger pairwise linkage disequilibrium (LD) in the European and the admixed American populations. On the other hand, the variants with protective role are more prevalent in the East and the South Asian populations. Strong pairwise LD exists among the activity modifying (modifier) variants of the PIR and ACE2 genes only in the European super-population. Absence of these PIR variants in the South Asian population may contribute to the overall lower COVID-19 case fatality rates (CFR) despite the dense population in this region.
Collapse
Affiliation(s)
- Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka 1212, Bangladesh
| | - Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
20
|
Suciu-Petrescu M, Truta A, Suciu MD, Trifa AP, Petrescu D, Roșianu HȘ, Sabin O, Popa DE, Macarie AE, Vesa ȘC, Buzoianu AD. Clinical impact of echocardiography parameters and molecular biomarkers in heart failure: Correlation of ACE2 and MCP-1 polymorphisms with echocardiography parameters: A comparative study. Exp Ther Med 2021; 22:686. [PMID: 33986851 DOI: 10.3892/etm.2021.10118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is still the leading cause of hospitalization in patients over 65 years of age and is defined as a multifactorial pathology which involves environmental factors and also genetic predispositions. The aim of the present study was to evaluate a possible correlation between single nucleotide polymorphisms (SNPs) of angiotensin converting enzyme 2 (ACE2) and monocyte chemoattractant protein-1 (MCP-1) genes and cardiac remodeling in Caucasian patients diagnosed with heart failure. Our comparative translational research study included 116 patients diagnosed with heart failure and was carried out in Cluj-Napoca, Romania between September 2017 and March 2019. Three SNPs, namely rs4646156, rs4646174 and rs1024611, were genotyped using a Taqman real-time PCR technique. Our results showed that carriers of the AA genotype for ACE2 rs4646156 had a significant dilatation of the left ventricle (LV) with signs of LV hypertrophy (LVH), while TT carriers had a significant left atrial dilatation. For ACE2 rs4646174, homozygotes for the C allele presented a dilated LV with signs of LVH with statistical significance and had a tendency towards a lower ejection fraction. MCP-1 rs1024611 AA variant carriers had a significant LVH in the dominant model. In conclusion, our study showed a strong association between echocardiographic parameters of cardiac remodeling and SNPs rs4646156, rs4646174 of ACE2 and rs1024611 of MCP-1.
Collapse
Affiliation(s)
- Mălina Suciu-Petrescu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.,Department of Cardiology, 'Regina Maria' Hospital, 400117 Cluj-Napoca, Romania
| | - Anamaria Truta
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Mihai Domnutiu Suciu
- Department of Urology, Clinical Institute of Urology and Kidney Transplant, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400066 Cluj-Napoca, Romania
| | - Adrian Pavel Trifa
- Department of Medical Genetics, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Denisa Petrescu
- Department of Endocrinology, Emergency Clinical County Hospital Cluj, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Horia Ștefan Roșianu
- Department of Cardiology, 'Niculae Stăncioiu' Heart Institute, 400001 Cluj-Napoca, Romania
| | - Octavia Sabin
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Daciana Elena Popa
- Department of Cardiology, 'Niculae Stăncioiu' Heart Institute, 400001 Cluj-Napoca, Romania
| | - Antonia Eugenia Macarie
- Department of Geriatrics-Gerontology, 'Iuliu Haţieganu' University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania
| | - Ștefan Cristian Vesa
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, 'Iuliu Hațieganu' University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Liu C, Pei J, Lai Y, Guan T, Zeyaweiding A, Maimaiti T, Zhao H, Shen Y. Association of ACE2 variant rs4646188 with the risks of atrial fibrillation and cardioembolic stroke in Uygur patients with type 2 diabetes. BMC Cardiovasc Disord 2021; 21:103. [PMID: 33602129 PMCID: PMC7890811 DOI: 10.1186/s12872-021-01915-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
Background Atrial fibrillation (AF) is the most common cardiac arrhythmia. Type 2 diabetes (T2D) is an independent risk factor for AF. The cardioembolic stroke (CS) risk is increased when both conditions coexist. Whether angiotensin-converting enzyme 2 (ACE2) genetic variants predict increased risks AF and CS in Uygur patients with T2D remain elusive. Methods A total of 547 Uygur subjects (272 controls and 275 T2D patients) were recruited to the study from south Xinjiang. Eight ACE2 variants were identified by MassARRAY system. Results ACE2 rs2074192 (CC, adjusted RR = 2.55, 95% CI 1.35–4.80, P = 0.004), rs4240157 (CC + CT, adjusted RR = 2.26, 95% CI 1.27–4.04, P = 0.006) and rs4646188 (TT, adjusted RR = 2.37, 95% CI 1.16–4.86, P = 0.018) were associated with higher AF risk. ACE2 rs4240157 (CC + CT, adjusted RR = 2.68, 95% CI 1.36–5.27, P = 0.004) and rs4646188 (TT, adjusted RR = 2.56, 95% CI 1.06–6.20, P = 0.037) were further associated with higher CS risk. The 3 ACE2 variants were related to larger left atrial end-systolic diameter (LAD) (all P < 0.05), but not all of the 3 ACE2 variants were related to increased levels of serum sodium (rs4240157 and rs4646188, all P < 0.05), HsCRP (rs4240157 and rs4646188, all P < 0.05) as well as decreased serum potassium levels (rs2074192 and rs4646188, all P < 0.05). The 3 ACE2 variants exhibited heterogeneity on circulating RAAS activation. In particular, ACE2 rs4646188 was associated with higher levels of ACE (P = 0.017 and 0.037), Ang I (P = 0.002 and 0.001), Ang II (both P < 0.001) and ALD (P = 0.005 and 0.011). Conclusion These results indicated ACE2 rs4646188 was associated with increased risk of AF and CS among diabetic patients in Uygurs, which could be a promising genetic predisposition marker for early and personalized prevention strategies for the aforementioned clinical pathologies.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, 1 Panfu Road, Guangzhou, 510180, China. .,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China. .,Department of Cardiology, Shufu People's Hospital, Kashgar Region, 844100, Xinjiang Uygur Autonomous Region (XUAR), China.
| | - Jingxian Pei
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, 1 Panfu Road, Guangzhou, 510180, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Abudurexiti Zeyaweiding
- Department of Cardiology, Shufu People's Hospital, Kashgar Region, 844100, Xinjiang Uygur Autonomous Region (XUAR), China
| | - Tutiguli Maimaiti
- Department of Cardiology, Shufu People's Hospital, Kashgar Region, 844100, Xinjiang Uygur Autonomous Region (XUAR), China
| | - Haiyan Zhao
- Department of Cardiology, Shufu People's Hospital, Kashgar Region, 844100, Xinjiang Uygur Autonomous Region (XUAR), China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| |
Collapse
|
22
|
Nimgaonkar I, Valeri L, Susser E, Hussain S, Sunderram J, Aviv A. The age pattern of the male-to-female ratio in mortality from COVID-19 mirrors that of cardiovascular disease in the general population. Aging (Albany NY) 2021; 13:3190-3201. [PMID: 33550276 PMCID: PMC7906174 DOI: 10.18632/aging.202639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 01/08/2023]
Abstract
Males are at a higher risk of dying from COVID-19 than females. Older age and cardiovascular disease are also associated with COVID-19 mortality. To better understand how age and sex interact in contributing to COVID-19 mortality, we stratified the male-to-female (sex) ratios in mortality by age group. We then compared the age-stratified sex ratios with those of cardiovascular mortality and cancer mortality in the general population. Data were obtained from official government sources in the US and five European countries: Italy, Spain, France, Germany, and the Netherlands. The sex ratio of deaths from COVID-19 exceeded one throughout adult life, increasing up to a peak in midlife, and declining markedly in later life. This pattern was also observed for the sex ratio of deaths from cardiovascular disease, but not cancer, in the general populations of the US and European countries. Therefore, the sex ratios of deaths from COVID-19 and from cardiovascular disease share similar patterns across the adult life course. The underlying mechanisms are poorly understood and warrant further investigation.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Robert Wood Johnson Medical School, Rutgers State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Ezra Susser
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Sabiha Hussain
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jag Sunderram
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
23
|
Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci 2020; 10:148. [PMID: 33380340 PMCID: PMC7772801 DOI: 10.1186/s13578-020-00519-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is the host functional receptor for the new virus SARS-CoV-2 causing Coronavirus Disease 2019. ACE2 is expressed in 72 different cell types. Some factors that can affect the expression of the ACE2 are: sex, environment, comorbidities, medications (e.g. anti-hypertensives) and its interaction with other genes of the renin-angiotensin system and other pathways. Different factors can affect the risk of infection of SARS-CoV-2 and determine the severity of the symptoms. The ACE2 enzyme is a negative regulator of RAS expressed in various organ systems. It is with immunity, inflammation, increased coagulopathy, and cardiovascular disease. In this review, we describe the genetic and molecular functions of the ACE2 receptor and its relation with the physiological and pathological conditions to better understand how this receptor is involved in the pathogenesis of COVID-19. In addition, it reviews the different comorbidities that interact with SARS-CoV-2 in which also ACE2 plays an important role. It also describes the different factors that interact with the virus that have an influence in the expression and functional activities of the receptor. The goal is to provide the reader with an understanding of the complexity and importance of this receptor.
Collapse
Affiliation(s)
| | - Sandra Lopez-León
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | | | | | - Angelica Cuapio
- Center of Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Talia Wegman-Ostrosky
- Department of Basic Research, Instituto Nacional de Cancerología, 22 San Fernando Avenue, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
24
|
Lozano-Gonzalez K, Padilla-Rodríguez E, Texis T, Gutiérrez MN, Rodríguez-Dorantes M, Cuevas-Córdoba B, Ramírez-García E, Mino-León D, Sánchez-García S, Gonzalez-Covarrubias V. Allele Frequency of ACE2 Intron Variants and Its Association with Blood Pressure. DNA Cell Biol 2020; 39:2095-2101. [PMID: 33016778 DOI: 10.1089/dna.2020.5804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is known as the counter-regulator of the renin-angiotensin system, it cleaves angiotensin II to render Ag 1-7, a potent vasodilator with multiple roles in cardiovascular protection. A few studies have pinpointed ACE2 polymorphisms and their relationship with heart function and hypertension in a sex-dependent manner. These observations still lack replication mostly for admixed populations. This study aimed to report minor allele frequencies of four ACE2 intron variants, rs2285666, rs2048683, rs2106809, and rs4240157, derived from previous research using the GSA, v1.0, microarray in 1231 hypertensive and nonhypertensive patients. Logistic and multiple linear regression models were developed to identify potential associations with hypertension status and systolic and diastolic blood pressure (SBP and DBP). Allele frequency differences were identified for ACE2 rs2048683 and rs4240157 in populations with European ancestry and people of the Americas. Regression analyses identified a significant association of ACE2 rs2048683 and rs4240157 with SBP/DBP in males or females. Our observations confirm sex differences in ACE2 genetic associations with SBP and DBP and contribute to the collection of genetic variation in ACE2 for admixed populations.
Collapse
Affiliation(s)
| | | | - Tomas Texis
- Pharmacogenomics, Instituto Nacional de Medicina Genómica, INMEGEN, CDMX, México
| | - Marco N Gutiérrez
- Unidad de Investigación Epidemiológica y Servicios de Salud, Área envejecimiento, IMSS, CDMX, México
| | | | | | - Eliseo Ramírez-García
- Unidad de Investigación Epidemiológica y Servicios de Salud, Área envejecimiento, IMSS, CDMX, México
| | - Dolores Mino-León
- Unidad de Investigación en Epidemiología Clínica del Hospital de Especialidades del CMN Siglo XXI, IMSS, CDMX, México
| | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y Servicios de Salud, Área envejecimiento, IMSS, CDMX, México
| | | |
Collapse
|
25
|
Bosso M, Thanaraj TA, Abu-Farha M, Alanbaei M, Abubaker J, Al-Mulla F. The Two Faces of ACE2: The Role of ACE2 Receptor and Its Polymorphisms in Hypertension and COVID-19. Mol Ther Methods Clin Dev 2020; 18:321-327. [PMID: 32665962 PMCID: PMC7314689 DOI: 10.1016/j.omtm.2020.06.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanism for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires the binding of the virus to the angiotensin-converting enzyme 2 (ACE2) receptor, well-known for its role in counteracting ACE. ACE2 is involved in modulating blood pressure and establishing blood pressure homeostasis. Recently, a critical debatable question has arisen whether using antihypertensive medications will have a favorable impact on people infected with SARS-CoV-2 or a deleterious one, mainly because angiotensin-converting enzyme inhibitor (ACEI) and angiotensin-receptor blocker (ARB) therapy can modulate the expression of ACE2 protein. The concern is that the use of ACEIs and ARBs will increase the expression of ACE2 and increase patient susceptibility to viral host cell entry and propagation. On the other hand, several genetic association studies have examined the relationship between ACE2 genetic variants and the risk of developing hypertension in different ethnic populations. In this review, we discuss the ongoing arguments in the literature about ACE2's role in mortality rate among coronavirus disease 2019 (COVID-19) patients comorbid with hypertension and critically evaluate the current debate about the usage or discontinuation of ACEI/ARB antihypertensive drugs. Moreover, we explore the two opposing roles that ACE2 genetic variants might be playing in COVID-19 by reducing ACE2 receptor effectiveness and mitigating SARS-CoV-2 infectivity.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Muath Alanbaei
- Health Sciences Center, Kuwait University, Kuwait City 13110, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| |
Collapse
|
26
|
Sieńko J, Kotowski M, Bogacz A, Lechowicz K, Drożdżal S, Rosik J, Sietnicki M, Sieńko M, Kotfis K. COVID-19: The Influence of ACE Genotype and ACE-I and ARBs on the Course of SARS-CoV-2 Infection in Elderly Patients. Clin Interv Aging 2020; 15:1231-1240. [PMID: 32764907 PMCID: PMC7382582 DOI: 10.2147/cia.s261516] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
Since the beginning of 2020, the whole world has been struggling with the pandemic of Coronavirus Disease 2019 (COVID-19) caused by a novel coronavirus SARS-CoV-2. The SARS-CoV-2 infection depends on ACE2, TMPRSS2, and CD147, which are expressed on host cells. Several studies suggest that some single nucleotide polymorphisms (SNPs) of ACE2 might be a risk factor of COVID-19 infection. Genotypes affect ACE2 structure, its serum concentration, and levels of circulating angiotensin (1-7). Moreover, there is evidence that ACE genotype affects the outcomes of acute respiratory distress syndrome (ARDS) treatment, the most severe consequence of SARS-CoV-2 infection. COVID-19 morbidity, infection course, and mortality might depend on ACE D allele frequency. The aim of this narrative review was to analyze and identify the mechanisms of ACE-I and ARBs with particular emphasis on angiotensin receptors and their polymorphism in the light of COVID-19 pandemic as these medications are commonly prescribed to elderly patients. There is no direct evidence yet for ACE-I or ARBs in the treatment of COVID-19. However, for those already taking these medications, both the European Society of Cardiology and the American College of Cardiology recommend continuing the treatment, because at present, there is no clear clinical or scientific evidence to justify the discontinuation of ACE-I or ARBs. Individualized treatment decisions should be based on the clinical condition and co-morbidities of each patient.
Collapse
Affiliation(s)
- Jerzy Sieńko
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Kotowski
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Bogacz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Poznan, Poland
| | - Kacper Lechowicz
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Sylwester Drożdżal
- Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marek Sietnicki
- Department of Civil Engineering and Architecture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Magdalena Sieńko
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
27
|
Zamai L. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells 2020; 9:E1704. [PMID: 32708755 PMCID: PMC7408073 DOI: 10.3390/cells9071704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The article describes the rationale for inhibition of the renin-angiotensin system (RAS) pathways as specific targets in patients infected by SARS-CoV-2 in order to prevent positive feedback-loop mechanisms. Based purely on experimental studies in which RAS pathway inhibitors were administered in vivo to humans/rodents, a reasonable hypothesis of using inhibitors that block both ACE and ACE2 zinc metalloproteases and their downstream pathways in COVID-19 patients will be proposed. In particular, metal (zinc) chelators and renin inhibitors may work alone or in combination to inhibit the positive feedback loops (initially triggered by SARS-CoV-2 and subsequently sustained by hypoxia independently on viral trigger) as both arms of renin-angiotensin system are upregulated, leading to critical, advanced and untreatable stages of the disease.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy; ; Tel.: +39-0722-304319
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
| |
Collapse
|
28
|
Abstract
Knowledge of genomic interindividual variability could help us to explain why different manifestation of clinical severity of Covid-19 infection as well as modified pharmacogenetic relations can be expected during this pandemic condition.
Collapse
Affiliation(s)
- A VAŠKŮ
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 2020; 10:7448-7464. [PMID: 32642005 PMCID: PMC7330865 DOI: 10.7150/thno.48076] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic is an emerging threat to global public health. While our current understanding of COVID-19 pathogenesis is limited, a better understanding will help us develop efficacious treatment and prevention strategies for COVID-19. One potential therapeutic target is angiotensin converting enzyme 2 (ACE2). ACE2 primarily catalyzes the conversion of angiotensin I (Ang I) to a nonapeptide angiotensin or the conversion of angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) and has direct effects on cardiac function and multiple organs via counter-regulation of the renin-angiotensin system (RAS). Significant to COVID-19, ACE2 is postulated to serve as a major entry receptor for SARS-CoV-2 in human cells, as it does for SARS-CoV. Many infected individuals develop COVID-19 with fever, cough, and shortness of breath that can progress to pneumonia. Disease progression promotes the activation of immune cells, platelets, and coagulation pathways that can lead to multiple organ failure and death. ACE2 is expressed by epithelial cells of the lungs at high level, a major target of the disease, as seen in post-mortem lung tissue of patients who died with COVID-19, which reveals diffuse alveolar damage with cellular fibromyxoid exudates bilaterally. Comparatively, ACE2 is expressed at low level by vascular endothelial cells of the heart and kidney but may also be targeted by the virus in severe COVID-19 cases. Interestingly, SARS-CoV-2 infection downregulates ACE2 expression, which may also play a critical pathogenic role in COVID-19. Importantly, targeting ACE2/Ang 1-7 axis and blocking ACE2 interaction with the S protein of SARS-CoV-2 to curtail SARS-CoV-2 infection are becoming very attractive therapeutics potential for treatment and prevention of COVID-19. Here, we will discuss the following subtopics: 1) ACE2 as a receptor of SARS-CoV-2; 2) clinical and pathological features of COVID-19; 3) role of ACE2 in the infection and pathogenesis of SARS; 4) potential pathogenic role of ACE2 in COVID-19; 5) animal models for pathological studies and therapeutics; and 6) therapeutics development for COVID-19.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Animals
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/therapeutic use
- Antiviral Agents/therapeutic use
- Betacoronavirus/chemistry
- Betacoronavirus/pathogenicity
- Betacoronavirus/physiology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/metabolism
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Coronavirus Infections/virology
- Disease Models, Animal
- Host Microbial Interactions/physiology
- Humans
- Mice
- Models, Biological
- Pandemics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/therapy
- Pneumonia, Viral/virology
- Receptors, Virus/metabolism
- Renin-Angiotensin System/physiology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Theranostic Nanomedicine
- Viral Vaccines/isolation & purification
- Virus Internalization
Collapse
Affiliation(s)
- Prasun K. Datta
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fengming Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Immunology and Microbiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang. Hypertens Res 2018; 42:681-689. [PMID: 30542083 PMCID: PMC6477792 DOI: 10.1038/s41440-018-0166-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/12/2022]
Abstract
Essential hypertension (EH) is a principal contributing factor in
worldwide cardiovascular disease mortality. Although interventions that minimize
environmental risk factors for EH are associated with reduced cardiovascular
disease, such approaches are limited for individuals with high genetic EH risk. In
this study, we investigated possible associations between ACE2 polymorphisms and
hypertension-related target organ damages in south Xinjiang, China. Four hundred and
two hypertensive patients were enrolled as study participants in an EH group, and
233 normotensive individuals were enrolled as control subjects. Participants were
recruited from the south Xinjiang region. Fourteen ACE2 polymorphisms were genotyped
by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
Risk genotypes of rs2074192 (TT+CT, OR = 1.72, 95% CI: 1.17–2.53), rs2106809 (TT,
OR = 1.71, 95% CI: 1.13–2.58), rs4240157 (CC+CT, OR = 1.99, 95% CI: 1.17–3.41),
rs4646155 (TT+CT, OR = 1.94, 95% CI: 1.06–3.54), rs4646188 (TT+CT, OR = 3.25, 95%
CI: 1.95–5.41), rs4830542 (CC+CT, OR = 1.88, 95% CI: 1.10–3.23), and rs879922
(CC+CG, OR = 4.86, 95% CI: 2.74–8.64) were associated with EH. Hypertensive patients
carrying the control genotype of rs2074192 (CC, OR = 2.37, 95% CI: 1.28–4.39) were
associated with CAS ≥50%, while those carrying a high-EH-risk genotype of rs4240157
(OR = 2.62, 95% CI: 1.24–5.54), rs4646155 (OR = 2.44, 95% CI: 1.16–5.10), or
rs4830542 (CC+CT, OR = 2.20, 95% CI: 1.03–4.69) were associated with atrial
fibrillation (AF), larger left atrial diameter, and higher levels of
renin–angiotensin–aldosterone system (RAAS) activation (renin and angiotensin I/II).
In conclusion, the ACE2 variant rs2074192 was associated with EH and EH with CAS
≥50%, while 3 ACE2 variants (rs4240157, rs4646155, and rs4830542) were associated
with EH- and hypertension-related AF and left atrial remodeling in south Xinjiang,
China.
Collapse
|
31
|
Liu C, Li Y, Guan T, Lai Y, Shen Y, Zeyaweiding A, Zhao H, Li F, Maimaiti T. ACE2 polymorphisms associated with cardiovascular risk in Uygurs with type 2 diabetes mellitus. Cardiovasc Diabetol 2018; 17:127. [PMID: 30227878 PMCID: PMC6142339 DOI: 10.1186/s12933-018-0771-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2D), rapidly increasing to epidemic proportions, globally escalates cardiovascular disease risk. Although intensive interventions and comprehensive management of environmental risks factors for T2D are associated with reduced cardiovascular disease, such approaches are limited for individuals with high genetic T2D risk. In this study we investigated possible associations of ACE2 polymorphisms and cardiovascular risks in Uygur patients with T2D. Methods 275 Uygur T2D patients and 272 non-diabetic Uygur individuals were enrolled as study participants. 14 ACE2 polymorphisms were genotyped by Matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Results ACE2 SNP rs1978124, rs2048683, rs2074192, rs233575, rs4240157, rs4646156, rs4646188 and rs879922 were associated with T2D (all P < 0.05). The 8 diabetic risk related ACE2 SNPs were further associated with diabetic related cardiovascular complications or events but exhibited heterogeneity as fellows: firstly, almost all diabetic risk related ACE2 SNPs (all P < 0.05) were associated with increased SBP except rs1978124 and rs2074192, while rs2074192, rs4646188 and rs879922 were associated elevated DBP (all P < 0.05). Secondly, SNP rs4646188 was not correlated with any type of dyslipidemia (TRIG, HDL-C, LDL-C or CHOL), and the other 7 diabetic risk related loci were at least correlated with one type of dyslipidemia (all P < 0.05). In particular, rs879922 were simultaneously correlated with four type of dyslipidemia (all P < 0.05). Thirdly, ACE2 SNP rs2074192 and rs879922 were associated with carotid arteriosclerosis stenosis (CAS) ≥ 50% (both P < 0.05). Fourthly, ACE2 SNP rs2074192, rs4240157, rs4646188 and 879922 were associated with increased MAU (all P < 0.05). In addition, ACE2 SNP rs2048683, rs4240157, rs4646156, rs4646188 and rs879922 were linked to heavier LVMI (all P < 0.05), but only rs4240157, rs4646156 and rs4646188 were associated with lower LVEF (all P < 0.05). Conclusion ACE2 SNP rs879922 may be a common genetic loci and optimal genetic susceptibility marker for T2D and T2D related cardiovascular risks in Uygurs. Electronic supplementary material The online version of this article (10.1186/s12933-018-0771-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, Medical School, South China University of Technology, #1 Panfu Road, Guangzhou, 510180, China. .,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China. .,Department of Cardiology, Shufu People's Hospital, Kashgar Region, Xinjiang Uygur Autonomous Region (XUAR), 844100, China.
| | - Yanfang Li
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, Medical School, South China University of Technology, #1 Panfu Road, Guangzhou, 510180, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Abudurexiti Zeyaweiding
- Department of Cardiology, Shufu People's Hospital, Kashgar Region, Xinjiang Uygur Autonomous Region (XUAR), 844100, China
| | - Haiyan Zhao
- Department of Cardiology, Shufu People's Hospital, Kashgar Region, Xinjiang Uygur Autonomous Region (XUAR), 844100, China
| | - Fang Li
- Department of Cardiology, Shufu People's Hospital, Kashgar Region, Xinjiang Uygur Autonomous Region (XUAR), 844100, China
| | - Tutiguli Maimaiti
- Department of Cardiology, Shufu People's Hospital, Kashgar Region, Xinjiang Uygur Autonomous Region (XUAR), 844100, China
| |
Collapse
|
32
|
Wu X, Zhu B, Zou S, Shi J. The Association Between ACE2 Gene Polymorphism and the Stroke Recurrence in Chinese Population. J Stroke Cerebrovasc Dis 2018; 27:2770-2780. [PMID: 30056001 DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 06/02/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The angiotensin-converting enzyme 2 (ACE2) is closely associated with cardiovascular disease and cerebrovascular disease. Most studies on ACE2 gene polymorphism focused on its relations with cardiovascular disease, but there was a lack of research on its relations with stroke. Our study aimed to explore the association between 4 single-nucleotidepolymorphisms (SNPs) of ACE2 gene polymorphism and stroke recurrence. DESIGN AND PARTICIPANTS In our study, the case group included 125 stroke patients with recurrence and the control group included 153 patients without recurrence. Four SNPs (rs2106809, rs2285666, rs879922, and rs2074192) were genotyped by Ligase detection reaction. The association between stroke recurrence and SNPs were analyzed by multivariate logistic regression. RESULTS We find no association between ACE2 gene polymorphism and stroke recurrence. Haplotype A-G-C may associate with the stoke recurrence of male patients. The recurrence risk of male stroke patients with hypertension history and rs2285666-C allele is 2.82 times as high as that of those without hypertension history but with T allele. Among male stroke patients with hypertension history, the recurrence risk of those with rs2285666-C allele is 2.38 times as high as those with T allele; and the recurrence risk of those with rs2106809-A allele is 2.12 times as high as those with G allele. But those recurrence risks lose their statistical significance after adjustment for other factors. CONCLUSIONS We find no influence of ACE2 gene polymorphism on stroke recurrence and only find possible interaction between hypertension history and the ACE2 gene in male stroke patients.
Collapse
Affiliation(s)
- Xiaomei Wu
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bo Zhu
- Department of Cancer Prevention and Treatment, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Safeng Zou
- Department of Neurology and Rehabilitation Medicine, Dalian Municipal Central Hospital, Dalian, China
| | - Jingpu Shi
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
33
|
Li J, Wu GC, Zhang TP, Yang XK, Chen SS, Li LJ, Xu SZ, Lv TT, Leng RX, Pan HF, Ye DQ. Association of long noncoding RNAs expression levels and their gene polymorphisms with systemic lupus erythematosus. Sci Rep 2017; 7:15119. [PMID: 29123179 PMCID: PMC5680319 DOI: 10.1038/s41598-017-15156-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has demonstrated the association between long noncoding RNAs (lncRNAs) and multiple autoimmune diseases. To explore four lncRNAs (GAS5, lnc-DC, linc0597 and linc0949) expression levels and gene polymorphisms in systemic lupus erythematosus (SLE), a two stage design was applied. In the first stage, 85 SLE patients and 71 healthy controls were enrolled to investigate the lncRNAs expression levels. Then, 1260 SLE patients and 1231 healthy controls were included to detect the single nucleotide polymorphisms (SNPs) in the differentially expressed lncRNAs identified in the first stage. Linc0597, lnc-DC and GAS5 expression levels were significantly lower in SLE patients than healthy controls (P < 0.001, P < 0.001, P = 0.003 respectively). Association of five SNPs (rs10515177, rs2070107, rs2632516, rs2877877, rs2067079) with SLE risk were analyzed. No significant association was observed between these gene polymorphisms and susceptibility to SLE (all P > 0.010), and we did not find significant association between any genotypes at five SNPs and their respective lncRNAs expression in SLE (all P > 0.010). In summary, the expression levels of linc0597, lnc-DC and GAS5 are decreased in SLE patients, but their gene polymorphisms are not associated with SLE risk, and do not influence their expression levels.
Collapse
Affiliation(s)
- Jun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China.,Jiangyin Center for Disease Control and Prevention, Jiangsu, P. R. China
| | - Guo-Cui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Xiao-Ke Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Shuang-Shuang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Lian-Ju Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Tian-Tian Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, P. R. China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, P. R. China.
| |
Collapse
|
34
|
Tamargo M, Tamargo J. Future drug discovery in renin-angiotensin-aldosterone system intervention. Expert Opin Drug Discov 2017; 12:827-848. [PMID: 28541811 DOI: 10.1080/17460441.2017.1335301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renin-angiotensin-aldosterone system inhibitors (RAASIs), including angiotensin-converting enzyme inhibitors, angiotensin AT1 receptor blockers and mineralocorticoid receptor antagonists (MRAs), are the cornerstone for the treatment of cardiovascular and renal diseases. Areas covered: The authors searched MEDLINE, PubMed and ClinicalTrials.gov to identify eligible full-text English language papers. Herein, the authors discuss AT2-receptor agonists and ACE2/angiotensin-(1-7)/Mas-receptor axis modulators, direct renin inhibitors, brain aminopeptidase A inhibitors, biased AT1R blockers, chymase inhibitors, multitargeted drugs, vaccines and aldosterone receptor antagonists as well as aldosterone synthase inhibitors. Expert opinion: Preclinical studies have demonstrated that activation of the protective axis of the RAAS represents a novel therapeutic strategy for treating cardiovascular and renal diseases, but there are no clinical trials supporting our expectations. Non-steroidal MRAs might become the third-generation of MRAs for the treatment of heart failure, diabetes mellitus and chronic kidney disease. The main challenge for these new drugs is that conventional RAASIs are safe, effective and cheap generics. Thus, the future of new RAASIs will be directed by economical/strategic reasons.
Collapse
Affiliation(s)
- Maria Tamargo
- a Department of Cardiology , Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV , Madrid , Spain
| | - Juan Tamargo
- b Department of Pharmacology , School of Medicine, University Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV , Madrid , Spain
| |
Collapse
|
35
|
Li H, Li W, Liu S, Zong S, Wang W, Ren J, Li Q, Hou F, Shi Q. DNMT1, DNMT3A and DNMT3B Polymorphisms Associated With Gastric Cancer Risk: A Systematic Review and Meta-analysis. EBioMedicine 2016; 13:125-131. [PMID: 27789275 PMCID: PMC5264435 DOI: 10.1016/j.ebiom.2016.10.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Increasing studies showed that abnormal changes in single nucleotide polymorphisms (SNPs) of DNMTs (DNMT1, DNMT3A and DNMT3B) were associated with occurrence or decrease of various tumors. However, the associations between DNMTs variations and gastric cancer (GC) risk were still conflicting. We aimed to assess the effect of DNMTs polymorphisms on the susceptibility to GC. METHODS Firstly, we did a meta-analysis for 7 SNPs (rs16999593, rs2228611, rs8101866 in DNMT1, rs1550117, rs13420827 in DNMT3A, rs1569686, rs2424913 in DNMT3B). Four genetic models (homozygote, heterozygote, dominant and recessive model) were used. Moreover, a meta-sensitivity and subgroup analysis was performed to clarify heterogeneity source. Lastly, 17 SNPs that couldn't be meta-analyzed were presented in a systematic review. FINDINGS 20 studies were included, 13 studies could be meta-analyzed and 7 ones could not. Firstly, a meta-analysis on 13 studies (3959 GC cases and 5992 controls) for 7 SNPs showed that GC risk increased in rs16999593 (heterozygote model: OR 1.36, 95%CI 1.14-1.61; dominant model: OR 1.36, 95%CI 1.15-1.60) and rs1550117 (homozygote model: OR 2.03, 95%CI 1.38-3.00; dominant model: OR 1.20, 95%CI 1.01-1.42; recessive model: OR 1.96, 95%CI 1.33-2.89) but decreased in rs1569686 (dominant model: OR 0.74, 95%CI 0.61-0.90). The remaining SNPs were not found associated with GC risk. Furthermore, the subgroup analysis indicated that for rs1550117 and rs1569686, the significant associations were particularly found in people from Chinese Jiangsu province (rs1550117, OR 1.77, 95%CI 1.25-2.51; rs1569686, OR 0.48, 95%CI 0.36-0.64) and that PCR-RFLP was a sensitive method to discover significant associations (rs1550117, OR 1.77, 95%CI 1.25-2.51; rs1569686, OR 0.49, 95%CI 0.37-0.65). Lastly, a systematic review on 7 studies for 17 SNPs suggested that rs36012910, rs7560488 and rs6087990 might have a potential effect on GC initiation. CONCLUSION This meta-analysis demonstrated that rs16999593 and rs1550117 could contribute to GC risk and that rs1569686 might be a protective factor against gastric carcinogenesis. By using these SNPs as biomarkers, it is feasible to estimate the risk of acquiring GC and thus formulate timely preventive strategy.
Collapse
Affiliation(s)
- Hongjia Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Wen Li
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Shanshan Liu
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Shaoqi Zong
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Weibing Wang
- Fudan University School of Public Health, Shanghai 200032, China
| | - Jianlin Ren
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fenggang Hou
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Qi Shi
- Oncology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
36
|
Abstract
The health of the cardiovascular and pulmonary systems is inextricably linked to the renin-angiotensin system (RAS). Physiologically speaking, a balance between the vasodeleterious (Angiotensin-converting enzyme [ACE]/Angiotensin II [Ang II]/Ang II type 1 receptor [AT1R]) and vasoprotective (Angiotensin-converting enzyme 2 [ACE2]/Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor [MasR]) components of the RAS is critical for cardiopulmonary homeostasis. Upregulation of the ACE/Ang II/AT1R axis shifts the system toward vasoconstriction, proliferation, hypertrophy, inflammation, and fibrosis, all factors that contribute to the development and progression of cardiopulmonary diseases. Conversely, stimulation of the vasoprotective ACE2/Ang-(1-7)/MasR axis produces a counter-regulatory response that promotes cardiovascular health. Current research is investigating novel strategies to augment actions of the vasoprotective RAS components, particularly ACE2, in order to treat various pathologies. Although multiple approaches to increase the activity of ACE2 have displayed beneficial effects against experimental disease models, the mechanisms behind its protective actions remain incompletely understood. Recent work demonstrating a non-catalytic role for ACE2 in amino acid transport in the gut has led us to speculate that the therapeutic effects of ACE2 can be mediated, in part, by its actions on the gastrointestinal tract and/or gut microbiome. This is consistent with emerging data which suggest that dysbiosis of the gut and lung microbiomes is associated with cardiopulmonary disease. This review highlights new developments in the protective actions of ACE2 against cardiopulmonary disorders, discusses innovative approaches to targeting ACE2 for therapy, and explores an evolving role for gut and lung microbiota in cardiopulmonary health.
Collapse
|
37
|
Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res 2016; 118:1313-26. [PMID: 27081112 DOI: 10.1161/circresaha.116.307708] [Citation(s) in RCA: 611] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.
Collapse
Affiliation(s)
- Vaibhav B Patel
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Jiu-Chang Zhong
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Maria B Grant
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Gavin Y Oudit
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.).
| |
Collapse
|
38
|
Liu D, Chen Y, Zhang P, Zhong J, Jin L, Zhang C, Lin S, Wu S, Yu H. Association between circulating levels of ACE2-Ang-(1-7)-MAS axis and ACE2 gene polymorphisms in hypertensive patients. Medicine (Baltimore) 2016; 95:e3876. [PMID: 27310975 PMCID: PMC4998461 DOI: 10.1097/md.0000000000003876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis (ACE2-Ang-[1-7]-MAS axis) plays an important role in the control of blood pressure. Some previous studies indicated that the genetic variants of ACE2 may have a potential to influence this axis. Therefore, the present study aimed at examining the association of ACE2 polymorphisms with circulating ACE2 and Ang-(1-7) levels in patients with essential hypertension.Hypertensive patients who met the inclusion criteria were enrolled in the present study. Three Tag single-nucleotide polymorphisms (rs2106809, rs4646155, and rs879922) in ACE2 gene were genotyped for all participants. Circulating ACE2 and Ang-(1-7) levels were detected by enzyme-linked immunosorbent assay.There were 96 (53.0%) females and 85 (47.0%) males participating in the present study. The circulating Ang-(1-7) levels were significantly greater in female patients carrying the rs2106809 CC or CT genotype compared with those carrying the TT genotype (1321.9 ± 837.4 or 1077.5 ± 804.4 pg/mL vs 751.9 ± 612.4 pg/mL, respectively; P = 0.029, analysis of variance), whereas the circulating Ang-(1-7) levels were comparable among genotypes in male patients. In addition, there was no significant difference in the circulating ACE2 levels among rs2106809 CC, CT, and TT genotype groups in both female and male patients. The circulating ACE2 and Ang-(1-7) levels were related to neither rs4646155 nor rs879922 in female or male patients.In conclusion, the rs2106809 polymorphism of the ACE2 gene may be a determinant of the circulating Ang-(1-7) level in female patients with hypertension, suggesting a genetic association between circulating Ang-(1-7) levels and ACE2 gene polymorphisms in patients with hypertension.
Collapse
Affiliation(s)
- Dan Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Yongyue Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Ping Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Jiuchang Zhong
- State Key Laboratory of Medical Genomics & Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Lijun Jin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Caojin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Shuguang Lin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Shulin Wu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| | - Huimin Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road No. 2, Yuexiu District, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
39
|
Kovesdy CP, Quarles LD. FGF23 from bench to bedside. Am J Physiol Renal Physiol 2016; 310:F1168-74. [PMID: 26864938 DOI: 10.1152/ajprenal.00606.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
There is a strong association between elevated circulating fibroblast growth factor-23 (FGF23) levels and adverse outcomes in patients with chronic kidney disease (CKD) of all stages. Initially discovered as a regulator of phosphate and vitamin D homeostasis, FGF23 has now been implicated in several pathophysiological mechanisms that may negatively impact the cardiovascular and renal systems. FGF23 is purported to have direct (off-target) effects in the myocardium, as well as canonical effects on FGF receptor/α-klotho receptor complexes in the kidney to activate the renin-angiotensin-aldosterone system, modulate soluble α-klotho levels, and increase sodium retention, to cause left ventricular hypertrophy (LVH). Conversely, FGF23 could be an innocent bystander produced in response to chronic inflammation or other processes associated with CKD that cause LVH and adverse cardiovascular outcomes. Further exploration of these complex mechanisms is needed before modulation of FGF23 can become a legitimate clinical target in CKD.
Collapse
Affiliation(s)
- Csaba P Kovesdy
- University of Tennessee Health Science Center, Memphis, Tennessee; and Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | - L Darryl Quarles
- University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
40
|
Patel SK, Velkoska E, Freeman M, Wai B, Lancefield TF, Burrell LM. From gene to protein-experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Front Physiol 2014; 5:227. [PMID: 25009501 PMCID: PMC4067757 DOI: 10.3389/fphys.2014.00227] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a major risk factor for stroke, coronary events, heart and renal failure, and the renin-angiotensin system (RAS) plays a major role in its pathogenesis. Within the RAS, angiotensin converting enzyme (ACE) converts angiotensin (Ang) I into the vasoconstrictor Ang II. An “alternate” arm of the RAS now exists in which ACE2 counterbalances the effects of the classic RAS through degradation of Ang II, and generation of the vasodilator Ang 1-7. ACE2 is highly expressed in the heart, blood vessels, and kidney. The catalytically active ectodomain of ACE2 undergoes shedding, resulting in ACE2 in the circulation. The ACE2 gene maps to a quantitative trait locus on the X chromosome in three strains of genetically hypertensive rats, suggesting that ACE2 may be a candidate gene for hypertension. It is hypothesized that disruption of tissue ACE/ACE2 balance results in changes in blood pressure, with increased ACE2 expression protecting against increased blood pressure, and ACE2 deficiency contributing to hypertension. Experimental hypertension studies have measured ACE2 in either the heart or kidney and/or plasma, and have reported that deletion or inhibition of ACE2 leads to hypertension, whilst enhancing ACE2 protects against the development of hypertension, hence increasing ACE2 may be a therapeutic option for the management of high blood pressure in man. There have been relatively few studies of ACE2, either at the gene or the circulating level in patients with hypertension. Plasma ACE2 activity is low in healthy subjects, but elevated in patients with cardiovascular risk factors or cardiovascular disease. Genetic studies have investigated ACE2 gene polymorphisms with either hypertension or blood pressure, and have produced largely inconsistent findings. This review discusses the evidence regarding ACE2 in experimental hypertension models and the association between circulating ACE2 activity and ACE2 polymorphisms with blood pressure and arterial hypertension in man.
Collapse
Affiliation(s)
- Sheila K Patel
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Elena Velkoska
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Melanie Freeman
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Bryan Wai
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia ; Department of Cardiology, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Terase F Lancefield
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia
| | - Louise M Burrell
- Department of Medicine, Austin Health, University of Melbourne Heidelberg, VIC, Australia ; Department of Cardiology, Austin Health, University of Melbourne Heidelberg, VIC, Australia ; Department of Cardiology, The Northern Hospital, University of Melbourne Epping, VIC, Australia
| |
Collapse
|
41
|
Chen J, Tanguay RL, Tal TL, Gai Z, Ma X, Bai C, Tilton SC, Jin D, Yang D, Huang C, Dong Q. Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:124-32. [PMID: 24667235 PMCID: PMC4159678 DOI: 10.1016/j.aquatox.2014.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/23/2014] [Accepted: 03/03/2014] [Indexed: 05/07/2023]
Abstract
As a persistent organic contaminant, perfluorooctanesulphonic acid (PFOS) has been widely detected in the environment, wildlife, and humans. The present study revealed that zebrafish embryos exposed to 16 μM PFOS during a sensitive window of 48-96 hour post-fertilization (hpf) disrupted larval morphology at 120 hpf. Malformed zebrafish larvae were characterized by uninflated swim bladder, less developed gut, and curved spine. Histological and ultrastructural examination of PFOS-exposed larvae showed structural alterations in swim bladder and gut. Whole genome microarray was used to identify the early transcripts dysregulated following exposure to 16 μM PFOS at 96 hpf. In total, 1278 transcripts were significantly misexpressed (p<0.05) and 211 genes were changed at least two-fold upon PFOS exposure in comparison to the vehicle-exposed control group. A PFOS-induced network of perturbed transcripts relating to swim bladder and gut development revealed that misexpression of genes were involved in organogenesis. Taken together, early life stage exposure to PFOS perturbs various molecular pathways potentially resulting in observed defects in swim bladder and gut development.
Collapse
Affiliation(s)
- Jiangfei Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Robert L Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Tamara L Tal
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Zengxin Gai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Xue Ma
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Susan C Tilton
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Daqing Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Dongren Yang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qiaoxiang Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
42
|
Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K, Zhang C. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat Rev Cardiol 2014; 11:413-26. [PMID: 24776703 PMCID: PMC7097196 DOI: 10.1038/nrcardio.2014.59] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin-converting enzyme (ACE) 2 and its product angiotensin 1–7 are thought to have effects that counteract the adverse actions of other, better-known renin–angiotensin system (RAS) components Numerous experimental studies have suggested that ACE2 and angiotensin 1–7 have notable protective effects in the heart and blood vessels ACE2-mediated catabolism of angiotensin II is likely to have a major role in cardiovascular protection, whereas the functional importance and signalling mechanisms of angiotensin-1–7-induced actions remain unclear New pharmacological interventions targeting ACE2 are expected to be useful in clinical treatment of cardiovascular disease, especially those associated with overactivation of the conventional RAS More studies, especially randomized controlled clinical trials, are needed to clearly delineate the benefits of therapies targeting angiotensin 1–7 actions
Angiotensin-converting enzyme 2, and its product angiotensin 1–7, are thought to have counteracting effects against the adverse actions of the better-known members of the renin–angiotensin system and might, therefore, be useful therapeutic targets in patients with cardiovascular disease. Professor Jiang and colleagues review the evidence for the potential roles of these proteins in various cardiovascular conditions, including hypertension, atherosclerosis, myocardial remodelling, heart failure, ischaemic stroke, and diabetes. The renin–angiotensin system (RAS) has pivotal roles in the regulation of normal physiology and the pathogenesis of cardiovascular disease. Angiotensin-converting enzyme (ACE) 2, and its product angiotensin 1–7, are thought to have counteracting effects against the adverse actions of other, better known and understood, members of the RAS. The physiological and pathological importance of ACE2 and angiotensin 1–7 in the cardiovascular system are not completely understood, but numerous experimental studies have indicated that these components have protective effects in the heart and blood vessels. Here, we provide an overview on the basic properties of ACE2 and angiotensin 1–7 and a summary of the evidence from experimental and clinical studies of various pathological conditions, such as hypertension, atherosclerosis, myocardial remodelling, heart failure, ischaemic stroke, and diabetes mellitus. ACE2-mediated catabolism of angiotensin II is likely to have a major role in cardiovascular protection, whereas the relevant functions and signalling mechanisms of actions induced by angiotensin 1–7 have not been conclusively determined. The ACE2–angiotensin 1–7 pathway, however, might provide a useful therapeutic target for the treatment of cardiovascular disease, especially in patients with overactive RAS.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Jianmin Yang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Yongtao Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Mei Dong
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Shuangxi Wang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Fang Fang Liu
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Kai Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodelling and Function Research, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan 250012, Shandong Province, China
| |
Collapse
|
43
|
Varagic J, Ahmad S, Nagata S, Ferrario CM. ACE2: angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep 2014; 16:420. [PMID: 24510672 PMCID: PMC4286874 DOI: 10.1007/s11906-014-0420-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our current recognition of the renin-angiotensin system is more convoluted than originally thought due to the discovery of multiple novel enzymes, peptides, and receptors inherent in this interactive biochemical cascade. Over the last decade, angiotensin-converting enzyme 2 (ACE2) has emerged as a key player in the pathophysiology of hypertension and cardiovascular and renal disease due to its pivotal role in metabolizing vasoconstrictive/hypertrophic/proliferative angiotensin II into favorable angiotensin-(1-7). This review addresses the considerable advancement in research on the role of tissue ACE2 in the development and progression of hypertension and cardiac and renal injury. We summarize the results from recent clinical and experimental studies suggesting that serum or urine soluble ACE2 may serve as a novel biomarker or independent risk factor relevant for diagnosis and prognosis of cardiorenal disease. We also review recent proceedings on novel therapeutic approaches to enhance ACE2/angiotensin-(1-7) axis.
Collapse
Affiliation(s)
- Jasmina Varagic
- Hypertension & Vascular Research Center, Division of Surgical Sciences, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA,
| | | | | | | |
Collapse
|
44
|
Manipulating angiotensin metabolism with angiotensin converting enzyme 2 (ACE2) in heart failure. ACTA ACUST UNITED AC 2014; 9:e141-e148. [PMID: 32362932 PMCID: PMC7185729 DOI: 10.1016/j.ddstr.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heart failure is increasing in prevalence associated with a huge economic burden. ACE2 is a negative regulator of the renin–angiotensin system. Elevated ACE2 activity is a biomarker in heart failure. Enhancing ACE2 action may have unique therapeutic effects in patients with heart failure.
Angiotensin converting enzyme 2 (ACE2), is a monocarboxypeptidase which metabolizes several peptides including the degradation of Ang II, a peptide with vasoconstrictive/proliferative/effects, to generate Ang 1–7, which acting through its receptor Mas exerts vasodilatory/anti-proliferative actions. The classical pathway of the RAS involving the ACE-Ang II-AT1 receptor axis is antagonized by the second arm constituted by the ACE2-Ang 1–7/Mas receptor axis. Loss of ACE2 enhances the adverse pathological remodeling susceptibility to pressure-overload and myocardial infarction. Human recombinant ACE2 is also a negative regulator of Ang II-induced myocardial hypertrophy, fibrosis and diastolic dysfunction and suppresses pressure-overload induced heart failure. Due to its characteristics, the ACE2-Ang 1–7/Mas axis may represent new possibilities for developing novel therapeutic strategies for the treatment of heart failure. Human recombinant ACE2 has been safely administered to healthy human volunteers intravenously resulting in sustained lowering of plasma Ang II levels. In this review, we will summarize the beneficial effects of ACE2 in heart disease and the potential use of human recombinant ACE2 as a novel therapy for heart failure.
Collapse
|
45
|
Grace JA, Burrell LM, Patel SK. Angiotensin-converting enzyme 2 polymorphisms and cardiovascular risk. Intern Med J 2013; 42:1167. [PMID: 23046195 DOI: 10.1111/j.1445-5994.2012.02909.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Malard L, Kakinami L, O'Loughlin J, Roy-Gagnon MH, Labbe A, Pilote L, Hamet P, Tremblay J, Paradis G. The association between the Angiotensin-Converting Enzyme-2 gene and blood pressure in a cohort study of adolescents. BMC MEDICAL GENETICS 2013; 14:117. [PMID: 24191856 PMCID: PMC4228362 DOI: 10.1186/1471-2350-14-117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND The Angiotensin-Converting Enzyme-2 (ACE2) gene, located on chromosome X, is believed to be implicated in blood pressure regulation. However the few studies that have examined this association have yielded mixed results. The objective of this study was to assess the association between tag single nucleotide polymorphisms (SNPs) in the angiotensin-converting enzyme-2 gene with blood pressure and blood pressure change in adolescents. METHODS Participants in the Nicotine Dependence in Teens (NDIT) cohort study with blood or saliva samples and at least 3 blood pressure measurements over 5 years were included in the analytic sample (n = 555). Linear growth curve models stratified on sex and ethnicity were used to assess the association between four tag SNPs in the ACE2 gene and systolic (SBP) and diastolic blood pressure (DBP), and blood pressure change. RESULTS In males of European descent, rs2074192 and rs233575 were significantly associated with SBP and DBP, and rs2158083 was associated with SBP. In French Canadian males, rs233575 and rs2158083 were significantly associated with DBP. Among females of European descent, rs2074192, rs233575, and rs2158083 were significantly associated with change in SBP over 5 years. CONCLUSIONS This is the first study to assess the association between the ACE2 gene with blood pressure and blood pressure change in a cohort of adolescents. Results indicate that several ACE2 gene SNPs are associated with blood pressure or blood pressure change in persons of European descent. However the therapeutic potential of these SNPs should be explored.
Collapse
Affiliation(s)
- Lucile Malard
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Angiotensin-converting enzyme 2 over-expression in the central nervous system reduces angiotensin-II-mediated cardiac hypertrophy. PLoS One 2012; 7:e48910. [PMID: 23155428 PMCID: PMC3498357 DOI: 10.1371/journal.pone.0048910] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/08/2012] [Indexed: 12/25/2022] Open
Abstract
Angiotensin-converting enzyme type 2 (ACE2) has been shown to be an important member of the renin angiotensin system. Previously, we observed that central ACE2 reduces the development of hypertension following chronic angiotensin II (Ang-II) infusion in syn-hACE2 transgenic (SA) mice, in which the human ACE2 transgene is selectively targeted to neurons. To study the physiological consequences of central ACE2 over-expression on cardiac function and cardiac hypertrophy, SA and non-transgenic (NT) mice were infused with Ang-II (600 ng/kg/min, sc) for 14 days, and cardiac function was assessed by echocardiography. Blood pressure (BP), hemodynamic parameters, left ventricle (LV) mass/tibia length, relative ventricle wall thickness (2PW/LVD), cardiomyocyte diameters and collagen deposition were similar (P>0.05) between NT and SA mice during saline infusion. After a 2-week infusion, BP was elevated in NT but not in SA mice. Although ejection fraction and fractional shortening were not altered, Ang-II infusion increased 2PW/LVD compared to saline infusion in NT mice. Interestingly, the 2PW/LVD and LV mass/tibia ratios were significantly lower in SA compared to NT mice at the end of infusion. Moreover, Ang-II infusion significantly increased arterial collagen deposition and cardiomyocytes diameter in NT mice but not in transgenic animals (P<0.05). More importantly, ACE2 over expression significantly reduced the Ang-II-mediated increase in urine norepinephrine levels in SA compared to NT mice. The protective effect of ACE2 appears to involve reductions in Ang-II-mediated hypertension and sympathetic nerve activity.
Collapse
|
48
|
Vašků A, Bienertová-Vašků J, Pařenica J, Goldbergová MP, Lipková J, Zlámal F, Kala P, Spinar J. ACE2 gene polymorphisms and invasively measured central pulse pressure in cardiac patients indicated for coronarography. J Renin Angiotensin Aldosterone Syst 2012; 14:220-6. [PMID: 23077079 DOI: 10.1177/1470320312460291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND AIM The objective of this research was to determine whether invasively measured central pulse pressure (PP) in patients indicated for coronarography is associated with two common polymorphisms in the ACE2 region (rs4646156 and rs4646174). METHODS A total of 307 patients were enrolled in the study. The genotyping of both SNPs from peripheral blood samples was carried out using 5'exonuclease (Taqman®) chemistry on the ABI Prism® 7000 system (Applied Biosystems, Foster City, CA, USA). RESULTS In both polymorphisms, the associations with central PP were found to be highly significant when all five possible genotypes in the population had been compared (p = 0.0001). In men, there was a higher incidence of previous myocardial infarction in G0 genotype carriers of rs54646174 (OR ratio = 7; p = 0.005). The AA genotype of rs4646156 had a 7.81× higher risk of severe angina pectoris in women (OR = 7.81, p = 0.05). A significant difference in allelic frequency of ACE2rs4646174 was found between women with and without significant stenoses of the circumflex branch of the left coronary artery. CONCLUSION More research into the role of ACE2 genetic variability in PP regulations is necessary for more detailed physiological and pathophysiological comprehension of PP regulation.
Collapse
Affiliation(s)
- Anna Vašků
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
The ACE2 gene: its potential as a functional candidate for cardiovascular disease. Clin Sci (Lond) 2012; 124:65-76. [DOI: 10.1042/cs20120269] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The RAS (renin–angiotensin system) plays an important role in the pathophysiology of CVD (cardiovascular disease), and RAS blockade is an important therapeutic strategy in the management of CVD. A new counterbalancing arm of the RAS is now known to exist in which ACE (angiotensin-converting enzyme) 2 degrades Ang (angiotensin) II, the main effector of the classic RAS, and generates Ang-(1–7). Altered ACE2 expression is associated with cardiac and vascular disease in experimental models of CVD, and ACE2 is increased in failing human hearts and atherosclerotic vessels. In man, circulating ACE2 activity increases with coronary heart disease, as well as heart failure, and a large proportion of the variation in plasma ACE2 levels has been attributed to hereditary factors. The ACE2 gene maps to chromosome Xp22 and this paper reviews the evidence associating ACE2 gene variation with CVD and considers clues to potential functional ACE2 variants that may alter gene expression or transcriptional activity. Studies to date have investigated ACE2 gene associations in hypertension, left ventricular hypertrophy and coronary artery disease, but the results have been inconsistent. The discrepancies may reflect the sample size of the studies, the gender or ethnicity of subjects, the cardiovascular phenotype or the ACE2 SNP investigated. The frequent observation of apparent sex-dependence might be of special importance, if confirmed. As yet, there are no studies to concurrently assess ACE2 gene polymorphisms and circulating ACE2 activity. Large-scale carefully conducted clinical studies are urgently needed to clarify more precisely the potential role of ACE2 in the CVD continuum.
Collapse
|
50
|
Huang J, Chen S, Lu X, Zhao Q, Rao DC, Jaquish CE, Hixson JE, Chen J, Wang L, Cao J, Li J, Li H, He J, Liu DP, Gu D. Polymorphisms of ACE2 are associated with blood pressure response to cold pressor test: the GenSalt study. Am J Hypertens 2012; 25:937-42. [PMID: 22647782 DOI: 10.1038/ajh.2012.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Increased blood pressure (BP) reactivity to cold pressor test (CPT) is a risk factor for hypertension. Genetic factors may influence the variation of BP response to CPT among individuals. We explored the association of genetic variants in the apelin system genes (APLN, APLNR and ACE2) and BP response to CPT in a Chinese population. METHODS A total of 1,998 Han Chinese participants from the Genetic Epidemiology Network of Salt Sensitivity completed a CPT. The percentage changes of BP right after the end of ice-water immersion were used as the measurement of BP responses to CPT. Twenty-two single nucleotide polymorphisms (SNPs) were selected and genotyped, including both tag and potential functional SNPs of the APLN, APLNR, and ACE2 genes. A mixed-effect linear model was used to assess the association between SNPs and BP responses to CPT. RESULTS In women, three SNPs (rs1514283, rs4646176, and rs879922) of the ACE2 gene were significantly associated with the diastolic BP (DBP) response to CPT in the general and recessive genetic models after adjustment for multiple testing (all false discovery rate q < 0.05). There were no significant associations of polymorphisms in APLN and APLNR genes with BP responses to CPT. CONCLUSIONS Our study identified genetic variants in the ACE2 gene that were significantly associated with DBP responses to cold stress in the Chinese female population. Future studies are warranted to confirm these findings.
Collapse
|