1
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
2
|
Zhang YT, He KJ, Zhang JB, Ma QH, Wang F, Liu CF. Advances in intranasal application of stem cells in the treatment of central nervous system diseases. Stem Cell Res Ther 2021; 12:210. [PMID: 33762014 PMCID: PMC7992869 DOI: 10.1186/s13287-021-02274-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cells are characterized by their self-renewal and multipotency and have great potential in the therapy of various disorders. However, the blood-brain barrier (BBB) limits the application of stem cells in the therapy of neurological disorders, especially in a noninvasive way. It has been shown that small molecular substances, macromolecular proteins, and even stem cells can bypass the BBB and reach the brain parenchyma following intranasal administration. Here, we review the possible brain-entry routes of transnasal treatment, the cell types, and diseases involved in intranasal stem cell therapy, and discuss its advantages and disadvantages in the treatment of central nervous system diseases, to provide a reference for the application of intranasal stem cell therapy.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Kai-Jie He
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jin-Bao Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Quan-Hong Ma
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. .,Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Brain and Nasal Cavity Anatomy of the Cynomolgus Monkey: Species Differences from the Viewpoint of Direct Delivery from the Nose to the Brain. Pharmaceutics 2020; 12:pharmaceutics12121227. [PMID: 33352847 PMCID: PMC7766477 DOI: 10.3390/pharmaceutics12121227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Based on structural data on the nasal cavity and brain of the cynomolgus monkey, species differences in the olfactory bulb and cribriform plate were discussed from the viewpoint of direct delivery from the nose to the brain. Structural 3D data on the cynomolgus monkey skull were obtained using X-ray computed tomography. The dimensions of the nasal cavity of the cynomolgus monkey were 5 mm width × 20 mm height × 60 mm depth. The nasal cavity was very narrow and the olfactory region was far from the nostrils, similar to rats and humans. The weight and size of the monkey brain were 70 g and 55 mm width × 40 mm height × 70 mm depth. The olfactory bulb of monkeys is plate-like, while that of humans and rats is bulbar, suggesting that the olfactory area connected with the brain of monkeys is narrow. Although the structure of the monkey nasal cavity is similar to that of humans, the size and shape of the olfactory bulb are different, which is likely to result in low estimation of direct delivery from the nose to the brain in monkeys.
Collapse
|
4
|
Cha GD, Kang T, Baik S, Kim D, Choi SH, Hyeon T, Kim DH. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Release 2020; 328:350-367. [PMID: 32896613 DOI: 10.1016/j.jconrel.2020.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a particularly aggressive and malignant type of brain tumor, notorious for its high recurrence rate and low survival rate. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. These obstacles originate from a variety of factors such as genetics, anatomy, and cytology, all of which collectively hinder the treatment of GBM. Recent advances in materials and device engineering have presented new perspectives with regard to unconventional drug administration methods for GBM treatment. Such novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In this review, we first recapitulate the first-line therapy and clinical challenges in the current treatment of GBM. Afterwards, we introduce the latest technological advances in drug delivery strategies to improve the efficiency for GBM treatment, mainly focusing on materials and devices. We describe such efforts by classifying them into two categories, systemic and local drug delivery. Finally, we discuss unmet challenges and prospects for the clinical translation of these drug delivery technologies.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Targeting Small Molecule Delivery to the Brain and Spinal Cord via Intranasal Administration of Rabies Virus Glycoprotein (RVG29)-Modified PLGA Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020093. [PMID: 31991664 PMCID: PMC7076461 DOI: 10.3390/pharmaceutics12020093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Alternative routes of administration are one approach that could be used to bypass the blood–brain barrier (BBB) for effective drug delivery to the central nervous system (CNS). Here, we focused on intranasal delivery of polymer nanoparticles. We hypothesized that surface modification of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with rabies virus glycoprotein (RVG29) would increase residence time and exposure of encapsulated payload to the CNS compared to non-targeted nanoparticles. Delivery kinetics and biodistribution were analyzed by administering nanoparticles loaded with the carbocyanine dye 1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindotricarbocyanine Iodide (DiR) to healthy mice. Intranasal administration yielded minimal exposure of nanoparticle payload to most peripheral organs and rapid, effective delivery to whole brain. Regional analysis of payload delivery within the CNS revealed higher delivery to tissues closest to the trigeminal nerve, including the olfactory bulb, striatum, midbrain, brainstem, and cervical spinal cord. RVG29 surface modifications presented modest targeting benefits to the striatum, midbrain, and brainstem 2 h after administration, although targeting was not observed 30 min or 6 h after administration. Payload delivery to the trigeminal nerve was 3.5× higher for targeted nanoparticles compared to control nanoparticles 2 h after nanoparticle administration. These data support a nose-to-brain mechanism of drug delivery that closely implicates the trigeminal nerve for payload delivery from nanoparticles via transport of intact nanoparticles and eventual diffusion of payload. Olfactory and CSF routes are also observed to play a role. These data advance the utility of targeted nanoparticles for nose-to-brain drug delivery of lipophilic payloads and provide mechanistic insight to engineer effective delivery vectors to treat disease in the CNS.
Collapse
|
6
|
Charalambous M, Volk HA, Tipold A, Erath J, Huenerfauth E, Gallucci A, Gandini G, Hasegawa D, Pancotto T, Rossmeisl JH, Platt S, De Risio L, Coates JR, Musteata M, Tirrito F, Cozzi F, Porcarelli L, Corlazzoli D, Cappello R, Vanhaesebrouck A, Broeckx BJG, Van Ham L, Bhatti SFM. Comparison of intranasal versus intravenous midazolam for management of status epilepticus in dogs: A multi-center randomized parallel group clinical study. J Vet Intern Med 2019; 33:2709-2717. [PMID: 31580527 PMCID: PMC6872604 DOI: 10.1111/jvim.15627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background The intranasal (IN) route for rapid drug administration in patients with brain disorders, including status epilepticus, has been investigated. Status epilepticus is an emergency, and the IN route offers a valuable alternative to other routes, especially when these fail. Objectives To compare IN versus IV midazolam (MDZ) at the same dosage (0.2 mg/kg) for controlling status epilepticus in dogs. Animals Client‐owned dogs (n = 44) with idiopathic epilepsy, structural epilepsy, or epilepsy of unknown origin manifesting as status epilepticus. Methods Randomized parallel group clinical trial. Patients were randomly allocated to the IN‐MDZ (n = 21) or IV‐MDZ (n = 23) group. Number of successfully treated cases (defined as seizure cessation within 5 minutes and lasting for ≥10 minutes), seizure cessation time, and adverse effects were recorded. Comparisons were performed using the Fisher's exact and Wilcoxon rank sum tests with statistical significance set at α < .05. Results IN‐MDZ and IV‐MDZ successfully stopped status epilepticus in 76% and 61% of cases, respectively (P = .34). The median seizure cessation time was 33 and 64 seconds for IN‐MDZ and IV‐MDZ, respectively (P = .63). When the time to place an IV catheter was taken into account, IN‐MDZ (100 seconds) was superior (P = .04) to IV‐MDZ (270 seconds). Sedation and ataxia were seen in 88% and 79% of the dogs treated with IN‐MDZ and IV‐MDZ, respectively. Conclusions and Clinical Importance Both routes are quick, safe, and effective for controlling status epilepticus. However, the IN route demonstrated superiority when the time needed to place an IV catheter was taken into account.
Collapse
Affiliation(s)
- Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Erath
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Enrice Huenerfauth
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Antonella Gallucci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Gualtiero Gandini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Daisuke Hasegawa
- Department of Clinical Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Theresa Pancotto
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Luisa De Risio
- Small Animal Referral Centre, Animal Health Trust, Newmarket, United Kingdom
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Mihai Musteata
- Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Iasi, Iasi, Romania
| | | | | | | | | | | | - An Vanhaesebrouck
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Bart J G Broeckx
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Penetration of the blood-brain barrier by peripheral neuropeptides: new approaches to enhancing transport and endogenous expression. Cell Tissue Res 2018; 375:287-293. [PMID: 30535799 DOI: 10.1007/s00441-018-2959-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier between the interstitial fluid of the brain and the blood; the barrier maintains the precisely controlled biochemical environment that is necessary for neural function. This constellation of endothelial cells, macrophages, pericytes, and astrocytes forms the neurovascular unit which is the structural and functional unit of the blood-brain barrier. Peptides enter and exit the CNS by transport systems expressed by the capillary endothelial cells of the neurovascular unit. Limiting the transport of peptides and proteins into the brain are efflux transporters like P-gp are transmembrane proteins present on the luminal side of the cerebral capillary endothelium and their function is to promote transit and excretion of drugs from the brain to the blood. Nanocarrier systems have been developed to exploit transport systems for enhanced BBB transport. Recent approaches for enhancing endogenous peptide expression are discussed.
Collapse
|
8
|
Umeda T, Tanaka A, Sakai A, Yamamoto A, Sakane T, Tomiyama T. Intranasal rifampicin for Alzheimer's disease prevention. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:304-313. [PMID: 30094330 PMCID: PMC6076366 DOI: 10.1016/j.trci.2018.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction Oral rifampicin has been shown to significantly reduce amyloid β (Aβ) and tau pathologies in mice. However, it shows occasional adverse effects such as liver injury in humans, making its use difficult for a long period. Methods To explore safer rifampicin treatment, APPOSK mice, a model of Alzheimer's disease, were treated with rifampicin for 1 month via oral, intranasal, and subcutaneous administration, and its therapeutic efficacy and safety were compared. Results Intranasal or subcutaneous administration of rifampicin improved memory more effectively than oral administration. The improvement of memory was accompanied with the reduction of neuropathologies, including Aβ oligomer accumulation, tau abnormal phosphorylation, and synapse loss. Serum levels of a liver enzyme significantly rose only by oral administration. Pharmacokinetic study revealed that the level of rifampicin in the brain was highest with intranasal administration. Discussion Considering its easiness and noninvasiveness, intranasal administration would be the best way for long-term dosing of rifampicin.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akiko Tanaka
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Kobe, Japan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Oviedo N, Manuel-Apolinar L, Orozco-Suárez S, Juárez-Cedillo T, Bekker Méndez VC, Tesoro-Cruz E. Intranasal Administration of a Naked Plasmid Reached Brain Cells and Expressed Green Fluorescent Protein, a Candidate for Future Gene Therapy Studies. Arch Med Res 2018; 48:616-622. [PMID: 29555303 DOI: 10.1016/j.arcmed.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/01/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Intranasal administration (Int adm) has been well-studied and offers the possibility to deliver larger molecular weight biologics, such as proteins, viral vectors, nanoparticles, and naked plasmids to the brain and treat a variety of diseases in the central nervous system. The predominant challenge in this field is finding efficient vectors that are capable of crossing the blood-brain barrier (BBB). OBJECTIVES Here, we investigated whether a naked plasmid (pIRES-hrGFP-1a), could cross the BBB, reach brain cells and express green fluorescent protein (GFP) after int-adm and propose it as candidate for future gene therapy studies. MATERIAL AND METHODS Thirty-six mice were divided into 2 groups. Eighteen animals were assigned to each cluster. Mice from experimental groups received 25 μg of pIRES-hrGFP-1a. The control groups received 25 μl of PBS. Plasmids were given intranasally by applying little drops in both nostrils. Twenty-four hours later, the mice were sacrificed, and their brains were removed. Later, PCR, RT-PCR, and immunohistochemical techniques were performed. RESULTS pIRES-hrGFP-1a crossed the BBB and was mainly detected in the olfactory nerves (20%) and hypothalamus (16%). In contrast, GFP/18S-expressing mRNAs were detected mostly in the olfactory bulbs (95%), frontal cortex (71%) and amygdala (60%). GFP was detected in the olfactory bulb, hippocampus, frontal cortex and brainstem at 24 h. CONCLUSIONS pIRES-hrGFP-1a could be considered a good candidate for gene therapy studies. In the future could be cloned some therapeutic genes in the pIRES-hrGFP-1a and could transcribe and translates deficient proteins that are required to restore a function.
Collapse
Affiliation(s)
- Norma Oviedo
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Leticia Manuel-Apolinar
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, UMAE, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Teresa Juárez-Cedillo
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México; Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Hospital General Regional No 1 Carlos Mcgregor Sánchez Navarro, Ciudad de México, México
| | - Vilma Carolina Bekker Méndez
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
10
|
Sanchez-Ramos J, Song S, Kong X, Foroutan P, Martinez G, Dominguez-Viqueria W, Mohapatra S, Mohapatra S, Haraszti RA, Khvorova A, Aronin N, Sava V. Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J Drug Deliv Sci Technol 2017; 43:453-460. [PMID: 29805475 DOI: 10.1016/j.jddst.2017.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The overall objective of the present research was to develop a nanocarrier system for non-invasive delivery to brain of molecules useful for gene therapy. Manganese-containing nanoparticles (mNPs) carrying anti-eGFP siRNA were tested in cell cultures of eGFP-expressing cell line of mouse fibroblasts (NIH3T3). The optimal mNPs were then tested in vivo in mice. Following intranasal instillation, mNPs were visualized by 7T MRI throughout brain at 24 and 48 hrs. mNPs were effective in significantly reducing GFP mRNA expression in Tg GFP+ mice in olfactory bulb, striatum, hippocampus and cortex. Intranasal instillation of mNPS loaded with dsDNA encoding RFP also resulted in expression of the RFP in multiple brain regions. In conclusion, mNPs carrying siRNA, or dsDNA were capable of delivering the payload from nose to brain. This approach for delivery of gene therapies to humans, if successful, will have a significant impact on disease-modifying therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shijie Song
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Xiaoyuan Kong
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | - Gary Martinez
- Mofftt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vasyl Sava
- Department of Neurology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
11
|
Huang L, Ma Q, Li Y, Li B, Zhang L. Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp Neurol 2017; 300:41-50. [PMID: 29111308 DOI: 10.1016/j.expneurol.2017.10.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022]
Abstract
Stroke is a leading cause of mortality and chronic neurologic disability. Yet, the successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of a novel treatment, microRNA-210 (miR-210) inhibition, in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-210-LNA (miR-210 inhibitor) or the negative control was administered via intracerebroventricular injection 24h prior or 4h after MCAO. Cerebral infarction volume and behavioral deficits were determined 48h after MCAO. The expression of inflammation-related genes and infiltration/activation of various immune cells in the brain were assessed by RT-qPCR, flow cytometry, and immunohistochemistry. Acute ischemic stroke significantly increased miR-210 levels in the brain, which was abolished by miR-210-LNA administered prior to MCAO. Pre- and post-MCAO treatments with miR-210-LNA significantly decreased cerebral infarction and ameliorated behavioral deficits induced by MCAO. Long-term behavioral recovery was also improved by miR-210-LNA post-treatment. At the same time, inhibition of miR-210 significantly reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokines (CCL2 and CCL3), but had no significant effect on anti-inflammatory factors (TGF-β and IL-10). In addition, MCAO-induced macrophage infiltration and microglial activation in the brain were inhibited by the miR-210-LNA treatment. In summary, inhibition of miR-210 suppresses pro-inflammatory response and reduces brain damage in the acute phase of ischemic stroke, providing new insight in molecular basis of a novel therapeutic strategy of miR-210 inhibition in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Lei Huang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, United States
| | - Qingyi Ma
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, United States
| | - Yong Li
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, United States
| | - Bo Li
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, United States
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, United States.
| |
Collapse
|
12
|
Chandran JS, Scarrott JM, Shaw PJ, Azzouz M. Gene Therapy in the Nervous System: Failures and Successes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:241-257. [PMID: 28840561 DOI: 10.1007/978-3-319-60733-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetic disorders, caused by deleterious changes in the DNA sequence away from the normal genomic sequence, affect millions of people worldwide. Gene therapy as a treatment option for patients is an attractive proposition due to its conceptual simplicity. In principle, gene therapy involves correcting the genetic disorder by either restoring a normal functioning copy of a gene or reducing the toxicity arising from a mutated gene. In this way specific genetic function can be restored without altering the expression of other genes and the proteins they encode. The reality however is much more complex, and as a result the vector systems used to deliver gene therapies have by necessity continued to evolve and improve over time with respect to safety profile, efficiency, and long-term expression. In this chapter we examine the current approaches to gene therapy, assess the different gene delivery systems utilized, and highlight the failures and successes of relevant clinical trials. We do not intend for this chapter to be a comprehensive and exhaustive assessment of all clinical trials that have been conducted in the CNS, but instead will focus on specific diseases that have seen successes and failures with different gene therapy vehicles to gauge how preclinical models have informed the design of clinical trials.
Collapse
Affiliation(s)
- Jayanth S Chandran
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Joseph M Scarrott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
13
|
Tan JKY, Sellers DL, Pham B, Pun SH, Horner PJ. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System. Front Mol Neurosci 2016; 9:108. [PMID: 27847462 PMCID: PMC5088201 DOI: 10.3389/fnmol.2016.00108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application.
Collapse
Affiliation(s)
- James-Kevin Y Tan
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Binhan Pham
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington Seattle, WA, USA
| | - Philip J Horner
- Center for Neuroregenerative Medicine, Houston Methodist Research Institute Houston, TX, USA
| |
Collapse
|
14
|
Warnken ZN, Smyth HD, Watts AB, Weitman S, Kuhn JG, Williams RO. Formulation and device design to increase nose to brain drug delivery. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Kumar NN, Gautam M, Lochhead JJ, Wolak DJ, Ithapu V, Singh V, Thorne RG. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery. Sci Rep 2016; 6:31732. [PMID: 27558973 PMCID: PMC4997340 DOI: 10.1038/srep31732] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022] Open
Abstract
Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain.
Collapse
Affiliation(s)
- Niyanta N Kumar
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Room #5113, Rennebohm hall, 777 Highland avenue, Madison, WI - 53705, USA
| | - Mohan Gautam
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Room #5113, Rennebohm hall, 777 Highland avenue, Madison, WI - 53705, USA
| | - Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Room #5113, Rennebohm hall, 777 Highland avenue, Madison, WI - 53705, USA
| | - Daniel J Wolak
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Room #5113, Rennebohm hall, 777 Highland avenue, Madison, WI - 53705, USA.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison Biomedical Engineering, Engineering Centers Building, 1550 Engineering Drive, Room #2120, Madison WI - 53706, USA
| | - Vamsi Ithapu
- Department of Computer Sciences, University of Wisconsin-Madison, 5780 Medical Sciences Center, 1300 University Avenue, Madison, WI - 53706, USA
| | - Vikas Singh
- Department of Computer Sciences, University of Wisconsin-Madison, 5780 Medical Sciences Center, 1300 University Avenue, Madison, WI - 53706, USA
| | - Robert G Thorne
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Room #5113, Rennebohm hall, 777 Highland avenue, Madison, WI - 53705, USA.,Clinical Neuroengineering Training Program, University of Wisconsin-Madison Biomedical Engineering, Engineering Centers Building, 1550 Engineering Drive, Room #2120, Madison WI - 53706, USA.,Neuroscience Training Program &Center for Neuroscience, Rooms 9531 &9533, Wisconsin Institutes for Medical Research II, 1111 Highland Ave. Madison, WI - 53705, USA.,Cellular and Molecular Pathology Graduate Training Program, University of Wisconsin-Madison, UW Department of Pathology and Laboratory Medicine 1685 Highland Avenue Madison, WI - 53705, USA
| |
Collapse
|
16
|
Aly AEE, Waszczak BL. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2015; 12:1923-41. [PMID: 26289676 DOI: 10.1517/17425247.2015.1069815] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Developing a disease-modifying gene therapy for Parkinson's disease (PD) has been a high priority for over a decade. However, due to the inability of large biomolecules to cross the blood-brain barrier (BBB), the only means of delivery to the brain has been intracerebral infusion. Intranasal administration offers a non-surgical means of bypassing the BBB to deliver neurotrophic factors, and the genes encoding them, directly to the brain. AREAS COVERED This review summarizes: i) evidence demonstrating intranasal delivery to the brain of a number of biomolecules having therapeutic potential for various CNS disorders; and ii) evidence demonstrating neuroprotective efficacy of a subset of biomolecules specifically for PD. The intersection of these two spheres represents the area of opportunity for development of new intranasal gene therapies for PD. To that end, our laboratory showed that intranasal administration of glial cell line-derived neurotrophic factor (GDNF), or plasmid DNA nanoparticles encoding GDNF, provides neuroprotection in a rat model of PD, and that the cells transfected by the nanoparticle vector are likely to be pericytes. EXPERT OPINION A number of genes encoding neurotrophic factors have therapeutic potential for PD, but few have been tested by the intranasal route and shown to be neuroprotective in a model of PD. Intranasal delivery provides a largely unexplored, promising approach for development of a non-invasive gene therapy for PD.
Collapse
Affiliation(s)
- Amirah E-E Aly
- a 1 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA
| | - Barbara L Waszczak
- b 2 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA +1 617 373 3312 ; +1 617 373 8886 ;
| |
Collapse
|
17
|
Jiang Y, Li Y, Liu X. Intranasal delivery: circumventing the iron curtain to treat neurological disorders. Expert Opin Drug Deliv 2015. [PMID: 26206202 DOI: 10.1517/17425247.2015.1065812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is like an iron curtain that prevents exogenous substances, including most drugs, from entering the CNS. Intranasal delivery has been demonstrated to circumvent the BBB due to the special anatomy of the olfactory and trigeminal neural pathways that connect the nasal mucosa with the brain and the perivascular pathway within the CNS. In the last two decades, the concepts, mechanisms and pathways of intranasal delivery to the CNS have led to great success both in preclinical and clinical studies. More researchers have translated results from bench to bedside, and a number of publications have reported the clinical application of intranasal delivery. AREAS COVERED This review summarizes results from recent clinical trials utilizing intranasal delivery of therapeutics to explore its pharmacokinetics and application to treating neurological disorders. Moreover, existing problems with the methods and possible solutions have also been discussed. The promising results from clinical trials have demonstrated that intranasal delivery provides an extraordinary approach for circumventing the BBB. Many drugs, including high-molecular-weight molecules, could potentially improve the treatment of neurological disorders via intranasal administration. EXPERT OPINION Intranasal delivery is a novel method with great potential for delivering and targeting therapeutics to the CNS to treat neurological disorders.
Collapse
Affiliation(s)
- Yongjun Jiang
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Yun Li
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Xinfeng Liu
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| |
Collapse
|
18
|
Ruigrok MJR, de Lange ECM. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans. AAPS JOURNAL 2015; 17:493-505. [PMID: 25693488 PMCID: PMC4406961 DOI: 10.1208/s12248-015-9724-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 01/03/2023]
Abstract
To investigate the potential added value of intranasal drug administration, preclinical studies to date have typically used the area under the curve (AUC) in brain tissue or cerebrospinal fluid (CSF) compared to plasma following intranasal and intravenous administration to calculate measures of extent like drug targeting efficiencies (%DTE) and nose-to-brain transport percentages (%DTP). However, CSF does not necessarily provide direct information on the target site concentrations, while total brain concentrations are not specific to that end either as non-specific binding is not explicitly considered. Moreover, to predict nose-to-brain transport in humans, the use of descriptive analysis of preclinical data does not suffice. Therefore, nose-to-brain research should be performed translationally and focus on preclinical studies to obtain specific information on absorption from the nose, and distinguish between the different transport routes to the brain (absorption directly from the nose to the brain, absorption from the nose into the systemic circulation, and distribution between the systemic circulation and the brain), in terms of extent as well as rate. This can be accomplished by the use of unbound concentrations obtained from plasma and brain, with subsequent advanced mathematical modeling. To that end, brain extracellular fluid (ECF) is a preferred sampling site as it represents most closely the site of action for many targets. Furthermore, differences in nose characteristics between preclinical species and humans should be considered. Finally, pharmacodynamic measurements that can be obtained in both animals and humans should be included to further improve the prediction of the pharmacokinetic-pharmacodynamic relationship of intranasally administered CNS drugs in humans.
Collapse
Affiliation(s)
- Mitchel J R Ruigrok
- Division of Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | |
Collapse
|
19
|
Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem Rev 2014; 115:327-94. [DOI: 10.1021/cr300213b] [Citation(s) in RCA: 916] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eun-Kyung Lim
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
- BioNanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Taekhoon Kim
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
- Electronic
Materials Laboratory, Samsung Advanced Institute of Technology, Mt. 14-1,
Nongseo-Ri, Giheung-Eup, Yongin-Si, Gyeonggi-Do 449-712, Korea
| | - Soonmyung Paik
- Severance
Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-749, Korea
- Division
of Pathology, NSABP Foundation, Pittsburgh, Pennsylvania 15212, United States
| | - Seungjoo Haam
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Yong-Min Huh
- Department
of Radiology, Yonsei University, Seoul 120-752, Korea
| | - Kwangyeol Lee
- Department
of Chemistry, Korea University, Seoul 136-701, Korea
| |
Collapse
|
20
|
Kashiwayanagi M. [Characteristics of olfactory epithelium and manipulations of neural functions in the brain by the intranasal administration]. YAKUGAKU ZASSHI 2014; 132:1247-53. [PMID: 23123715 DOI: 10.1248/yakushi.12-00229-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Olfactory cells receive numerous odorants including toxic substances. To avoid complete loss of the olfactory function by toxic odorants, continuous neurogenesis of olfactory cells occurs even at adulthood. Newly generated olfactory neurons extend their axons to the olfactory bulb. Various molecules including polypeptides, proteins, polynucleotides, virus, and cells administrated intranasally have been reported to move from the olfactory epithelium to the brain tissue via the olfactory epithelium-olfactory bulb pathway. I discuss the pathway of substances intranasally administrated to the brain from the view point of characteristics of the olfactory epithelium.
Collapse
Affiliation(s)
- Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.
| |
Collapse
|
21
|
Harmon BT, Aly AE, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL. Intranasal administration of plasmid DNA nanoparticles yields successful transfection and expression of a reporter protein in rat brain. Gene Ther 2014; 21:514-21. [PMID: 24670994 DOI: 10.1038/gt.2014.28] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 12/19/2022]
Abstract
Viral vectors are a commonly used method for gene therapy because of their highly efficient transduction of cells. However, many vectors have a small genetic capacity, and their potential for immunogenicity can limit their usefulness. Moreover, for disorders of the central nervous system (CNS), the need for invasive surgical delivery of viruses to the brain also detracts from their clinical applicability. Here, we show that intranasal delivery of unimolecularly compacted DNA nanoparticles (DNA NPs), which consist of single molecules of plasmid DNA encoding enhanced green fluorescent protein (eGFP) compacted with 10 kDa polyethylene glycol (PEG)-substituted lysine 30-mers (CK30PEG10k), successfully transfect cells in the rat brain. Direct eGFP fluorescence microscopy, eGFP-immunohistochemistry (IHC) and eGFP-ELISA all demonstrated eGFP protein expression 2 days after intranasal delivery. eGFP-positive cells were found throughout the rostral-caudal axis of the brain, most often adjacent to capillary endothelial cells. This localization provides evidence for distribution of the nasally administered DNA NPs via perivascular flow. These results are the first report that intranasal delivery of DNA NPs can bypass the blood-brain barrier and transfect and express the encoded protein in the rat brain, affording a non-invasive approach for gene therapy of CNS disorders.
Collapse
Affiliation(s)
- B T Harmon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - A E Aly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - L Padegimas
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | | | - M J Cooper
- Copernicus Therapeutics, Inc., Cleveland, OH, USA
| | - B L Waszczak
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
22
|
|
23
|
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2013; 115:92-115. [PMID: 24333397 DOI: 10.1016/j.pneurobio.2013.11.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology, Tianjin General Hospital, Tianjin University School of Medicine, Tianjin, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
24
|
Li Y, Liu Y, Wang Z, Jiang Y. Clinical trials of amyloid-based immunotherapy for Alzheimer's disease: end of beginning or beginning of end? Expert Opin Biol Ther 2013; 13:1515-22. [PMID: 24053611 DOI: 10.1517/14712598.2013.838555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Amyloid deposit and hyperphosphorylated Tau protein contribute to pathological changes seen in Alzheimer's disease (AD) and imply that removal may reverse the cognitive decline. Immunotherapy is a potential way of reducing the load of amyloid or Tau in the brain. AREAS COVERED This review summarizes recent clinical trials that have investigated immunotherapy to treat AD and its potential mechanisms. In addition, the potential opportunities as well as challenges of immunotherapy for AD in clinical trials are also discussed. EXPERT OPINION Amyloid-based immunotherapy for AD is a novel method with potential; however, some clinical trials were terminated because of the adverse effects. Further studies need to determine the following questions: (i) which is better, passive, or active immunotherapy; (ii) which could be used for the vaccine, amyloid or Tau; (iii) which is better, short- or long-antigen vaccine; and (iv) the route of delivery for antigen or antibody.
Collapse
Affiliation(s)
- Yun Li
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province , China +86 25 8480 1861 ; +86 25 8480 5169 ;
| | | | | | | |
Collapse
|
25
|
Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37:1445-65. [PMID: 23648680 PMCID: PMC7112651 DOI: 10.1016/j.neubiorev.2013.04.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The mechanisms behind the effects of IN-applied substances need more attention. The mechanisms involved in the brain-distribution of IN-OT are completely unexplored. The possibly cascading effects of IN-OT on the intrinsic OT-system require serious investigation. IN-OT induces clear and specific changes in neural activation. IN-OT is a promising approach to treat certain clinical symptoms.
The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. ‘Direct-access-pathways’ from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral ‘prosocial’ effects: from social relations and ‘trust’ to treatment of ‘autism’. Only very recently in a microdialysis study in rats and mice, the ‘direct-nose-brain-pathways’ of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the ‘intrinsic’ OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.
Collapse
Affiliation(s)
- Jan G Veening
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands; Department of Anatomy (109), Radboud University of Medical Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
26
|
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64:614-28. [PMID: 22119441 DOI: 10.1016/j.addr.2011.11.002] [Citation(s) in RCA: 794] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022]
Abstract
Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | |
Collapse
|
27
|
Perez AP, Mundiña-Weilenmann C, Romero EL, Morilla MJ. Increased brain radioactivity by intranasal P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. Int J Nanomedicine 2012; 7:1373-85. [PMID: 22457595 PMCID: PMC3310412 DOI: 10.2147/ijn.s28261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Molecules taken up by olfactory and trigeminal nerve neurons directly access the brain by the nose-to-brain pathway. In situ-forming mucoadhesive gels would increase the residence time of intranasal material, favoring the nose-to-brain delivery. In this first approach, brain radioactivity after intranasal administration of (32)P-small interference RNA (siRNA) complexed with poly(amidoamine) G7 dendrimers (siRNA dendriplexes) within in situ-forming mucoadhesive gels, was determined. MATERIALS (32)P-siRNA dendriplexes were incorporated into in situ-forming mucoadhesive gels prepared by blending thermosensitive poloxamer (23% w/w) with mucoadhesive chitosan (1% w/w, PxChi) or carbopol (0.25% w/w, PxBCP). Rheological properties, radiolabel release profile, and local toxicity in rat nasal mucosa were determined. The best-suited formulation was intranasally administered to rats, and blood absorption and brain distribution of radioactivity were measured. RESULTS The gelation temperature of both formulations was 23°C. The PxChi liquid showed non-Newtonian pseudoplastic behavior of high consistency and difficult manipulation, and the gel retained 100% of radiolabel after 150 minutes. The PxCBP liquid showed a Newtonian behavior of low viscosity and easy manipulation, while in the gel phase showed apparent viscosity similar to that of the mucus but higher than that of aqueous solution. The gel released 35% of radiolabel and the released material showed silencing activity in vitro. Three intranasal doses of dendriplexes in PxCBP gel did not damage the rat nasal mucosa. A combination of (32)P-siRNA complexation with dendrimers, incorporation of the dendriplexes into PxCBP gel, and administration of two intranasal doses was necessary to achieve higher brain radioactivity than that achieved by intravenous dendriplexes or intranasal naked siRNA. CONCLUSION The increased radioactivity within the olfactory bulb suggested that the combination above mentioned favored the mediation of a direct brain delivery.
Collapse
Affiliation(s)
- Ana Paula Perez
- Programa de Nanomedicinas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, Bernal, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
28
|
Liu X. Clinical trials of intranasal delivery for treating neurological disorders--a critical review. Expert Opin Drug Deliv 2012; 8:1681-90. [PMID: 22097907 DOI: 10.1517/17425247.2011.633508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The intranasal delivery of therapeutics to the brain has achieved great success in preclinical studies. These findings are important because there are many neurological disorders without feasible treatments, due to a lack of effective drug delivery methods to the brain. Translating such intranasal delivery strategies from bench to bedside is an important step for curing these neurological diseases. AREAS COVERED This review summarizes recent clinical trials that have investigated the intranasal delivery of drugs to the brain to treat neurological disorders and their potential mechanisms of action. In addition, the potential opportunities as well as challenges of intranasal delivery in clinical trials are discussed. EXPERT OPINION The intranasal delivery of drugs to the brain is a novel method with great potential, and it may provide an extraordinary approach to overcome the existing barriers of drug delivery for treating some neurological disorders. Intranasal delivery of central nervous system therapeutics has shown promise in several clinical trials, which demonstrates both the need and importance of further research.
Collapse
Affiliation(s)
- Xinfeng Liu
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
29
|
Jiang Y, Wei N, Zhu J, Zhai D, Wu L, Chen M, Xu G, Liu X. A new approach with less damage: intranasal delivery of tetracycline-inducible replication-defective herpes simplex virus type-1 vector to brain. Neuroscience 2011; 201:96-104. [PMID: 22101000 DOI: 10.1016/j.neuroscience.2011.10.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/14/2011] [Accepted: 10/22/2011] [Indexed: 11/25/2022]
Abstract
Gene therapy holds great potential for treating neurological disorders. However, delivering gene vectors to the brain has been either invasive or inefficacious in most studies to date. The aim of this study was to develop a safe and efficacious strategy for delivering gene vectors to the brain. A tetracycline-inducible replication-defective herpes simplex virus type-1 vector, QR9TO-LacZ, was administered to rats intranasally. QR9TO-LacZ could infect primary cortical neurons and express the reporter gene without detectable replication. QR9TO-LacZ was observed in the olfactory bulb, hippocampus, striatum, cortex, medulla, cerebellum, ventricles, and nasal septum after intranasal administration. Expression of the reporter gene could be controlled effectively by tetracycline. In vitro, introduction of QR9TO-LacZ did not change the structure of transfected neurons. In vivo, QR9TO-LacZ did not increase apoptosis in neurons and did not alter levels of interleukin 6 and tumor necrosis factor α in the brain after intranasal delivery. Our data suggest that intranasally applied QR9TO-LacZ has a wide distribution and expresses the reporter gene in the brain under the control of tetracycline with less cytotoxicity than intravenous or stereotactic delivery methods.
Collapse
Affiliation(s)
- Y Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Malerba F, Paoletti F, Capsoni S, Cattaneo A. Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv 2011; 8:1277-96. [PMID: 21619468 DOI: 10.1517/17425247.2011.588204] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Among the range of therapeutic protein candidates for new generation treatments of neurological diseases, neurotrophic factors and recombinant antibodies hold the greatest potential. However, major difficulties in their safe and effective delivery to the brain severely limit these applications. The BBB restricts the exchange of proteins between the plasma and the CNS. Moreover, therapeutic proteins often need to be selectively targeted to the brain, while minimizing their biodistribution to systemic compartments, to avoid peripheral side effects. The intranasal delivery of proteins has recently emerged as a non-invasive, safe and effective method to target proteins to the CNS, bypassing the BBB and minimizing systemic exposure. AREAS COVERED We critically summarize the main experimental and mechanistic facts about the simple and non-invasive nasal delivery approach, which provides a promising strategy and a potential solution for the severe unmet medical need of safely and effectively delivering protein therapeutics to the brain. EXPERT OPINION The intranasal route for the effective delivery of recombinant therapeutic proteins represents an emerging and promising non-invasive strategy. Future studies will achieve a detailed understanding of pharmacokinetic and mechanisms of delivery to optimize formulations and fully exploit the nose-to-brain interface in order to deliver proteins for the treatment of neurological diseases. This expanding research area will most likely produce exciting results in the near future towards new therapeutical approaches for the CNS.
Collapse
|
31
|
Abstract
INTRODUCTION Stem cell-based therapy has proved to be a promising treatment option for neurological disorders. However, there are difficulties in successfully administrating these stem cells. For example, the brain-blood barrier impedes the entrance of stem cells into the CNS after systemic administration. Direct transplantation or injection may result in brain injury, and these strategies are clinically less feasible. Intranasal administration is a non-invasive and effective alternative for the delivery of drugs, vector-encoded viruses or even phages to the CNS. Recent studies have in fact demonstrated that stem cells may enter the CNS after intranasal administration. These results suggest that intranasal delivery may provide an alternative strategy for stem cell-based therapy. AREAS COVERED This review summarizes current studies that have applied the intranasal delivery of stem cells into the brain. In addition, the distribution and fate of stem cells in the brain and the potential opportunities as well as challenges of intranasal stem cell delivery are also discussed. EXPERT OPINION Intranasal delivery of stem cells is a new method with great potential for the transplantation of stem cells into the brain, and it may provide an extraordinary approach to overcoming the existing barriers of stem cell delivery for the treatment of many neurological disorders. This potential benefit emphasizes the importance of future research into intranasal delivery of stem cells.
Collapse
Affiliation(s)
- Yongjun Jiang
- Nanjing University School of Medicine, Jinling Hospital, Department of Neurology, Nanjing, Jiangsu Province, China
| | | | | | | |
Collapse
|
32
|
Shingaki T, Hidalgo IJ, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, Yamashita S. Nasal delivery of P-gp substrates to the brain through the nose-brain pathway. Drug Metab Pharmacokinet 2011; 26:248-55. [PMID: 21317541 DOI: 10.2133/dmpk.dmpk-10-rg-108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this study was to evaluate in rats the potential utility of the nasal route to enhance central nervous system (CNS) delivery of drugs recognized by P-glycoprotein (P-gp). Well-known P-gp substrates verapamil and talinolol were perfused nasally or infused intravenously, and when plasma concentrations following intravenous infusion and nasal perfusion showed similar profiles. The concentration of verapamil in the brain after nasal perfusion was twice that after intravenous infusion. Although talinolol in the brain and the cerebrospinal fluid after i.v. infusion were below the detection limit, it was detected after nasal perfusion. When rats were treated with cyclosporin A, brain concentrations of verapamil after both administration modes were increased significantly, while those of talinolol were not significantly changed. Since the permeability of talinolol is low, talinolol in the brain which was transported directly from the nasal cavity has little chance of transport by P-gp localized in the apical membrane of cerebral microvessel endothelial cells. The potential for drug delivery utilizing the nose-CNS route was confirmed for P-gp substrates. The advantage of nasal delivery over i.v. delivery of talinolol to the brain was more significant than that of verapamil, suggesting that nasal administration is more useful strategy for the brain delivery of low-permeability P-gp substrates than the use of P-gp inhibitors.
Collapse
|
33
|
Shingaki T, Inoue D, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, Yamashita S. Transnasal delivery of methotrexate to brain tumors in rats: a new strategy for brain tumor chemotherapy. Mol Pharm 2010; 7:1561-8. [PMID: 20695463 DOI: 10.1021/mp900275s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Brain tumors are one of the most lethal and difficult to treat. Their treatment is limited by the inadequate delivery of antitumor drugs to the tumor. In order to overcome this limitation, the possibility of the nose-brain direct transport pathway was evaluated using methotrexate (MTX) as a model antitumor agent. The direct transport of nasal MTX to the cerebrospinal fluid (CSF) was examined by comparing the concentration of MTX in the plasma and the CSF after intraperitoneal (IP) and intranasal (IN) administrations. The brain uptake of MTX was evaluated based on a multiple-time/graphical analysis by measuring the concentration of MTX in the plasma and in the brain. The feasibility of nasal chemotherapy was examined by three nasal dosings of MTX to tumor-bearing rats in vivo at two day intervals with peritoneal application as a positive control. MTX showed a significant inhibitory effect on the in vitro growth of 9L glioma cells with 50% growth inhibitory concentration at 7.99 ng/mL. The pharmacokinetic studies clarified the significant direct transport of MTX from nasal cavity both to the CSF and to the brain. Nasal chemotherapy with MTX significantly reduced the tumor weight as compared to nontreatment control and IP group. The strategy to utilize the nose-brain direct transport can be applicable to a new therapeutic system not only for brain tumors but also for other central nervous system disorders such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomotaka Shingaki
- ADME Research Inc., 1-12-8 Senba-higashi, Minoh, Osaka 562-0035, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 2010; 99:1654-73. [PMID: 19877171 DOI: 10.1002/jps.21924] [Citation(s) in RCA: 843] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) limits the distribution of systemically administered therapeutics to the central nervous system (CNS), posing a significant challenge to drug development efforts to treat neurological and psychiatric diseases and disorders. Intranasal delivery is a noninvasive and convenient method that rapidly targets therapeutics to the CNS, bypassing the BBB and minimizing systemic exposure. This review focuses on the current understanding of the mechanisms underlying intranasal delivery to the CNS, with a discussion of pathways from the nasal cavity to the CNS involving the olfactory and trigeminal nerves, the vasculature, the cerebrospinal fluid, and the lymphatic system. In addition to the properties of the therapeutic, deposition of the drug formulation within the nasal passages and composition of the formulation can influence the pathway a therapeutic follows into the CNS after intranasal administration. Experimental factors, such as head position, volume, and method of administration, and formulation parameters, such as pH, osmolarity, or inclusion of permeation enhancers or mucoadhesives, can influence formulation deposition within the nasal passages and pathways followed into the CNS. Significant research will be required to develop and improve current intranasal treatments and careful consideration should be given to the factors discussed in this review.
Collapse
Affiliation(s)
- Shyeilla V Dhuria
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
35
|
Abstract
BACKGROUND Intranasal insulin has proven useful to control hyperglycemia in diabetics but its mechanism of action has not been well defined. We attempted to understand several aspects of human insulin metabolism by measurement of and interaction of insulin and its associated moieties in nasal mucus, saliva and blood plasma under various physiological and pathological conditions. METHODS Insulin, insulin receptors, insulin-like growth factor 1 (IGF1) and insulin-like growth receptor 3 (IGFR3) were measured in nasal mucus, saliva and blood plasma in normal subjects, in thin and obese subjects and in diabetics under fasting and fed conditions. RESULTS There are complex relationships among each of these moieties in each biological fluid. Insulin and its associated moieties are present in both nasal mucus and saliva. These moieties in nasal mucus and saliva report on physiological and pathological changes in glucose metabolism as do these moieties in plasma. Indeed, insulin and its associated moieties in nasal mucus may offer specific data on how insulin enters the brain and thereby play essential roles in control of insulin metabolism. INTERPRETATION These data support the concept that insulin is synthesized not only in parotid glands but also in nasal serous glands. They also support the concept that insulin enters the brain following intranasal administration either 1) by direct entry through the cribriform plate, along the olfactory nerves and into brain parenchyma, 2) by entry through specific receptors in blood-brain barrier and thereby into the brain or 3) some combination of 1) and 2). Conversely, data also show that insulin introduced directly into the brain is secreted out of brain into the peripheral circulation. Data in this study demonstrate for the first time that insulin and its associated moieties are present not only in saliva but also in nasal mucus. How these complex relationships among nasal mucus, saliva and plasma occur are unclear but results demonstrate these relationships play separate yet interrelated roles in physiology and pathology of human insulin metabolism.
Collapse
Affiliation(s)
- R I Henkin
- Center for Molecular Nutrition and Sensory Disorders, The Taste and Smell Clinic, Washington, DC, USA.
| |
Collapse
|
36
|
Wang CX, Huang LS, Hou LB, Jiang L, Yan ZT, Wang YL, Chen ZL. Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res 2009; 1261:91-9. [DOI: 10.1016/j.brainres.2009.01.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 01/21/2023]
|
37
|
Wu H, Hu K, Jiang X. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv 2009; 5:1159-68. [PMID: 18817519 DOI: 10.1517/17425247.5.10.1159] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The unique relationship between nasal cavity and cranial cavity tissues in anatomy and physiology makes intranasal delivery to the brain feasible. An intranasal delivery provides some drugs with short channels to bypass the blood-brain barrier (BBB), especially for those with fairly low brain concentrations after a routine delivery, thus greatly enhancing the therapeutic effect on brain diseases. In the past two decades, a good number of encouraging outcomes have been reported in the treatment of diseases of the brain or central nervous system (CNS) through nasal administration. In spite of the significant merit of bypassing the BBB, direct nose-to-brain delivery still bears the problems of low efficiency and volume for capacity due to the limited volume of the nasal cavity, the small area ratio of olfactory mucosa to nasal mucosa and the limitations of low dose and short retention time of drug absorption. It is crucial that selective distribution and retention time of drugs or preparations on olfactory mucosa should be enhanced so as to increase the direct delivery efficiency. In this article, we first briefly review the nose-to-brain transport pathways, before detailing the impacts on them, followed by a comprehensive summary of effective methods, including formulation modification, agglutinant-mediated transport and a brain-homing, peptide-mediated delivery based on phage display screening technique, with a view to providing a theoretic reference for elevating the therapeutic effects on brain diseases.
Collapse
Affiliation(s)
- Hongbing Wu
- Fudan University (Fenglin Campus), Department of Pharmaceutics, School of Pharmacy, P.O. Box 130, 138 Yi Xue Yuan Rd, Shanghai 200032, People's Republic of China
| | | | | |
Collapse
|
38
|
Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 2008; 9 Suppl 3:S5. [PMID: 19091002 PMCID: PMC2604883 DOI: 10.1186/1471-2202-9-s3-s5] [Citation(s) in RCA: 469] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Intranasal delivery provides a practical, non-invasive method of bypassing the blood-brain barrier (BBB) to deliver therapeutic agents to the brain and spinal cord. This technology allows drugs that do not cross the BBB to be delivered to the central nervous system within minutes. It also directly delivers drugs that do cross the BBB to the brain, eliminating the need for systemic administration and its potential side effects. This is possible because of the unique connections that the olfactory and trigeminal nerves provide between the brain and external environment. Intranasal delivery does not necessarily require any modification to therapeutic agents. A wide variety of therapeutics, including both small molecules and macromolecules, can be targeted to the olfactory system and connected memory areas affected by Alzheimer's disease. Using the intranasal delivery system, researchers have reversed neurodegeneration and rescued memory in a transgenic mouse model of Alzheimer's disease. Intranasal insulin-like growth factor-I, deferoxamine, and erythropoietin have been shown to protect the brain against stroke in animal models. Intranasal delivery has been used to target the neuroprotective peptide NAP to the brain to treat neurodegeneration. Intranasal fibroblast growth factor-2 and epidermal growth factor have been shown to stimulate neurogenesis in adult animals. Intranasal insulin improves memory, attention, and functioning in patients with Alzheimer's disease or mild cognitive impairment, and even improves memory and mood in normal adult humans. This new method of delivery can revolutionize the treatment of Alzheimer's disease, stroke, and other brain disorders.
Collapse
|