1
|
Rolsma JL, Darch W, Higgins NC, Morgan JT. The tardigrade-derived mitochondrial abundant heat soluble protein improves adipose-derived stem cell survival against representative stressors. Sci Rep 2024; 14:11834. [PMID: 38783150 PMCID: PMC11116449 DOI: 10.1038/s41598-024-62693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Human adipose-derived stem cell (ASC) grafts have emerged as a powerful tool in regenerative medicine. However, ASC therapeutic potential is hindered by stressors throughout their use. Here we demonstrate the transgenic expression of the tardigrade-derived mitochondrial abundant heat soluble (MAHS) protein for improved ASC resistance to metabolic, mitochondrial, and injection shear stress. In vitro, MAHS-expressing ASCs demonstrate up to 61% increased cell survival following 72 h of incubation in phosphate buffered saline containing 20% media. Following up to 3.5% DMSO exposure for up to 72 h, a 14-49% increase in MAHS-expressing ASC survival was observed. Further, MAHS expression in ASCs is associated with up to 39% improved cell viability following injection through clinically relevant 27-, 32-, and 34-gauge needles. Our results reveal that MAHS expression in ASCs supports survival in response to a variety of common stressors associated with regenerative therapies, thereby motivating further investigation into MAHS as an agent for stem cell stress resistance. However, differentiation capacity in MAHS-expressing ASCs appears to be skewed in favor of osteogenesis over adipogenesis. Specifically, activity of the early bone formation marker alkaline phosphatase is increased by 74% in MAHS-expressing ASCs following 14 days in osteogenic media. Conversely, positive area of the neutral lipid droplet marker BODIPY is decreased by up to 10% in MAHS-transgenic ASCs following 14 days in adipogenic media. Interestingly, media supplementation with up to 40 mM glucose is sufficient to restore adipogenic differentiation within 14 days, prompting further analysis of mechanisms underlying interference between MAHS and differentiation processes.
Collapse
Affiliation(s)
- Jordan L Rolsma
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - William Darch
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Nicholas C Higgins
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA
| | - Joshua T Morgan
- Department of Bioengineering, University of California, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Southerland KW, Xu Y, Peters DT, Lin X, Wei X, Xiang Y, Fei K, Olivere LA, Morowitz JM, Otto J, Dai Q, Kontos CD, Diao Y. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells. Genome Med 2023; 15:95. [PMID: 37950327 PMCID: PMC10636829 DOI: 10.1186/s13073-023-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI), a severe manifestation of peripheral arterial disease (PAD), is associated with a 1-year limb amputation rate of approximately 15-20% and substantial mortality. A key feature of CLTI is the compromised regenerative ability of skeletal muscle; however, the mechanisms responsible for this impairment are not yet fully understood. In this study, we aim to delineate pathological changes at both the cellular and transcriptomic levels, as well as in cell-cell signaling pathways, associated with compromised muscle regeneration in limb ischemia in both human tissue samples and murine models of CLTI. METHODS We performed single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients and from a murine model of CLTI. In both datasets, we analyzed gene expression changes in macrophage and muscle satellite cell (MuSC) populations as well as differential cell-cell signaling interactions and differentiation trajectories. RESULTS Single-cell transcriptomic profiling and immunofluorescence analysis of CLTI patient skeletal muscle demonstrated that ischemic-damaged tissue displays a pro-inflammatory macrophage signature. Comparable results were observed in a murine CLTI model. Moreover, integrated analyses of both human and murine datasets revealed premature differentiation of MuSCs to be a key feature of failed muscle regeneration in the ischemic limb. Furthermore, in silico inferences of intercellular communication and in vitro assays highlight the importance of macrophage-MuSC signaling in ischemia induced muscle injuries. CONCLUSIONS Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and a murine CLTI model, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.
Collapse
Affiliation(s)
- Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Derek T Peters
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Xiaolin Wei
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA
| | - Kaileen Fei
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke University School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Lindsey A Olivere
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15217, USA
| | - Jeremy M Morowitz
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Development and Stem Cell Biology Program, Duke University, Durham, NC, 27710, USA
| | - James Otto
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Qunsheng Dai
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher D Kontos
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27708, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Southerland KW, Xu Y, Peters DT, Wei X, Lin X, Xiang Y, Fei K, Olivere LA, Morowitz JM, Otto J, Dai Q, Kontos CD, Diao Y. Pro-inflammatory macrophages impair skeletal muscle regeneration in ischemic-damaged limbs by inducing precocious differentiation of satellite cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535211. [PMID: 37066299 PMCID: PMC10103943 DOI: 10.1101/2023.04.01.535211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chronic limb-threatening ischemia (CLTI), representing the end-stage of peripheral arterial disease (PAD), is associated with a one-year limb amputation rate of ∼15-20% and significant mortality. A key characteristic of CLTI is the failure of the innate regenerative capacity of skeletal muscle, though the underlying mechanisms remain unclear. Here, single-cell transcriptome analysis of ischemic and non-ischemic muscle from the same CLTI patients demonstrated that ischemic-damaged tissue is enriched with pro-inflammatory macrophages. Comparable results were also observed in a murine CLTI model. Importantly, integrated analyses of both human and murine data revealed premature differentiation of muscle satellite cells (MuSCs) in damaged tissue and indications of defects in intercellular signaling communication between MuSCs and their inflammatory niche. Collectively, our research provides the first single-cell transcriptome atlases of skeletal muscle from CLTI patients and murine models, emphasizing the crucial role of macrophages and inflammation in regulating muscle regeneration in CLTI through interactions with MuSCs.
Collapse
|
4
|
Therapeutic Effect of Stem Cells on Male Infertility in a Rat Model: Histological, Molecular, Biochemical, and Functional Study. Stem Cells Int 2021; 2021:8450721. [PMID: 34733332 PMCID: PMC8560298 DOI: 10.1155/2021/8450721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist, widely used as a chemotherapeutic and immunosuppressive drug, but it is toxic to reproductive systems. In recent years, the era of stem cell applications becomes a promising point as a possible therapeutic agent in male infertility. This study is aimed at evaluating the therapeutic effects of stem cells at histological, molecular, biochemical, and functional levels in a methotrexate-induced testicular damage model. Material and Methods. Thirty rats were divided randomly into three groups (ten rats each): group 1 (control): animals received an intraperitoneal injection of 2 ml phosphate-buffered saline per week for 4 weeks, group 2 (MTX-treated group): animals were intraperitoneally injected with methotrexate (8 mg/kg) once weekly for 4 weeks, and group 3 (ADMSC-treated group): methotrexate-treated animals received a single dose of 1 × 106 stem cells/rat at the 5th week. At the 8th week, blood samples were collected for hormonal analysis; then, animals were sacrificed. The testes were dissected; the right testis was stained with hematoxylin and eosin. Random sections were taken from group 3 and examined with a fluorescent microscope. The left testis was divided into two specimens: the first was used for an electron microscope and the second was homogenized for molecular and biochemical assessments. Results. Group 2 showed significant histological changes, decreased free testosterone level, decrease in stem cell factor expression, and dysfunction of the oxidation state. The results revealed significant improvement of these parameters. Conclusion. Transplantation of adipose tissue-derived stem cells (ADMSCs) can improve the testicular damage histologically and functionally in a rat model.
Collapse
|
5
|
Osteoclast-Mediated Cell Therapy as an Attempt to Treat Elastin Specific Vascular Calcification. Molecules 2021; 26:molecules26123643. [PMID: 34203711 PMCID: PMC8232296 DOI: 10.3390/molecules26123643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/03/2023] Open
Abstract
Inflammation and stiffness in the arteries is referred to as vascular calcification. This process is a prevalent yet poorly understood consequence of cardiovascular disease and diabetes mellitus, comorbidities with few treatments clinically available. Because this is an active process similar to bone formation, it is hypothesized that osteoclasts (OCs), bone-resorbing cells in the body, could potentially work to reverse existing calcification by resorbing bone material. The receptor activator of nuclear kappa B-ligand (RANKL) is a molecule responsible for triggering a response in monocytes and macrophages that allows them to differentiate into functional OCs. In this study, OC and RANKL delivery were employed to determine whether calcification could be attenuated. OCs were either delivered via direct injection, collagen/alginate microbeads, or collagen gel application, while RANKL was delivered via injection, through either a porcine subdermal model or aortic injury model. While in vitro results yielded a decrease in calcification using OC therapy, in vivo delivery mechanisms did not provide control or regulation to keep cells localized long enough to induce calcification reduction. However, these results do provide context and direction for the future of OC therapy, revealing necessary steps for this treatment to effectively reduce calcification in vivo. The discrepancy between in vivo and in vitro success for OC therapy points to the need for a more stable and time-controlled delivery mechanism that will allow OCs not only to remain at the site of calcification, but also to be regulated so that they are healthy and functioning normally when introduced to diseased tissue.
Collapse
|
6
|
Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release 2021; 331:376-389. [PMID: 33508351 DOI: 10.1016/j.jconrel.2021.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/09/2023]
Abstract
Stem cell transplantation has been extensively explored to promote ischemic limb vascularization and skeletal muscle regeneration. Yet the therapeutic efficacy is low due to limited cell survival under low oxygen environment of the ischemic limbs. Therefore, continuously oxygenating the transplanted cells has potential to increase their survival. During tissue regeneration, the number of blood vessels are gradually increased, leading to the elevation of tissue oxygen content. Accordingly, less exogenous oxygen is needed for the transplanted cells. Excessive oxygen may induce reactive oxygen species (ROS) formation, causing cell apoptosis. Thus, it is attractive to develop oxygen-release biomaterials that are responsive to the environmental oxygen level. Herein, we developed oxygen-release microspheres whose oxygen release was controlled by oxygen-responsive shell. The shell hydrophilicity and degradation rate decreased as the environmental oxygen level increased, leading to slower oxygen release. The microspheres were capable of directly releasing molecular oxygen, which are safer than those oxygen-release biomaterials that release hydrogen peroxide and rely on its decomposition to form oxygen. The released oxygen significantly enhanced mesenchymal stem cell (MSC) survival without inducing ROS production under hypoxic condition. Co-delivery of MSCs and microspheres to the mouse ischemic limbs ameliorated MSC survival, proliferation and paracrine effects under ischemic conditions. It also significantly accelerated angiogenesis, blood flow restoration, and skeletal muscle regeneration without provoking tissue inflammation. The above results demonstrate that the developed microspheres have potential to augment cell survival in ischemic tissues, and promote ischemic tissue regeneration in a safer and more efficient manner.
Collapse
Affiliation(s)
- Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ning Gao
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Jeong IH, Bae WY, Choi JS, Jeong JW. Ischemia induces autophagy of endothelial cells and stimulates angiogenic effects in a hindlimb ischemia mouse model. Cell Death Dis 2020; 11:624. [PMID: 32796816 PMCID: PMC7429831 DOI: 10.1038/s41419-020-02849-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
Abstract
Although peripheral artery disease (PAD) is a major health problem, there have been limited advances in medical therapies. In PAD patients, angiogenesis is regarded as a promising therapeutic strategy to promote new arterial vessels and improve perfusion of ischemic tissue. Autophagy plays a critical role in catabolic processes for cell survival under normal and stressful conditions and plays fundamental biological roles in various cellular functions. In the present study, we showed that autophagy in endothelial cells is important for the repair and regeneration of damaged tissues. In a hindlimb ischemia mouse model, autophagy was stimulated in endothelial cells of the quadriceps muscle, and adjacent cells proliferated and regenerated. The autophagy pathway was induced under prolonged hypoxia in endothelial cells, and autophagy increased angiogenic activities. Moreover, conditioned media from endothelial cells blocked autophagy and inhibited the proliferation of muscle cells, suggesting that autophagic stimulation in endothelial cells affects the survival of adjacent cells, such as muscle. Collectively, hypoxia/ischemia-induced autophagy angiogenesis, and the damaged tissue surrounded by neo-vessels was regenerated in an ischemia model. Therefore, we strongly suggest that stimulation of autophagy in endothelial cells may be a potent therapeutic strategy in severe vascular diseases, including PAD.
Collapse
Affiliation(s)
- In-Hye Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woom-Yee Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Sun Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
8
|
Pei X, Kim H, Lee M, Wang N, Shin J, Lee S, Yoon M, Yang VC, He H. Local delivery of cardiac stem cells overexpressing HIF-1α promotes angiogenesis and muscular tissue repair in a hind limb ischemia model. J Control Release 2020; 322:610-621. [DOI: 10.1016/j.jconrel.2020.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
|
9
|
Gao Y, Aravind S, Patel NS, Fuglestad MA, Ungar JS, Mietus CJ, Li S, Casale GP, Pipinos II, Carlson MA. Collateral Development and Arteriogenesis in Hindlimbs of Swine After Ligation of Arterial Inflow. J Surg Res 2020; 249:168-179. [PMID: 31986359 PMCID: PMC7218255 DOI: 10.1016/j.jss.2019.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/04/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Development of collateral vasculature is key in compensating for arterial occlusions in patients with peripheral artery disease (PAD). We aimed to examine the development of collateral pathways after ligation of native vessels in a porcine model of PAD. METHODS Right hindlimb ischemia was induced in domestic swine (n = 11) using two versions of arterial ligation. Version 1 (n = 6) consisted of ligation with division of the right external iliac, profunda femoral, and superficial femoral arteries. Version 2 (n = 5) consisted of the ligation of version 1 with additional ligation with division of the right internal iliac artery. Development of collateral pathways was evaluated with standard angiography before arterial ligation and at termination (30 days later). Relative luminal diameter of the arteries supplying the ischemic right hind limb were determined by two-dimensional angiography. RESULTS The dominant collateral pathway that developed after version 1 ligation connected the right internal iliac artery to the right profunda femoral and then to the right superficial femoral and popliteal artery. Mean luminal diameter of the right internal iliac artery at termination increased by 38% compared with baseline. Two codominant collateral pathways developed in version 2 ligation: (i) from the left profunda femoral artery to the reconstituted right profunda femoral artery and (ii) from the common internal iliac trunk and the left internal iliac artery to the reconstituted right internal iliac artery, which then supplied the right profunda femoral and then the right superficial femoral and popliteal artery. The mean diameter of the left profunda and the left internal iliac artery increased at termination by 26% and 21%, respectively (P < 0.05). CONCLUSIONS Two versions of hindlimb ischemia induction (right ilio-femoral artery ligation with and without right internal iliac artery ligation) in swine produced differing collateral pathways, along with changes to the diameter of the inflow vessels (i.e., arteriogenesis).
Collapse
Affiliation(s)
- Yue Gao
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska; Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Shruthi Aravind
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska; Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Neesha S Patel
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska; Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Matthew A Fuglestad
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joshua S Ungar
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shuai Li
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska; Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska.
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska; Department of Surgery and VA Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
10
|
Niu H, Li C, Guan Y, Dang Y, Li X, Fan Z, Shen J, Ma L, Guan J. High oxygen preservation hydrogels to augment cell survival under hypoxic condition. Acta Biomater 2020; 105:56-67. [PMID: 31954189 PMCID: PMC7098391 DOI: 10.1016/j.actbio.2020.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022]
Abstract
Cell therapy is a promising approach for ischemic tissue regeneration. However, high death rate of delivered cells under low oxygen condition, and poor cell retention in tissues largely limit the therapeutic efficacy. Using cell carriers with high oxygen preservation has potential to improve cell survival. To increase cell retention, cell carriers that can quickly solidify at 37 °C so as to efficiently immobilize the carriers and cells in the tissues are necessary. Yet there lacks cell carriers with these combined properties. In this work, we have developed a family of high oxygen preservation and fast gelation hydrogels based on N-isopropylacrylamide (NIPAAm) copolymers. The hydrogels were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAAm, acrylate-oligolactide (AOLA), 2-hydroxyethyl methacrylate (HEMA), and methacrylate-poly(ethylene glycol)-perfluorooctane (MAPEGPFC). The hydrogel solutions exhibited sol-gel temperatures around room temperature and were flowable and injectable at 4°C. They can quickly solidify (≤6 s) at 37°C to form flexible gels. These hydrogels lost 9.4~29.4% of their mass after incubation in Dulbecco's Phosphate-Buffered Saline (DPBS) for 4 weeks. The hydrogels exhibited a greater oxygen partial pressure than DPBS after being transferred from a 21% O2 condition to a 1% O2 condition. When bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels and cultured under 1% O2, the cells survived and proliferated during the 14-day culture period. In contrast, the cells experienced extensive death in the control hydrogel that had low oxygen preservation capability. The hydrogels possessed excellent biocompatibility. The final degradation products did not provoke cell death even when the concentration was as high as 15 mg/ml, and the hydrogel implantation did not induce substantial inflammation. These hydrogels are promising as cell carriers for cell transplantation into ischemic tissues. STATEMENT OF SIGNIFICANCE: Stem cell therapy for ischemic tissues experiences low therapeutic efficacy largely due to poor cell survival under low oxygen condition. Using cell carriers with high oxygen preservation capability has potential to improve cell survival. In this work, we have developed a family of hydrogels with this property. These hydrogels promoted the encapsulated stem cell survival and growth under low oxygen condition.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Chao Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ya Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yu Dang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jie Shen
- Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 631310, USA
| | - Liang Ma
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, 631310, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Heuslein JL, Gorick CM, Price RJ. Epigenetic regulators of the revascularization response to chronic arterial occlusion. Cardiovasc Res 2020; 115:701-712. [PMID: 30629133 DOI: 10.1093/cvr/cvz001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Peripheral arterial disease (PAD) is the leading cause of lower limb amputation and estimated to affect over 202 million people worldwide. PAD is caused by atherosclerotic lesions that occlude large arteries in the lower limbs, leading to insufficient blood perfusion of distal tissues. Given the severity of this clinical problem, there has been long-standing interest in both understanding how chronic arterial occlusions affect muscle tissue and vasculature and identifying therapeutic approaches capable of restoring tissue composition and vascular function to a healthy state. To date, the most widely utilized animal model for performing such studies has been the ischaemic mouse hindlimb. Despite not being a model of PAD per se, the ischaemic hindlimb model does recapitulate several key aspects of PAD. Further, it has served as a valuable platform upon which we have built much of our understanding of how chronic arterial occlusions affect muscle tissue composition, muscle regeneration and angiogenesis, and collateral arteriogenesis. Recently, there has been a global surge in research aimed at understanding how gene expression is regulated by epigenetic factors (i.e. non-coding RNAs, histone post-translational modifications, and DNA methylation). Thus, perhaps not unexpectedly, many recent studies have identified essential roles for epigenetic factors in regulating key responses to chronic arterial occlusion(s). In this review, we summarize the mechanisms of action of these epigenetic regulators and highlight several recent studies investigating the role of said regulators in the context of hindlimb ischaemia. In addition, we focus on how these recent advances in our understanding of the role of epigenetics in regulating responses to chronic arterial occlusion(s) can inform future therapeutic applications to promote revascularization and perfusion recovery in the setting of PAD.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Box 800759, Health System, Charlottesville, VA, USA
| |
Collapse
|
12
|
Padilla L, Argüero-Sánchez R, Rodríguez-Trejo JM, Carranza-Castro PH, Suárez-Cuenca JA, Polaco-Castillo J, DiSilvio-López M, López-Gutiérrez J, Olguín-Juárez H, Hernández-Patricio A, Vera-Gómez E, Gómez-Calderón ADJ, Téllez-González MA, Mondragón-Terán P. Effect of autologous transplant of peripheral blood mononuclear cells in combination with proangiogenic factors during experimental revascularization of lower limb ischemia. J Tissue Eng Regen Med 2020; 14:600-608. [PMID: 32068332 DOI: 10.1002/term.3024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) contain a cell fraction of mononuclear progenitor cells (MPCs), which own significant angiogenic potential. Autologous transplant of PBMC and/or platelet-rich plasma (PRP) promotes endothelial cells differentiation in experimental lower limb ischemia, which is considered a safe and effective strategy to support revascularization, either in animal models or clinical trials. In addition, thrombin has been proposed to enrich biological scaffolds, hence increasing MPC viability after intramuscular administration, whereas proangiogenic mediators such as vascular endothelial growth factor (VEGF), tumor necrosis factor alpha (TNF-α), inhibitor of the plasminogen activator-1 (PAI-1), and chemokine (CXCL1; GRO-α) participate in the endothelial response to ischemia, through their proangiogenic effects over endothelial cells proliferation, survival, migration, endothelial integrity maintenance, and physiologic vascular response to injury. In the present study, we describe the effect of autologous PBMCs transplant and PRP, either with or without thrombin, over proangiogenic mediators (measured by enzyme-linked immunosorbent assay) and revascularization response (angiographic vascular pattern at 30 days after vascular occlusion) in a rat model of lower limb ischemia. The group treated with PBMC + PRP significantly induced PAI-1, an effect that was prevented by the addition of thrombin. Furthermore, treatment with PBMC + PRP + thrombin resulted in the induction of VEGF. GRO-α showed a sensitive induction of all proangiogenic mediators. All treatments significantly stimulated revascularization, according to angiographic assessment, whereas higher effect was observed with PBMC + PRP treatment (p < .0001). In conclusion, autologous PBMC transplant stimulates revascularization during experimental ischemia of the lower limb, whereas particular effects over proangiogenic and fibrinolytic mediators may be attributed to PBMCs and its combination with PRP and thrombin.
Collapse
Affiliation(s)
- Luis Padilla
- Department of Experimental Surgery, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico.,Departamento de Cirugía, Facultad de Medicina, UNAM, Mexico City, Mexico
| | | | - Juan Miguel Rodríguez-Trejo
- Department of Angiology and Vascular Surgery, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | | | - Juan Antonio Suárez-Cuenca
- Laboratory of Experimental Metabolism and Clinical Research, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | | | - Mauricio DiSilvio-López
- Department of Experimental Surgery, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | - Javier López-Gutiérrez
- Department of Experimental Surgery, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | - Horacio Olguín-Juárez
- Department of Experimental Surgery, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | - Alejandro Hernández-Patricio
- Laboratory of Experimental Metabolism and Clinical Research, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | - Eduardo Vera-Gómez
- Laboratory of Experimental Metabolism and Clinical Research, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | - Alan De Jesús Gómez-Calderón
- Tissue Engineering & Regenerative Medicine Research Group and Coordinación de Investigación, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | - Mario Antonio Téllez-González
- Tissue Engineering & Regenerative Medicine Research Group and Coordinación de Investigación, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| | - Paul Mondragón-Terán
- Tissue Engineering & Regenerative Medicine Research Group and Coordinación de Investigación, Centro Médico Nacional "20 de Noviembre," ISSSTE, Mexico City, Mexico
| |
Collapse
|
13
|
Niu H, Li X, Li H, Fan Z, Ma J, Guan J. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater 2019; 83:96-108. [PMID: 30541703 PMCID: PMC6296825 DOI: 10.1016/j.actbio.2018.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Stem cell therapy is a promising approach to regenerate ischemic cardiovascular tissues yet experiences low efficacy. One of the major causes is inferior cell retention in tissues. Injectable cell carriers that can quickly solidify upon injection into tissues so as to immediately increase viscosity have potential to largely improve cell retention. A family of injectable, fast gelling, and thermosensitive hydrogels were developed for delivering stem cells into heart and skeletal muscle tissues. The hydrogels were also photoluminescent with low photobleaching, allowing for non-invasively tracking hydrogel biodistribution and retention by fluorescent imaging. The hydrogels were polymerized by N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), 1-vinyl-2-pyrrolidinone (VP), and acrylate-oligolactide (AOLA), followed by conjugation with hypericin (HYP). The hydrogel solutions had thermal transition temperatures around room temperature, and were readily injectable at 4 °C. The solutions were able to quickly solidify within 7 s at 37 °C. The formed gels were highly flexible possessing similar moduli as the heart and skeletal muscle tissues. In vitro, hydrogel fluorescence intensity decreased proportionally to weight loss. After being injected into thigh muscles, the hydrogel can be detected by an in vivo imaging system for 4 weeks. The hydrogels showed excellent biocompatibility in vitro and in vivo, and can stimulate mesenchymal stem cell (MSC) proliferation and paracrine effects. The fast gelling hydrogel remarkably increased MSC retention in thigh muscles compared to slow gelling collagen, and non-gelling PBS. These hydrogels have potential to efficiently deliver stem cells into tissues. Hydrogel degradation can be non-invasively and real-time tracked. STATEMENT OF SIGNIFICANCE: Low cell retention in tissues represents one of the major causes for limited therapeutic efficacy in stem cell therapy. A family of injectable, fast gelling, and thermosensitive hydrogels that can quickly solidify upon injection into tissues were developed to improve cell retention. The hydrogels were also photoluminescent, allowing for non-invasively and real-time tracking hydrogel biodistribution and retention by fluorescent imaging.
Collapse
Affiliation(s)
- Hong Niu
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Haichang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
14
|
Nemcova A, Jirkovska A, Dubsky M, Kolesar L, Bem R, Fejfarova V, Pysna A, Woskova V, Skibova J, Jude EB. Difference in Serum Endostatin Levels in Diabetic Patients with Critical Limb Ischemia Treated by Autologous Cell Therapy or Percutaneous Transluminal Angioplasty. Cell Transplant 2018; 27:1368-1374. [PMID: 29860903 PMCID: PMC6168989 DOI: 10.1177/0963689718775628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to compare the serum levels of the anti-angiogenic factor endostatin (S-endostatin) as a potential marker of vasculogenesis after autologous cell therapy (ACT) versus percutaneous transluminal angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI). A total of 25 diabetic patients with CLI treated in our foot clinic during the period 2008–2014 with ACT generating potential vasculogenesis were consecutively included in the study; 14 diabetic patients with CLI who underwent PTA during the same period were included in a control group in which no vasculogenesis had occurred. S-endostatin was measured before revascularization and at 1, 3, and 6 months after the procedure. The effect of ACT and PTA on tissue ischemia was confirmed by transcutaneous oxygen pressure (TcPO2) measurement at the same intervals. While S-endostatin levels increased significantly at 1 and 3 months after ACT (both P < 0.001), no significant change of S-endostatin after PTA was observed. Elevation of S-endostatin levels significantly correlated with an increase in TcPO2 at 1 month after ACT (r = 0.557; P < 0.001). Our study showed that endostatin might be a potential marker of vasculogenesis because of its significant increase after ACT in diabetic patients with CLI in contrast to those undergoing PTA. This increase may be a sign of a protective feedback mechanism of this anti-angiogenic factor.
Collapse
Affiliation(s)
- Andrea Nemcova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandra Jirkovska
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubsky
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Libor Kolesar
- 2 Department of Immunogenetics, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Robert Bem
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimira Fejfarova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Anna Pysna
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Woskova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jelena Skibova
- 1 Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Edward B Jude
- 3 Diabetes Centre, Tameside Hospital NHS Foundation Trust and University of Manchester, Lancashire, UK
| |
Collapse
|
15
|
Zarei F, Soleimaninejad M. Role of growth factors and biomaterials in wound healing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:906-911. [DOI: 10.1080/21691401.2018.1439836] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Farshad Zarei
- Department of Surgery, Lorestan University of Medical Sciences, Khoramabad, Iran
| | | |
Collapse
|
16
|
Del Giudice C, Ifergan G, Goudot G, Bellamy V, Messas E, Clement O, Bruneval P, Menasche P, Sapoval M. Evaluation of a new model of hind limb ischemia in rabbits. J Vasc Surg 2017; 68:849-857. [PMID: 29074110 DOI: 10.1016/j.jvs.2017.07.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Various animal models of critical limb ischemia have been developed in the past. However, there is no animal model that can undergo endovascular treatment, while providing reproducible true critical limb ischemia with arterial ulcers and rest pain. We evaluated the efficacy of a new model of rabbit hindlimb ischemia created through a percutaneous approach using embolization with calibrated particles. METHODS Through a percutaneous transauricular artery approach and selective catheterization of the superficial femoral artery, embolization of distal limb vessels was performed using a mixture of 300- to 500-μm calibrated microparticles (Embosphere, Merit Medical, Salt Lake City, Utah), saline solution, and iodine contrast. Clinical and ultrasound imaging-based blood flow evaluation was performed before embolization and during follow-up. Histologic evaluation was performed at humane killing 14 days after the procedure. RESULTS The model was successfully created in 10 rabbits (10 limbs). One rabbit died of sudden death at 8 days after the procedure. The nine surviving rabbits developed hind ulcers. All rabbits had a higher pain score in the follow-up compared to baseline value (P < .0001). Blood flow in the saphenous artery decreased significantly after the procedure and later at 14 days follow-up (baseline value 63.4 ± 31.3 μL per cardiac cycle vs 32.0 ± 28.4 μL per cardiac cycle postprocedure [P = .0013] and 32.0 ± 28.4 μL per cardiac cycle at 14 days [P = .0015]). Pathology showed signs of severe limb ischemia in all rabbits with subacute and chronic injury patterns. CONCLUSIONS A rabbit hind limb ischemia model created by percutaneous transauricular distal femoral artery embolization with calibrated particles may overcome some of the limitations of existing animal models. As such, this model could prove useful for assessing therapies designed to improve arterial perfusion and collateral growth.
Collapse
Affiliation(s)
- Costantino Del Giudice
- Vascular and Oncological Interventional Radiology, Université Paris Descartes, Hôpital Européen George Pompidou, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Gabriel Ifergan
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guillaume Goudot
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Angiology, Université Paris Descartes, Paris, France
| | - Valerie Bellamy
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Emmanuel Messas
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Angiology, Université Paris Descartes, Paris, France
| | - Olivier Clement
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Radiology, Université Paris Descartes, Paris, France
| | - Patrick Bruneval
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Pathology, Université Paris Descartes, Hôpital Européen George Pompidou, Paris, France
| | - Philippe Menasche
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Department of Cardiovascular Surgery, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Marc Sapoval
- Vascular and Oncological Interventional Radiology, Université Paris Descartes, Hôpital Européen George Pompidou, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
17
|
Akazawa K, Iwasaki K, Nagata M, Yokoyama N, Ayame H, Yamaki K, Tanaka Y, Honda I, Morioka C, Kimura T, Komaki M, Kishida A, Izumi Y, Morita I. Cell transfer technology for tissue engineering. Inflamm Regen 2017; 37:21. [PMID: 29259720 PMCID: PMC5725820 DOI: 10.1186/s41232-017-0052-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022] Open
Abstract
We recently developed novel cell transplantation method “cell transfer technology” utilizing photolithography. Using this method, we can transfer ex vivo expanded cells onto scaffold material in desired patterns, like printing of pictures and letters on a paper. We have investigated the possibility of this novel method for cell-based therapy using several disease models. We first transferred endothelial cells in capillary-like patterns on amnion. The transplantation of the endothelial cell-transferred amnion enhanced the reperfusion in mouse ischemic limb model. The fusion of transplanted capillary with host vessel networks was also observed. The osteoblast- and periodontal ligament stem cell-transferred amnion were next transplanted in bone and periodontal defects models. After healing period, both transplantations improved the regeneration of bone and periodontal tissues, respectively. This method was further applicable to transfer of multiple cell types and the transplantation of osteoblasts and periodontal ligament stem cell-transferred amnion resulted in the improved bone regeneration compared with single cell type transplantation. These data suggested the therapeutic potential of the technology in cell-based therapies for reperfusion of ischemic limb and regeneration of bone and periodontal tissues. Cell transfer technology is applicable to wide range of regenerative medicine in the future.
Collapse
Affiliation(s)
- Keiko Akazawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kengo Iwasaki
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Mizuki Nagata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Naoki Yokoyama
- Life Science Laboratory, Research and Development Center, Dai Nippon Printing Co., Ltd., 1-1-1 Kaga-cho, Shinjuku-ku, Tokyo, 162-8001 Japan
| | - Hirohito Ayame
- Life Science Laboratory, Research and Development Center, Dai Nippon Printing Co., Ltd., 1-1-1 Kaga-cho, Shinjuku-ku, Tokyo, 162-8001 Japan
| | - Kazumasa Yamaki
- Life Science Laboratory, Research and Development Center, Dai Nippon Printing Co., Ltd., 1-1-1 Kaga-cho, Shinjuku-ku, Tokyo, 162-8001 Japan
| | - Yuichi Tanaka
- Life Science Laboratory, Research and Development Center, Dai Nippon Printing Co., Ltd., 1-1-1 Kaga-cho, Shinjuku-ku, Tokyo, 162-8001 Japan
| | - Izumi Honda
- Department of Comprehensive Reproductive Medicine, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Chikako Morioka
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Tsuyoshi Kimura
- Department of Comprehensive Reproductive Medicine, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Motohiro Komaki
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Akio Kishida
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062 Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Ikuo Morita
- Department of Cellular Physiological Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|
18
|
Zhang X, Li J, Ye P, Gao G, Hubbell K, Cui X. Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Acta Biomater 2017; 59:317-326. [PMID: 28684336 DOI: 10.1016/j.actbio.2017.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
A major challenge for clinical use of skin substitutes is insufficient host tissue integration leading to loosening and partial necrosis of the implant. In this present study, a three-dimensional (3D) coculture system constructed using human umbilical cord mesenchymal stem cells (uc-MSCs) and umbilical vein endothelial cells (HUVECs) encapsulated in gelatin methacryloyl (GelMA) hydrogels was evaluated to determine the outcomes of cell-cell interactions in vitro and in vivo. The results revealed that GelMA hydrogels displayed minor cytotoxicity on both cell types. An uc-MSC:HUVEC ratio of 50:50 demonstrated the highest cell proliferation and expression of angiogenic markers. The supplement of basic fibroblast growth factors (bFGF) in coculture system further induced cell proliferation and gene expression in vitro. In vivo transplantation of this cocultured constructs efficiently enhanced the implant and host tissue integration. Additionally, the proliferation of keratinocytes was well maintained on GelMA hydrogels and the gene expression related to cell proliferation and differentiation was significantly increased in coculture system comparing to monoculture. Mechanistically, AKT signaling pathways were activated in cocultures. Our findings suggest that coculturing MSC and EC in GelMA hydrogels could be a promising approach to substantially improve the integration of exogenous skin substitutes and host tissues. STATEMENT OF SIGNIFICANCE In this study, the co-culture of uc-MSCs and HUVECs in photocrosslinkable GelMA hydrogels significantly enhanced host tissue integration. Cell proliferation, ECM deposition and angiogenic genes expression were all substantially improved in vitro and the excellent host tissue integration into the implanted tissue was observed in vivo. When served as a dermal layer, the scaffold with co-cultured cells enhanced the proliferation and differentiation of keratinocytes. AKT signaling was proved to be involved in the regulation of cell survival and fate determination. This work demonstrated the importance of 3D cell co-culture to facilitate host tissue integration that can be a promising approach for long-term survival of skin substitutes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pengxiang Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Guifang Gao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Stemorgan Incorporated, Allen, TX, USA.
| | | | - Xiaofeng Cui
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Stemorgan Incorporated, Allen, TX, USA.
| |
Collapse
|
19
|
Wang H, Agarwal P, Xiao Y, Peng H, Zhao S, Liu X, Zhou S, Li J, Liu Z, He X. A Nano-In-Micro System for Enhanced Stem Cell Therapy of Ischemic Diseases. ACS CENTRAL SCIENCE 2017; 3:875-885. [PMID: 28852702 PMCID: PMC5571461 DOI: 10.1021/acscentsci.7b00213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 05/12/2023]
Abstract
Stem cell therapy holds great potential for treating ischemic diseases. However, contemporary methods for local stem cell delivery suffer from poor cell survival/retention after injection. We developed a unique multiscale delivery system by encapsulating therapeutic agent-laden nanoparticles in alginate hydrogel microcapsules and further coentrapping the nano-in-micro capsules with stem cells in collagen hydrogel. The multiscale system exhibits significantly higher mechanical strength and stability than pure collagen hydrogel. Moreover, unlike nanoparticles, the nano-in-micro capsules do not move with surrounding body fluid and are not taken up by the cells. This allows a sustained and localized release of extracellular epidermal growth factor (EGF), a substance that could significantly enhance the proliferation of mesenchymal stem cells while maintaining their multilineage differentiation potential via binding with its receptors on the stem cell surface. As a result, the multiscale system significantly improves the stem cell survival at 8 days after implantation to ∼70% from ∼4-7% for the conventional system with nanoparticle-encapsulated EGF or free EGF in collagen hydrogel. After injecting into the ischemic limbs of mice, stem cells in the multiscale system facilitate tissue regeneration to effectively restore ∼100% blood perfusion in 4 weeks without evident side effects.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pranay Agarwal
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yichao Xiao
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Hao Peng
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Shuting Zhao
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xuanyou Liu
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shenghua Zhou
- Department of Burns and Plastic Surgery, The Third
Xiangya Hospital and Department of Cardiology,
The Second Xiangya Hospital, Central South
University, Changsha, Hunan 410013, P.R. China
| | - Jianrong Li
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhenguo Liu
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoming He
- Department of Biomedical Engineering, Comprehensive Cancer Center, Davis Heart and Lung
Research Institute, and Division of Cardiovascular Medicine,
and Department of Veterinary
Biosciences, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Dubský M, Jirkovská A, Bem R, Nemcová A, Fejfarová V, Jude EB. Cell therapy of critical limb ischemia in diabetic patients - State of art. Diabetes Res Clin Pract 2017; 126:263-271. [PMID: 28288436 DOI: 10.1016/j.diabres.2017.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/19/2016] [Accepted: 02/22/2017] [Indexed: 01/15/2023]
Abstract
In this review we report on the state of cell therapy of critical limb ischemia (CLI) with respect to differences between diabetic and non-diabetic patients mainly from the clinical point of view. CLI is the most severe form of peripheral arterial disease and its diagnosis and treatment in diabetic patients is very difficult. The therapeutic effect of standard methods of CLI treatment is only partial - more than one third of diabetic patients are not eligible for standard revascularization; therefore, new therapeutic techniques such as cell therapy have been studied in clinical trials. Presence of CLI in patients with diabetic foot disease is associated with worse clinical outcomes such as lack of healing of foot ulcers, major amputations and premature mortality. A revascularization procedure cannot be successful as the only method in contrast to patients without diabetes, but it must always be part of a complex therapy focused not only on ischemia, but also on treatment of infection, off-loading, metabolic control of diabetes and nutrition, local therapy, etc. Therefore, the main criteria for cell therapy may vary in diabetic patients and non-diabetic persons and results of this treatment method should always be assessed in the context of ensuring comprehensive therapy. This review carries out an analysis of the source of precursor cells, route of administration and brings a brief report of published data with respect to diabetic and non-diabetic patients and our experience with autologous cell therapy of diabetic patients with CLI. Analysis of the studies in terms of diabetes is difficult, because in most of them sub-analysis for diabetic patients is not performed separately. The other problem is that it is not clear if diabetic patients received adequate complex treatment for their foot ulcers which can strongly affect the rate of major amputation as an outcome of CLI treatment.
Collapse
Affiliation(s)
- Michal Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | - Robert Bem
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andrea Nemcová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Edward B Jude
- Diabetes Centre, Tameside Hospital NHS Foundation Trust and University of Manchester, Lancashire, UK
| |
Collapse
|
21
|
Grau-Monge C, Delcroix GJR, Bonnin-Marquez A, Valdes M, Awadallah ELM, Quevedo DF, Armour MR, Montero RB, Schiller PC, Andreopoulos FM, D'Ippolito G. Marrow-isolated adult multilineage inducible cells embedded within a biologically-inspired construct promote recovery in a mouse model of peripheral vascular disease. ACTA ACUST UNITED AC 2017; 12:015024. [PMID: 28211362 DOI: 10.1088/1748-605x/aa5a74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peripheral vascular disease is one of the major vascular complications in individuals suffering from diabetes and in the elderly that is associated with significant burden in terms of morbidity and mortality. Stem cell therapy is being tested as an attractive alternative to traditional surgery to prevent and treat this disorder. The goal of this study was to enhance the protective and reparative potential of marrow-isolated adult multilineage inducible (MIAMI) cells by incorporating them within a bio-inspired construct (BIC) made of two layers of gelatin B electrospun nanofibers. We hypothesized that the BIC would enhance MIAMI cell survival and engraftment, ultimately leading to a better functional recovery of the injured limb in our mouse model of critical limb ischemia compared to MIAMI cells used alone. Our study demonstrated that MIAMI cell-seeded BIC resulted in a wide range of positive outcomes with an almost full recovery of blood flow in the injured limb, thereby limiting the extent of ischemia and necrosis. Functional recovery was also the greatest when MIAMI cells were combined with BICs, compared to MIAMI cells alone or BICs in the absence of cells. Histology was performed 28 days after grafting the animals to explore the mechanisms at the source of these positive outcomes. We observed that our critical limb ischemia model induces an extensive loss of muscular fibers that are replaced by intermuscular adipose tissue (IMAT), together with a highly disorganized vascular structure. The use of MIAMI cells-seeded BIC prevented IMAT infiltration with some clear evidence of muscular fibers regeneration.
Collapse
Affiliation(s)
- Cristina Grau-Monge
- Department of Orthopaedics, University of Miami Miller School of Medicine, FL, United States of America. Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter VAMC, Miami, FL, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
El-Badrawy MK, Shalabi NM, Mohamed MA, Ragab A, Abdelwahab HW. Stem Cells and Lung Regeneration. Int J Stem Cells 2016; 9:31-5. [PMID: 27426083 PMCID: PMC4961101 DOI: 10.15283/ijsc.2016.9.1.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Background:Tissues such as the lung, liver, and pancreas that have a low steady-state cell turnover yet can respond robustly after injury to replace damaged cells. The airway epithelium is exposed to inhaled particles and pathogens that may lead to the development of a many infectious and inflammatory respiratory diseases. Lung transplantation is an accepted modality of treatment for end-stage lung diseases. Since the early 1990 s, more than 26,000 lung transplants have been performed at centers worldwide. However, the availability of donor tissues and organs is limited, which presents a serious limitation for widespread transplantation surgery. The appearance of bioengineered lung and tracheal tissue transplants is considered a promising alternative to the classical transplantation of donor organ/tissue. Stem cells therapy arises as a new therapeutic approach, with a wide application potential.
Collapse
Affiliation(s)
| | | | - Mie A Mohamed
- Department of Pathology, Mansoura University, Mansoura, Egypt
| | - Amany Ragab
- Department of Chest Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
23
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
24
|
Han D, Huang W, Li X, Gao L, Su T, Li X, Ma S, Liu T, Li C, Chen J, Gao E, Cao F. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. J Pineal Res 2016; 60:178-92. [PMID: 26607398 DOI: 10.1111/jpi.12299] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/19/2015] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs)-based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose-derived mesenchymal stem cells (AD-MSCs)-based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD-MSCs in infarcted heart and provoked a synergetic effect with AD-MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD-MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti-apoptotic protein Bcl2, and decreased the expression of Ac-FoxO1, Ac-p53, Ac-NF-ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD-MSCs-based therapy in MI, possibly through promoting survival of AD-MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC-based therapy for IHD, possibly through SIRT1 signaling evocation.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Wei Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Gao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiujuan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tong Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiangwei Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Feng Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M. Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 2016; 82:208-20. [DOI: 10.1016/j.biomaterials.2015.12.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 01/07/2023]
|
26
|
Zhou Y, Zhu Y, Zhang L, Wu T, Wu T, Zhang W, Decker AM, He J, Liu J, Wu Y, Jiang X, Zhang Z, Liang C, Zou D. Human Stem Cells Overexpressing miR-21 Promote Angiogenesis in Critical Limb Ischemia by Targeting CHIP to Enhance HIF-1α Activity. Stem Cells 2016; 34:924-34. [PMID: 26841045 DOI: 10.1002/stem.2321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/12/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022]
Abstract
Critical limb ischemia (CLI) is a severe blockage in the arteries of the lower extremities. However, the effective and optimal treatment for CLI remains to be elucidated. Previous therapeutic research is mainly focused on proangiogenic growth factors administrations. Recently, miR-21 has been revealed to play a crucial role in angiogenesis. Thus, we hypothesize that miR-21 over-expression in human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) can effectively treat CLI. Herein, UCBMSCs were transduced with lentivirus-miR-21-Luciferase (Lenti-miR-21) or lentivirus- LacZ-Luciferase (Lenti-LacZ). The results indicated that miR-21 induced UCBMSCs proliferation, migration, and angiogenesis in vitro. Subsequently, general observation and laser Doppler perfusion imaging were introduced to detect perfusion in muscles of CLI-nude mice on 1, 4, 7, 14, and 28 day postoperation. There was a significant improvement in blood vessels of the ischemic limb in Lenti-miR-21 group at 7 day compared with the saline or Lenti-LacZ groups. At 28 day, histological analysis confirmed that UCBMSCs over-expressing miR-21 increased neovascularization in CLI. Furthermore, carboxyl terminus of Hsc70-interacting protein (CHIP) was found to be the target gene for miR-21-mediated activation of hypoxia-inducible factor 1α (HIF-1α) in UCBMSCs. In summary, our study demonstrated that over-expressing miR-21 in UCBMSCs could improve neovascularization in CLI through enhancing HIF-1α activity by targeting CHIP, which may hold great therapeutic promise in treating CLI.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, PR, China
| | - Youming Zhu
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, PR, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, PR, China
| | - Tao Wu
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, PR, China
| | - Tingting Wu
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, PR, China
| | - Wenjie Zhang
- Department of Oral and Maxillofacial Surgery, Oral Implant, and Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, PR, China
| | - Ann Marie Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry 1210 Eisenhower Place, Ann Arbor, Michigan, USA
| | - Jiacai He
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, PR, China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, PR, China
| | - Yiqun Wu
- Department of Oral and Maxillofacial Surgery, Oral Implant, and Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, PR, China
| | - Xinqun Jiang
- Department of Oral and Maxillofacial Surgery, Oral Implant, and Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, PR, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial Surgery, Oral Implant, and Prosthodontics, School of Medicine, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, PR, China
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, PR, China
| | - Duohong Zou
- Department of Dental Implant Center, Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, PR, China
| |
Collapse
|
27
|
Liang D, Han D, Fan W, Zhang R, Qiao H, Fan M, Su T, Ma S, Li X, Chen J, Wang Y, Ren J, Cao F. Therapeutic efficacy of apelin on transplanted mesenchymal stem cells in hindlimb ischemic mice via regulation of autophagy. Sci Rep 2016; 6:21914. [PMID: 26902855 PMCID: PMC4763210 DOI: 10.1038/srep21914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs)-based therapy provides a promising avenue for the management of peripheral arterial disease (PAD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment. Apelin has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Here we demonstrated that apelin promoted functional survival of AD-MSCs in ischemic hindlimbs and provoked a synergetic effect with AD-MSCs to restore hindlimb blood perfusion and limb functions. Further in vitro studies revealed that a biphasic response in autophagy was induced by apelin in AD-MSCs during hypoxia and hypoxia/reoxygenation (H/R) stages to exert cytoprotective effects against H/R injury. Mechanistically, apelin increased the viability of AD-MSCs via promoting protective autophagy during hypoxia, which was accompanied with activation of AMPK and inhibition of mammalian target of rapamycin (mTOR). To the contrary, apelin suppressed autophagic cell death during reoxygenation, which was accompanied with activation of Akt and inhibition of Beclin1. Our findings indicated that apelin facilitated AD-MSCs-based therapy in PAD, possibly through promoting survival of AD-MSCs by way of autophagy regulation. Our data support the promises of apelin as a novel strategy to improve MSC-based therapy for PAD, possibly through autophagy modulation in MSCs.
Collapse
Affiliation(s)
- Dong Liang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Armed Police Corps Hospital of Shaanxi, Xi'an, Shaanxi 710032, China
| | - Dong Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiwei Fan
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, the 175th Hospital of Chinese PLA, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou, Fujian 363000, China
| | - Ran Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongyu Qiao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiujuan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yabin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
28
|
Xu Y, Fu M, Li Z, Fan Z, Li X, Liu Y, Anderson PM, Xie X, Liu Z, Guan J. A prosurvival and proangiogenic stem cell delivery system to promote ischemic limb regeneration. Acta Biomater 2016; 31:99-113. [PMID: 26689466 DOI: 10.1016/j.actbio.2015.12.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/17/2015] [Accepted: 12/11/2015] [Indexed: 12/20/2022]
Abstract
Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the ischemic environment of the injured limbs. To increase therapeutic efficacy, high rate of cell survival is essential, which current approaches do not support. In this work, we tested the hypothesis that a stem cell delivery system that can continuously release a prosurvival and proangiogenic growth factor will promote high rates of cell survival in the ischemic limbs. The prosurvival effect could augment cell survival before vascularization is established, while the proangiogenic effect could stimulate quick angiogenesis to achieve long-term cell survival. Meanwhile, the differentiation of stem cells into endothelial and myogenic lineages, and cell paracrine effects will enhance vascularization and muscle regeneration.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Minghuan Fu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Zhihong Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Division of General Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201200, China
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Ying Liu
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Peter M Anderson
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, OH 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
Evaluation of the clinical relevance and limitations of current pre-clinical models of peripheral artery disease. Clin Sci (Lond) 2015; 130:127-50. [DOI: 10.1042/cs20150435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral artery disease (PAD) has recognized treatment deficiencies requiring the discovery of novel interventions. This article describes current animal models of PAD and discusses their advantages and disadvantages. There is a need for models which more directly simulate the characteristics of human PAD, such as acute-on-chronic presentation, presence of established risk factors and impairment of physical activity.
Collapse
|
30
|
Kang HM, Sohn I, Jung J, Jeong JW, Park C. Exendin-4 protects hindlimb ischemic injury by inducing angiogenesis. Biochem Biophys Res Commun 2015; 465:758-63. [PMID: 26299927 DOI: 10.1016/j.bbrc.2015.08.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022]
Abstract
Exendin-4, an analog of glucagon-like peptide-1, has shown to have beneficial effects on endothelial function, and was recently approved for the treatment of diabetes. In previous studies, we showed that exendin-4 induces angiogenesis in in vitro and ex vivo assays; in this study, we assessed the proangiogenic effects of exendin-4 in vivo using a mouse hindlimb ischemia model. Treatment with exendin-4 for three days mitigated hindlimb and gastrocnemius muscle fiber necrosis. Hindlimb perfusion was determined using indocyanine green fluorescence dynamics that showed, significantly higher blood flow rate to the ischemic hindlimbs in an exendin-4-treated group. Immunohistochemistry assay showed that exendin-4 increased CD31-positive areas in the gastrocnemius muscle of ischemic limbs. Furthermore, treatment of the hindlimbs of ischemic mice with exendin-4 increased vascular endothelial growth factor (VEGF) and phospho-extracellular signal-related kinase (ERK) on western blot analysis. Our data demonstrate that exendin-4 prevents hindlimb ischemic injury by inducing vessels via VEGF angiogenic-related pathways. These findings suggest that exendin-4 has potential as a therapeutic agent for vascular diseases that stimulate angiogenesis.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Inkyung Sohn
- Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Joo-Won Jeong
- Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea
| | - Chan Park
- Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Republic of Korea.
| |
Collapse
|
31
|
A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci 2015; 16:11294-322. [PMID: 25993296 PMCID: PMC4463701 DOI: 10.3390/ijms160511294] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/29/2015] [Accepted: 04/08/2015] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) is due to the blockage of the arteries supplying blood to the lower limbs usually secondary to atherosclerosis. The most severe clinical manifestation of PAD is critical limb ischemia (CLI), which is associated with a risk of limb loss and mortality due to cardiovascular events. Currently CLI is mainly treated by surgical or endovascular revascularization, with few other treatments in routine clinical practice. There are a number of problems with current PAD management strategies, such as the difficulty in selecting the appropriate treatments for individual patients. Many patients undergo repeated attempts at revascularization surgery, but ultimately require an amputation. There is great interest in developing new methods to identify patients who are unlikely to benefit from revascularization and to improve management of patients unsuitable for surgery. Circulating biomarkers that predict the progression of PAD and the response to therapies could assist in the management of patients. This review provides an overview of the pathophysiology of PAD and examines the association between circulating biomarkers and PAD presence, severity and prognosis. While some currently identified circulating markers show promise, further larger studies focused on the clinical value of the biomarkers over existing risk predictors are needed.
Collapse
|
32
|
Qi X, Yuan Y, Xu K, Zhong H, Zhang Z, Zhai H, Guan G, Yu G. (2-Hydroxypropyl)-β-Cyclodextrin Is a New Angiogenic Molecule for Therapeutic Angiogenesis. PLoS One 2015; 10:e0125323. [PMID: 25944736 PMCID: PMC4420769 DOI: 10.1371/journal.pone.0125323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/16/2015] [Indexed: 01/16/2023] Open
Abstract
Background Peripheral artery disease (PAD), which is caused by atherosclerosis, results in progressive narrowing and occlusion of the peripheral arteries and inhibits blood flow to the lower extremities. Therapeutic angiogenesis is a promising strategy for treating ischemia caused by PAD. Nitric oxide (NO) has been shown to be a key mediator of angiogenesis. It has been demonstrated that β-cyclodextrincan stimulate vessel growth in rabbit corneas. In this study, we assessed the mechanism of action and therapeutic potential of a new angiogenic molecule, (2-hydroxypropyl)-β-cyclodextrin (2HP-β-CD). Methods and Results 2HP-β-CD significantly increased vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor BB (PDGF-BB) peptides in human umbilical vein endothelial cells (HUVECs) and also increased basic fibroblast growth factor (bFGF) peptide in human aortic smooth muscle cells (HASMCs). 2HP-β-CD stimulated both proliferation and migration of HUVECs in an endothelial nitric oxide synthase (eNOS)/NO-dependent manner, whereas NO was found to be involved in proliferation, but not migration, of HASMCs. In a unilateral hindlimb ischemia model in mice, 2HP-β-CD injections not only promoted blood flow recovery and increased microvessel densities in ischemic muscle, but also promoted coverage of the vessels with smooth muscle cells, thus stabilizing the vessels. Administration of 2HP-β-CD increased the expression of several angiogenic factors, including VEGF-A, PDGF-BB and transforming growth factor beta-1 (TGF-β1) in ischemic muscle. Injections of 2HP-β-CD also stimulated protein kinase B and extracellular regulated protein kinases (ERK), leading to an increase in phosphorylation of eNOS in ischemic muscle. Treatment with the NOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), showed that stimulation of blood flow induced by 2HP-β-CD was partially dependent on NO. Conclusions Therapeutic angiogenesis by 2HP-β-CD may be beneficial to patients with PAD.
Collapse
Affiliation(s)
- Xun Qi
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yonghui Yuan
- Hospital infection management office, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
- * E-mail: (KX); (HSZ)
| | - Hongshan Zhong
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
- * E-mail: (KX); (HSZ)
| | - Zhen Zhang
- Department of ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huan Zhai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guibo Yu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen 2015; 22:313-25. [PMID: 24844331 DOI: 10.1111/wrr.12173] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/01/2014] [Indexed: 12/11/2022]
Abstract
Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.
Collapse
Affiliation(s)
- Waqar Ul Hassan
- Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
34
|
Yin C, Liang Y, Guo S, Zhou X, Pan X. CCN1 enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Mol Biol Rep 2014; 41:5813-8. [DOI: 10.1007/s11033-014-3455-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
35
|
Hao C, Huang ZH, Song SW, Shi YQ, Cheng XW, Murohara T, Lu W, Su DF, Duan JL. Arterial baroreflex dysfunction impairs ischemia-induced angiogenesis. J Am Heart Assoc 2014; 3:e000804. [PMID: 24820655 PMCID: PMC4309071 DOI: 10.1161/jaha.114.000804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Endothelium‐derived acetylcholine (eACh) plays an important role in the regulation of vascular actions in response to hypoxia, whereas arterial baroreflex (ABR) dysfunction impairs the eACh system. We investigated the effects of ABR dysfunction on ischemia‐induced angiogenesis in animal models of hindlimb ischemia with a special focus on eACh/nicotinic ACh receptor (nAChR) signaling activation. Methods and Results Male Sprague‐Dawley rats were randomly assigned to 1 of 3 groups that received (1) sham operation (control group), (2) sinoaortic denervation (SAD)‐induced ABR dysfunction (SAD group), or (3) SAD rats on diet with an acetylcholinesterase inhibitor pyridostigmine (30 mg/kg per day, SAD+Pyr group). After 4 weeks of the SAD intervention, unilateral limb ischemia was surgically induced in all animals. At postoperative day 14, SAD rats exhibited impaired angiogenic action (skin temperature and capillary density) and decreased angiogenic factor expressions (vascular endothelial growth factor [VEGF] and hypoxic inducible factor [HIF]‐1α) in ischemic muscles. These changes were restored by acetylcholinesterase inhibition. Rats with ABR dysfunction had lower eACh levels than did control rats, and this effect was recovered in SAD+Pyr rats. In α7‐nAChR knockout mice, pyridostigmine improved ischemia‐induced angiogenic responses and increased the levels of VEGF and HIF‐1α. Moreover, nicotinic receptor blocker inhibited VEGF expression and VEGF receptor 2 phosphorylation (p‐VEGFR2) induced by ACh analog. Conclusions Thus, ABR dysfunction appears to impair ischemia‐induced angiogenesis through the reduction of eACh/α7‐nAChR‐dependent and ‐independent HIF‐1α/VEGF‐VEGFR2 signaling activation.
Collapse
Affiliation(s)
- Changning Hao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
HoWangYin KY, Loinard C, Bakker W, Guérin CL, Vilar J, D'Audigier C, Mauge L, Bruneval P, Emmerich J, Lévy BI, Pouysségur J, Smadja DM, Silvestre JS. HIF-Prolyl Hydroxylase 2 Inhibition Enhances the Efficiency of Mesenchymal Stem Cell-Based Therapies for the Treatment of Critical Limb Ischemia. Stem Cells 2014; 32:231-43. [DOI: 10.1002/stem.1540] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Céline Loinard
- Institut de Radioprotection et de Sureté Nucléaire; Fontenay aux Roses France
| | | | | | - José Vilar
- INSERM UMRS 970; Fontenay aux Roses France
| | - Clément D'Audigier
- INSERM UMRS 765; Université Paris Descartes; Sorbonne Paris Cité Paris France
- AP-HP; Hôpital Européen Georges Pompidou; Service d'hématologie Biologique Paris France
| | - Laetitia Mauge
- INSERM UMRS 765; Université Paris Descartes; Sorbonne Paris Cité Paris France
- AP-HP; Hôpital Européen Georges Pompidou; Service d'hématologie Biologique Paris France
| | - Patrick Bruneval
- AP-HP; Hôpital Européen Georges Pompidou; Service d'anatomie Pathologique Paris France
| | - Joseph Emmerich
- INSERM UMRS 765; Université Paris Descartes; Sorbonne Paris Cité Paris France
| | | | - Jacques Pouysségur
- University of Nice, Institute of Research on Cancer & Aging (IRCAN)Centre A. Lacassagne, Nice, France and Centre Scientifique de Monaco
| | - David M. Smadja
- INSERM UMRS 765; Université Paris Descartes; Sorbonne Paris Cité Paris France
- AP-HP; Hôpital Européen Georges Pompidou; Service d'hématologie Biologique Paris France
| | | |
Collapse
|
37
|
Shalaby SY, Blume P, Sumpio BE. New modalities in the chronic ischemic diabetic foot management. Clin Podiatr Med Surg 2014; 31:27-42. [PMID: 24296016 DOI: 10.1016/j.cpm.2013.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The diabetic population is increasing worldwide at a staggering rate. Diabetic foot ulcers are a major contributor to nontraumatic lower limb amputations and peripheral arterial disease is one of main contributing pathophysiologic causes of diabetic ulcers. The dire need to reduce complication and wound healing recovery period of the chronic ischemic diabetic foot (CIDF) is indispensable to limb salvage and improvement of quality of life of patients with CIDF. This article discusses newer modalities that have been proposed to improve CIDF efficiently, safely, and effectively either alone or as adjuvants to conventional therapy.
Collapse
Affiliation(s)
- Sherif Y Shalaby
- Department of Vascular Surgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
38
|
Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, Varga M, Langkramer S, Sykova E, Jude EB. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev 2013; 29:369-76. [PMID: 23390092 DOI: 10.1002/dmrr.2399] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND The aim of our study was to compare the effect of bone marrow mononuclear cell and peripheral blood progenitor cell therapies in patients with diabetic foot disease and critical limb ischaemia unresponsive to revascularization with conservative therapy. METHODS Twenty-eight patients with diabetic foot disease (17 treated by bone marrow cells and 11 by peripheral blood cell) were included into an active group and 22 patients into a control group without cell treatment. Transcutaneous oxygen pressure and rate of major amputation, as the main outcome measures, were compared between bone marrow cells, peripheral blood cell and control groups over 6 months; both cell therapy methods were also compared by the characteristics of cell suspensions. Possible adverse events were evaluated by changes of serum levels of angiogenic cytokines and retinal fundoscopic examination. RESULTS The transcutaneous oxygen pressure increased significantly (p < 0.05) compared with baseline in both active groups after 6 months, with no significant differences between bone marrow cells and peripheral blood cell groups; however, no change of transcutaneous oxygen pressure in the control group was observed. The rate of major amputation by 6 months was significantly lower in the active cell therapy group compared with that in the control group (11.1% vs. 50%, p = 0.0032), with no difference between bone marrow cells and peripheral blood cell. A number of injected CD34+ cells and serum levels of angiogenic cytokines after treatment did not significantly differ between bone marrow cells and peripheral blood cell. CONCLUSIONS Our study showed a superior benefit of bone marrow cells and peripheral blood cell treatments of critical limb ischaemia in patients with diabetic foot disease when compared with conservative therapy. There was no difference between both cell therapy groups, and no patient demonstrated signs of systemic vasculogenesis.
Collapse
Affiliation(s)
- M Dubsky
- Diabetes Centre, Prague, Czech Republic; First Medical Faculty, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fan W, Cheng K, Qin X, Narsinh KH, Wang S, Hu S, Wang Y, Chen Y, Wu JC, Xiong L, Cao F. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo. Stem Cells 2013; 31:203-14. [PMID: 23081858 DOI: 10.1002/stem.1265] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 09/19/2012] [Accepted: 09/23/2012] [Indexed: 12/21/2022]
Abstract
Poor cell survival severely limits the beneficial effects of stem cell therapy for peripheral arterial disease (PAD). This study was designed to investigate the role of mammalian target of rapamycin (mTOR) in the survival and therapeutic function of transplanted murine adipose-derived stromal cells (mADSCs) in a murine PAD model. mADSCs (1.0 × 10(7)) were isolated from dual-reporter firefly luciferase and enhanced green fluorescent protein-positive transgenic mice, intramuscularly implanted into the hind limb of C57BL/6 mice after femoral artery ligation/excision, and monitored using noninvasive bioluminescence imaging (BLI). Although engrafted mADSCs produced antiapoptotic/proangiogenic effects in vivo by modulating the inflammatory and angiogenic cytokine response involving the mTOR pathway, longitudinal BLI revealed progressive death of post-transplant mADSCs within ~4 weeks in the ischemic hind limb. Selectively targeting mTOR complex-1 (mTORC1) using low-dose rapamycin treatment with mADSCs attenuated proinflammatory cytokines (interleukin [IL]-1β and tumor necrosis factor-alpha [TNF-α]) expression and neutrophil/macrophage infiltration, which overtly promoted mADSCs viability and antiapoptotic/proangiogenic efficacy in vivo. However, targeting dual mTORC1/mTORC2 using PP242 or high-dose rapamycin caused IL-1β/TNF-α upregulation and anti-inflammatory IL-10, IL-6, and vascular endothelial growth factor/vascular endothelial growth factor receptor 2 downregulation, undermining the survival and antiapoptotic/proangiogenic action of mADSCs in vivo. Furthermore, low-dose rapamycin abrogated TNF-α secretion by mADSCs and rescued the cells from hypoxia/reoxygenation-induced death in vitro, while PP242 or high-dose rapamycin exerted proinflammatory effects and promoted cell death. In conclusion, mTORC1 and mTORC2 may differentially regulate inflammation and affect transplanted mADSCs' functional survival in ischemic hind limb. These findings uncover that mTOR may evolve into a promising candidate for mechanism-driven approaches to facilitate the translation of cell-based PAD therapy.
Collapse
Affiliation(s)
- Weiwei Fan
- Department of Cardiology & Molecular Imaging Program, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lotfi S, Patel AS, Mattock K, Egginton S, Smith A, Modarai B. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis 2013. [DOI: 10.1016/j.atherosclerosis.2012.10.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Janeczek Portalska K, Leferink A, Groen N, Fernandes H, Moroni L, van Blitterswijk C, de Boer J. Endothelial differentiation of mesenchymal stromal cells. PLoS One 2012; 7:e46842. [PMID: 23056481 PMCID: PMC3464214 DOI: 10.1371/journal.pone.0046842] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/06/2012] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stromal cells (hMSCs) are increasingly used in regenerative medicine for restoring worn-out or damaged tissue. Newly engineered tissues need to be properly vascularized and current candidates for in vitro tissue pre-vascularization are endothelial cells and endothelial progenitor cells. However, their use in therapy is hampered by their limited expansion capacity and lack of autologous sources. Our approach to engineering large grafts is to use hMSCs both as a source of cells for regeneration of targeted tissue and at the same time as the source of endothelial cells. Here we investigate how different stimuli influence endothelial differentiation of hMSCs. Although growth supplements together with shear force were not sufficient to differentiate hMSCs with respect to expression of endothelial markers such as CD31 and KDR, these conditions did prime the cells to differentiate into cells with an endothelial gene expression profile and morphology when seeded on Matrigel. In addition, we show that endothelial-like hMSCs are able to create a capillary network in 3D culture both in vitro and in vivo conditions. The expansion phase in the presence of growth supplements was crucial for the stability of the capillaries formed in vitro. To conclude, we established a robust protocol for endothelial differentiation of hMSCs, including an immortalized MSC line (iMSCs) which allows for reproducible in vitro analysis in further studies.
Collapse
Affiliation(s)
- Karolina Janeczek Portalska
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | - Anne Leferink
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | - Nathalie Groen
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | - Hugo Fernandes
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | - Lorenzo Moroni
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | - Clemens van Blitterswijk
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| | - Jan de Boer
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, The Netherlands
| |
Collapse
|
42
|
Fan W, Sun D, Liu J, Liang D, Wang Y, Narsinh KH, Li Y, Qin X, Liang J, Tian J, Cao F. Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study. PLoS One 2012; 7:e45621. [PMID: 23029141 PMCID: PMC3447795 DOI: 10.1371/journal.pone.0045621] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/20/2012] [Indexed: 01/24/2023] Open
Abstract
Although adipose-derived stromal cell (ADSC) transplantation has been demonstrated as a promising therapeutic strategy for peripheral arterial disease (PAD), the mechanism of action behind the observed therapeutic efficacy of ADSCs remains unclear. This study was designed to investigate the long-term outcome and therapeutic behavior of engrafted ADSCs in a murine hindlimb ischemia model using multimodality molecular imaging approaches. ADSCs (1.0×107) were isolated from Tg(Fluc-egfp) mice which constitutively express dual-reporter firefly luciferase and enhanced green fluorescent protein (Fluc+-eGFP+, mADSCsFluc+GFP+), then intramuscularly injected into the hindlimb of BALB/c-nu mice after unilateral femoral artery ligation and excision. Abbreviated survival (∼5 weeks) of post-transplant mADSCs within the ischemic hindlimb was longitudinally monitored using noninvasive bioluminescence imaging (BLI), fluorescence imaging (FRI), and bioluminescence tomography with micro-computed tomography (BLT/micro-CT). Use of the BLT/micro-CT system enabled quantitative 3-dimensional (3D) imaging of the cells’ distribution and kinetics in vivo. Engrafted mADSCs improved blood perfusion recovery, ambulatory performance and prognosis of the ischemic hindlimb, probably by inducing angiogenesis and formation of collateral vessels, which could be visualized using laser Doppler perfusion imaging (LDPI), micro-CT angiography, vascular-cast imaging, and immunofluorescence. mADSCs augmented activation of the pro-angiogenic VEGF/mTOR/Akt pathway in vivo, even though the cells failed to incorporate into the host microvasculature as functional components. Downregulation of VEGF/mTOR/Akt signaling using small molecule inhibitors counteracted mADSC-induced angiogenesis and perfusion restoration. This study demonstrates for the first time the spatiotemporal kinetics and functional survival of transplanted mADSCs in a PAD model using in vivo 3D multimodality imaging. Our study indicates that mADSCs potentiate pro-angiogenic signal amplification via a VEGF/mTOR/Akt-dependent pathway, and thereby promote recovery from hindlimb ischemia.
Collapse
Affiliation(s)
- Weiwei Fan
- Department of Cardiology & Molecular Imaging Program, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongdong Sun
- Department of Cardiology & Molecular Imaging Program, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junting Liu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Dong Liang
- Department of Cardiology & Molecular Imaging Program, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yabin Wang
- Department of Cardiology & Molecular Imaging Program, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kazim H. Narsinh
- Department of Radiology & Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yong Li
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xing Qin
- Department of Cardiology & Molecular Imaging Program, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jimin Liang
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Jie Tian
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi, China
- * E-mail: (FC); (JT)
| | - Feng Cao
- Department of Cardiology & Molecular Imaging Program, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (FC); (JT)
| |
Collapse
|
43
|
Lehman N, Cutrone R, Raber A, Perry R, Van't Hof W, Deans R, Ting AE, Woda J. Development of a surrogate angiogenic potency assay for clinical-grade stem cell production. Cytotherapy 2012; 14:994-1004. [PMID: 22687190 DOI: 10.3109/14653249.2012.688945] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. METHODS AND RESULTS Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. CONCLUSIONS A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.
Collapse
Affiliation(s)
- Nicholas Lehman
- Athersys Inc., Regenerative Medicine Program, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ohno T, Kaneda H, Nagai Y, Fukushima M. Regenerative medicine in critical limb ischemia. J Atheroscler Thromb 2012; 19:883-9. [PMID: 22785564 DOI: 10.5551/jat.12906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Critical limb ischemia (CLI) is commonly caused by atherosclerotic arterial obstruction or stenosis in the leg, as demonstrated by rest pain, skin ulcers and gangrene (Fontaine III or IV), often fails to respond to conservative treatments, and carries a high risk for limb amputation, with a particularly dismal prognosis. Although surgical revascularization techniques may be used for certain CLI patients, such techniques are not indicated for most CLI patients due to the diffuse nature of the responsible lesions, distal location of the obstruction, or coexisting systemic comorbidities. For such CLI patients with no alternative treatments, the potential utility of cell therapies has been investigated. Indeed many clinical trials are being carried out by academic sectors, and their achievements will facilitate clinical development by pharmaceutical companies.In order to understand the situation regarding competitive international R&D of revascularization seeds for CLI, we surveyed the status of clinical trials. As a result, we identified 58 clinical trials on revascularization for CLI, with the majority in the early phase (<phase II: 82.7%). Revascularization seeds for CLI are in the development and competition phase, and promising seeds are expected to appear in the near future.In this review, we discuss how to develop optimal regenerative medicine concerning the selection of cell origin, cell type, combination with growth factor, and the influence of concomitant disease.
Collapse
Affiliation(s)
- Takayuki Ohno
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | | | | | | |
Collapse
|
45
|
Mima Y, Fukumoto S, Koyama H, Okada M, Tanaka S, Shoji T, Emoto M, Furuzono T, Nishizawa Y, Inaba M. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres. PLoS One 2012; 7:e35199. [PMID: 22529991 PMCID: PMC3329450 DOI: 10.1371/journal.pone.0035199] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp) coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid) (PLLA) microspheres, named nano-scaffold (NS), were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. METHODS AND RESULTS Bone marrow mononuclear cells (BMNC) and NS or control PLLA microspheres (LA) were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP)-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC). NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. CONCLUSION A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.
Collapse
Affiliation(s)
- Yohei Mima
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinya Fukumoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| | - Hidenori Koyama
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Okada
- Department of Biomedical Engineering, School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | - Shinji Tanaka
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Shoji
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsutomu Furuzono
- Department of Biomedical Engineering, School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | - Yoshiki Nishizawa
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
46
|
Padilla L, Rodriguez-Trejo J, Escotto I, López-Hernandez M, González M, De Diego J, Rodrgiuez N, Tapia J, Landero T, Pilar Hazel C, Juarez Horacio O, Di Silvio M, Mondragon-Teran P. Long-term effect of autologous progenitor cell therapy to induce neo angiogenesis in patients with critical limb ischemia transplantated via intramuscular vs combined intramuscular and distal retrograde intra venous. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/scd.2012.24020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
CD34⁺/M-cadherin⁺ bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE⁻/⁻ mice. PLoS One 2011; 6:e20673. [PMID: 21677770 PMCID: PMC3108984 DOI: 10.1371/journal.pone.0020673] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/10/2011] [Indexed: 01/29/2023] Open
Abstract
Background Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34+/M-cad+ BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34+/M-cad+ BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. Methods and Findings Colony-forming cell assays and flow cytometry analysis showed that CD34+/M-cad+ BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE−/− mice, CD34+/M-cad+ BMCs alleviated ischemia and significantly improved blood flow compared with CD34+/M-cad− BMCs, CD34−/M-cad+ BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34+/M-cad+ cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFP+ CD34+/M-cad+ cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP+ CD34+/M-cad+ cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34+/M-cad+ progenitor cells. A cytokine antibody array revealed that CD34+/M-cad+ cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34+/M-cad− cell-conditioned medium. The proangiogenic cytokines secreted by CD34+/M-cad+ cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34+/M-cad− cells during hypoxia. Conclusion CD34+/M-cad+ BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE−/− mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34+/M-cad+ BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors.
Collapse
|
48
|
Herberts CA, Kwa MSG, Hermsen HPH. Risk factors in the development of stem cell therapy. J Transl Med 2011; 9:29. [PMID: 21418664 PMCID: PMC3070641 DOI: 10.1186/1479-5876-9-29] [Citation(s) in RCA: 509] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 03/22/2011] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC) has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks. These risks deserve a thorough discussion within the perspective of current scientific knowledge and experience. Evaluation of potential risks should be a prerequisite step before clinical use of stem cell based medicinal products. The risk profile of stem cell based medicinal products depends on many risk factors, which include the type of stem cells, their differentiation status and proliferation capacity, the route of administration, the intended location, in vitro culture and/or other manipulation steps, irreversibility of treatment, need/possibility for concurrent tissue regeneration in case of irreversible tissue loss, and long-term survival of engrafted cells. Together these factors determine the risk profile associated with a stem cell based medicinal product. The identified risks (i.e. risks identified in clinical experience) or potential/theoretical risks (i.e. risks observed in animal studies) include tumour formation, unwanted immune responses and the transmission of adventitious agents. Currently, there is no clinical experience with pluripotent stem cells (i.e. embryonal stem cells and iPSC). Based on their characteristics of unlimited self-renewal and high proliferation rate the risks associated with a product containing these cells (e.g. risk on tumour formation) are considered high, if not perceived to be unacceptable. In contrast, the vast majority of small-sized clinical trials conducted with mesenchymal stem/stromal cells (MSC) in regenerative medicine applications has not reported major health concerns, suggesting that MSC therapies could be relatively safe. However, in some clinical trials serious adverse events have been reported, which emphasizes the need for additional knowledge, particularly with regard to biological mechanisms and long term safety.
Collapse
Affiliation(s)
- Carla A Herberts
- Centre for Biological Medicines and Medical Technology, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | |
Collapse
|
49
|
Rahnemai-Azar A, D'Ippolito G, Gomez LA, Reiner T, Vazquez-Padron RI, Perez-Stable C, Roos BA, Pham SM, Schiller PC. Human marrow-isolated adult multilineage-inducible (MIAMI) cells protect against peripheral vascular ischemia in a mouse model. Cytotherapy 2011; 13:179-92. [DOI: 10.3109/14653249.2010.515579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Hendrickx B, Vranckx JJ, Luttun A. Cell-Based Vascularization Strategies for Skin Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:13-24. [DOI: 10.1089/ten.teb.2010.0315] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Benoit Hendrickx
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic, Reconstructive, and Aesthetic Surgery, KUL–University Hospitals, Leuven, Belgium
| | - Jan J. Vranckx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic, Reconstructive, and Aesthetic Surgery, KUL–University Hospitals, Leuven, Belgium
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|