1
|
Wang S, Xue M, Wang J, Wu R, Shao Y, Luo K, Liu J, Zhu M. Effects of intravenous pulse methylprednisolone in neuromyelitis optica during the acute phase. Ann Clin Transl Neurol 2024; 11:2731-2744. [PMID: 39222472 PMCID: PMC11514921 DOI: 10.1002/acn3.52188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. While intravenous pulse methylprednisolone (IVMP) is the recommended initial treatment option for acute onset NMOSD, its therapeutic mechanism remains unclear. We hypothesized that IVMP would reduce the expression of pro-inflammatory factors and increase the resolution of inflammation in patients with NMOSD. METHODS Mendelian randomization (MR) analysis was used to screen meaningful inflammatory and resolution factors for inclusion. Three MR methods with inverse variance weighting (IVW) were primarily used to identify positive results. Interleukin (IL)-10, IL-1β, IL-6, C-X-C motif chemokine ligand 12 (CXCL12), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were screened from 41 inflammatory factors, and resolvin D1 (RvD1), maresin 1 (MaR1), and lipoxin A4 (LXA4) were screened from 6 resolution markers for inclusion. Subsequently, 12 patients with NMOSD were enrolled and treated with IVMP. Serum levels of the aforementioned inflammatory and resolution markers were measured by enzyme-linked immunosorbent assay before and after IVMP treatment. RESULTS High levels of TRAIL, CXCL12, and IL-1β were associated with an increased risk of NMOSD (TRAIL: odds ratio [OR], 1.582; 95% confidence interval [CI], 1.003-2.495; CXCL12: OR, 3.610; 95% CI, 1.011-12.889; IL-1β: OR, 4.500; 95% CI, 1.129-17.927). High levels of RvD1, MaR1, and LXA4 were associated with a reduced risk of NMOSD (RvD1: OR, 0.725; 95% CI, 0.538-0.976; MaR1: OR, 0.985; 95% CI, 0.970-0.999; LXA4: OR, 0.849; 95% CI, 0.727-0.993). Among patients with NMOSD, serum levels of IL-6, CXCL12, and TRAIL significantly decreased following IVMP treatment, compared with pretreatment levels, while levels of IL-1β, LXA4, and MaR1 significantly increased after IVMP treatment (p < 0.05). A significant positive correlation was observed between CXCL12 levels and Expanded Disability Status Scale (EDSS) scores (r = 0.451, p < 0.05). CONCLUSION Several systemic inflammatory regulators associated with the pathogenesis of NMOSD were identified. The protective roles of LXA4 and MaR1 may be indispensable components of glucocorticoid treatment. Therefore, the use of resolution markers may be a potential strategy for improving central nervous system injury in individuals with NMOSD.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mengru Xue
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jianglong Wang
- First Operating RoomThe First Hospital of Jilin UniversityChangchunChina
| | - Rui Wu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Yanqing Shao
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Ke Luo
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jiacheng Liu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mingqin Zhu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Lu J, Wang X, Xu F, Rao C, Guo Y, Su Z, Chen S, Li Q. Exploring causal correlations of inflammatory biomarkers in idiopathic normal-pressure hydrocephalus: insights from bidirectional Mendelian randomization analysis. Front Aging Neurosci 2024; 16:1412434. [PMID: 38974901 PMCID: PMC11224557 DOI: 10.3389/fnagi.2024.1412434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background and objective Neuroinflammatory processes have been identified as playing a crucial role in the pathophysiology of various neurodegenerative diseases, including idiopathic normal-pressure hydrocephalus (iNPH). iNPH, defined as a common disease of cognitive impairment in older adults, poses major challenges for therapeutic interventions owing to the stringent methodological requirements of relevant studies, clinical heterogeneity, unclear etiology, and uncertain diagnostic criteria. This study aims to assess the relationship between circulating inflammatory biomarkers and iNPH risk using bidirectional two-sample Mendelian randomization (MR) combined with meta-analysis. Methods In our bidirectional MR study, genetic data from a genome-wide association study (GWAS) involving 1,456 iNPH cases and 409,726 controls of European ancestry were employed. Single-nucleotide polymorphisms (SNPs) associated with exposures served as instrumental variables for estimating the causal relationships between iNPH and 132 types of circulating inflammatory biomarkers from corresponding GWAS data. Causal associations were primarily examined using the inverse variance-weighted method, supplemented by MR-Egger, weighted median, simple mode, and weighted mode analyses. In the results, heterogeneity was assessed using the Cochran Q test. Horizontal pleiotropy was evaluated through the MR-Egger intercept test and the MR pleiotropy residual sum and outliers test. Sensitivity analysis was conducted through leave-one-out analysis. Reverse MR analyses were performed to mitigate bias from reverse causality. Meta-analyses of identical inflammatory biomarkers from both data sources strengthened the findings. Results Results indicated a genetically predicted association between Interleukin-16 (IL-16) [OR: 1.228, 95% CI: 1.049-1.439, p = 0.011], TNF-related apoptosis ligand (TRAIL) [OR: 1.111, 95% CI: 1.019-1.210, p = 0.017] and Urokinase-type plasminogen activator (uPA) [OR: 1.303, 95% CI: 1.025-1.658, p = 0.031] and the risk of iNPH. Additionally, changes in human Glial cell line-derived neurotrophic factor (hGDNF) [OR: 1.044, 95% CI: 1.006-1.084, p = 0.023], Matrix metalloproteinase-1 (MMP-1) [OR: 1.058, 95% CI: 1.020, 1.098, p = 0.003] and Interleukin-12p70 (IL-12p70) [OR: 0.897, 95% CI: 0.946-0.997, p = 0.037] levels were identified as possible consequences of iNPH. Conclusion Our MR study of inflammatory biomarkers and iNPH, indicated that IL-16, TRAIL, and uPA contribute to iNPH pathogenesis. Furthermore, iNPH may influence the expression of hGDNF, MMP-1, and IL-12p70. Therefore, targeting specific inflammatory biomarkers could be promising strategy for future iNPH treatment and prevention.
Collapse
Affiliation(s)
- Jianglong Lu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianpeng Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fanjie Xu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changjun Rao
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuhang Guo
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siyan Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Li
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q, Xiong K. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res 2022; 17:1761-1768. [PMID: 35017436 PMCID: PMC8820688 DOI: 10.4103/1673-5374.331539] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 11/04/2022] Open
Abstract
Some scholars have recently developed the concept of PANoptosis in the study of infectious diseases where pyroptosis, apoptosis and necroptosis act in consort in a multimeric protein complex, PANoptosome. This allows all the components of PANoptosis to be regulated simultaneously. PANoptosis provides a new way to study the regulation of cell death, in that different types of cell death may be regulated at the same time. To test whether PANoptosis exists in diseases other than infectious diseases, we chose cerebral ischemia/reperfusion injury as the research model, collected articles researching cerebral ischemia/reperfusion from three major databases, obtained the original research data from these articles by bibliometrics, data mining and other methods, then integrated and analyzed these data. We selected papers that investigated at least two of the components of PANoptosis to check its occurrence in ischemia/reperfusion. In the cell model simulating ischemic brain injury, pyroptosis, apoptosis and necroptosis occur together and this phenomenon exists widely in different passage cell lines or primary neurons. Pyroptosis, apoptosis and necroptosis also occurred in rat and mouse models of ischemia/reperfusion injury. This confirms that PANoptosis is observed in ischemic brain injury and indicates that PANoptosis can be a target in the regulation of various central nervous system diseases.
Collapse
Affiliation(s)
- Wei-Tao Yan
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yan-Di Yang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wen-Ya Ning
- Department of Human Resources, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lyu-Shuang Liao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Shuang Lu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Wen-Juan Zhao
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Burgaletto C, Munafò A, Di Benedetto G, De Francisci C, Caraci F, Di Mauro R, Bucolo C, Bernardini R, Cantarella G. The immune system on the TRAIL of Alzheimer's disease. J Neuroinflammation 2020; 17:298. [PMID: 33050925 PMCID: PMC7556967 DOI: 10.1186/s12974-020-01968-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive degeneration and loss of neurons in specific regions of the central nervous system. Chronic activation of the immune cells resident in the brain, peripheral immune cell trafficking across the blood-brain barrier, and release of inflammatory and neurotoxic factors, appear critical contributors of the neuroinflammatory response that drives the progression of neurodegenerative processes in AD. As the neuro-immune network is impaired in course of AD, this review is aimed to point out the essential supportive role of innate and adaptive immune response either in normal brain as well as in brain recovery from injury. Since a fine-tuning of the immune response appears crucial to ensure proper nervous system functioning, we focused on the role of the TNF superfamily member, TNF-related apoptosis-inducing ligand (TRAIL), which modulates both the innate and adaptive immune response in the pathogenesis of several immunological disorders and, in particular, in AD-related neuroinflammation. We here summarized mounting evidence of potential involvement of TRAIL signaling in AD pathogenesis, with the aim to provide clearer insights about potential novel therapeutic approaches in AD.
Collapse
Affiliation(s)
- Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Cettina De Francisci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy.,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy. .,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy.
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| |
Collapse
|
5
|
Cerebrospinal fluid biomarkers of inflammation in trigeminal neuralgia patients operated with microvascular decompression. Pain 2020; 160:2603-2611. [PMID: 31373951 DOI: 10.1097/j.pain.0000000000001649] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compression of the trigeminal root entry zone by a blood vessel can cause trigeminal neuralgia (TN). However, a neurovascular conflict does not explain all cases of TN, and TN can exist without a neurovascular contact. A common observation during microvascular decompression surgery to treat TN is arachnoiditis in the region of the trigeminal nerve. Thus, aberrant inflammatory mechanisms may be involved in the pathophysiology of TN but information about the role of inflammation in TN is scarce. We used Proximity Extension Assay technology to analyse the levels of 92 protein biomarkers related to inflammation in lumbar cerebrospinal fluid from patients with TN (n = 27) before and after microvascular decompression compared to individuals without TN. We aimed to analyse the pattern of inflammation-related proteins in order to improve our understanding of the pathophysiology of TN. The main finding was that immunological protein levels in the cerebrospinal fluid from patients with TN decreased after surgery towards levels observed in healthy controls. Two proteins seemed to be of specific interest for TN: TRAIL and TNF-β. Thus, inflammatory activity might be one important mechanism in TN.
Collapse
|
6
|
Fang Y, Lu J, Wang X, Wu H, Mei S, Zheng J, Xu S, Lenahan C, Chen S, Zhang J, Hong Y. HIF-1α Mediates TRAIL-Induced Neuronal Apoptosis via Regulating DcR1 Expression Following Traumatic Brain Injury. Front Cell Neurosci 2020; 14:192. [PMID: 32848609 PMCID: PMC7416670 DOI: 10.3389/fncel.2020.00192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Neuronal apoptosis involved in secondary injury following traumatic brain injury (TBI) significantly contributes to the poor outcomes of patients with TBI. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis of tumor cells. Hypoxia factor (HIF) 1α is a controversial factor that mediates the neuronal apoptotic pathway. Herein, we hypothesize that HIF-1α may mediate the TRAIL-induced neuronal apoptosis after TBI. Methods: We used Western blots and immunofluorescence to study the expression and cell localization of TRAIL and death receptor 5 (DR5) after TBI in rats. Soluble DR5 (sDR5) administration was used to block the TRAIL-induced neuronal death and neural deficits. HIF-1α inhibitor 2ME and agonist DMOG were used to study the role of HIF-1α in TRAIL-induced neuronal death. Meanwhile, HIF-1α siRNA was used to investigate the role of HIF-1α in TRAIL-induced neuronal death in vitro. Results: The expressions of microglia-located TRAIL and neuron-located DR5 were significantly upregulated after TBI. sDR5 significantly attenuated TRAIL-induced neuronal apoptosis and neurological deficits. 2ME decreased neuronal apoptosis, lesion area, and brain edema and improved neurological function via increased expression of TRAIL decoy receptor 1 (DcR1), which inhibited TRAIL-induced apoptosis after TBI. The administration of DMOG produced the opposite effect than did 2ME. Similarly, HIF-1α siRNA attenuated TRAIL-induced neuronal death via increased DcR1 expression in vitro. Conclusion: Our findings suggested that the TRAIL/DR5 signaling pathway plays an important role after neuronal apoptosis after TBI. HIF-1α mediates TRAIL-induced neuronal apoptosis by regulating DcR1 expression following TBI.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Ischemic Preconditioning Upregulates Decoy Receptors to Protect SH-SY5Y Cells from OGD Induced Cellular Damage by Inhibiting TRAIL Pathway and Agitating PI3K/Akt Pathway. Mol Neurobiol 2020; 57:3658-3670. [PMID: 32564286 DOI: 10.1007/s12035-020-01978-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
As ischemic preconditioning (IPC) represents a potential therapy against cerebral ischemia, the purpose of the present study is to explore the molecular mechanisms of ischemic preconditioning induced cerebral protective effect. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, which induces apoptosis through binding to its death receptors (DR4 and DR5). When TRAIL binds to decoy receptors (DcR1 and DcR2), as DcRs lack intact cytoplasmic death domain, TRAIL fails to induce neuronal apoptosis. In the present study, we demonstrated that ischemic preconditioning upregulated DcR1 and DcR2, which subsequently inhibited oxygen glucose deprivation-induced cellular apoptosis. Then, we investigated the protective molecular mechanism of DcRs after ischemic preconditioning treatment. Results showed that DcR1 could competitively bind to TRAIL and partially inhibit TRAIL-induced cellular apoptosis. On the other hand, DcR2 could disturb DRs-associated death-inducing signaling complex formation (DISC), which further inhibited capase-8 activation. Besides, we also found that ischemic preconditioning activated IPC-induced Akt phosphorylation via regulating DcR2 level. Thus, ischemic preconditioning upregulated decoy receptors, which protected cells from oxygen glucose deprivation-induced cellular damage by inhibiting TRAIL-induced apoptosis and agitating PI3K/Akt pathway. Our data complemented the knowledge of neuroprotective mechanism of ischemic preconditioning and provided new evidence for supporting its clinical application.
Collapse
|
8
|
Viana GM, Priestman DA, Platt FM, Khan S, Tomatsu S, Pshezhetsky AV. Brain Pathology in Mucopolysaccharidoses (MPS) Patients with Neurological Forms. J Clin Med 2020; 9:jcm9020396. [PMID: 32024172 PMCID: PMC7073982 DOI: 10.3390/jcm9020396] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/30/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are the group of lysosomal storage disorders caused by deficiencies of enzymes involved in the stepwise degradation of glycosaminoglycans. To identify brain pathology common for neurological MPS, we conducted a comprehensive analysis of brain cortex tissues from post-mortem autopsy materials of eight patients affected with MPS I, II, IIIA, IIIC, and IIID, and age-matched controls. Frozen brain tissues were analyzed for the abundance of glycosaminoglycans (heparan, dermatan, and keratan sulfates) by LC-MS/MS, glycosphingolipids by normal phase HPLC, and presence of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor superfamily member 10 (TNFSF10) by Western blotting. Fixed tissues were stained for the markers for microgliosis, astrogliosis, misfolded proteins, impaired autophagy, and GM2ganglioside. Our results demonstrate that increase of heparan sulfate, decrease of keratan sulfate, and storage of simple monosialogangliosides 2 and 3 (GM2 and GM3) as well as the neutralglycosphingolipid, LacCer, together with neuroinflammation and neuronal accumulation of misfolded proteins are the hallmarks of brain pathology in MPS patients. These biomarkers aresimilar to those reported in the corresponding mouse models, suggesting that the pathological mechanism is common for all neurological MPS in humans and mice.
Collapse
Affiliation(s)
- Gustavo M. Viana
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada;
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil
| | - David A. Priestman
- Department of Pharmacology, University of Oxford, Oxford OX1 3SZ, UK; (D.A.P.); (F.M.P.)
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3SZ, UK; (D.A.P.); (F.M.P.)
| | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19801, USA; (S.K.); (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19801, USA; (S.K.); (S.T.)
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada;
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil
- Department of Pharmacology, University of Oxford, Oxford OX1 3SZ, UK; (D.A.P.); (F.M.P.)
- Correspondence: ; Tel.: +1-514-345-4931 (ext. 2736)
| |
Collapse
|
9
|
Tsareva EY, Favorova OO, Boyko AN, Kulakova OG. Genetic Markers for Personalized Therapy of Polygenic Diseases: Pharmacogenetics of Multiple Sclerosis. Mol Biol 2019. [DOI: 10.1134/s0026893319040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mohammadi A, Fazeli B, Poursina Z, Tehranian F, Vakili V, Boostani R, Rafatpanah H. HTLV-1-infected asymptomatic carriers compared to HAM/TSP patients over-express the apoptosis- and cytotoxicity-related molecules. Med Microbiol Immunol 2019; 208:835-844. [PMID: 31317252 DOI: 10.1007/s00430-019-00625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
Abstract
HTLV-1 infection causes a chronic progressive debilitating neuroinflammatory disease which is called, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the host defense mechanisms against viral infection is apoptosis which may control HTLV-1 infection. Therefore, we aimed to investigate this process and its interaction with viral factors in HTLV-1-infected asymptomatic carriers (ACs) compared to HAM/TSP patients. Fas, FasL, TRAIL, perforin, granzyme A, granzyme B, and granulysin gene expression and serum levels of Fas, FasL, TRAIL, and granulysin in the peripheral blood of 21 sex- and age-matched healthy controls (HCs), ACs, and HAM/TSP patients were evaluated. Also, the level of granulysin secretion in the cell culture supernatant was measured. Finally, the correlation of the expression of these molecules with HTLV-1 proviral load (PVL), Tax, and HBZ mRNA expression was analyzed. ACs compared to HAM/TSP patients significantly over-expressed the Fas, FasL, TRAIL, perforin, and granzyme B molecules. Fas, FasL, TRAIL, and granulysin serum levels were not different among studied groups; whereas, the secretion of granulysin was significantly decreased in ACs and HAM/TSP patients compared to HCs. Also, HAM/TSP patients expressed higher levels of HTLV-1 PVL, Tax, and HBZ mRNA. In addition, in ACs, inverse correlations between the Fas, FasL, TRAIL, perforin, granzyme B, and granulysin levels with HBZ mRNA expression were seen. ACs compared to HAM/TSP patients over-expressed the apoptosis- and cytotoxicity-related molecules. It could be concluded that successful control of the HTLV-1 infection and suppression of HAM/TSP development stem from the strong apoptosis and cytotoxic activity in the peripheral blood of ACs.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Poursina
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahnaz Tehranian
- Research Center of Iranian Blood Transfusion Organization, Mashhad, Khorasan Razavi, Iran
| | - Veda Vakili
- Community Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Kichev A, Baburamani AA, Vontell R, Gressens P, Burkly L, Thornton C, Hagberg H. TWEAK Receptor Deficiency Has Opposite Effects on Female and Male Mice Subjected to Neonatal Hypoxia-Ischemia. Front Neurol 2018; 9:230. [PMID: 29706927 PMCID: PMC5906546 DOI: 10.3389/fneur.2018.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine member of the TNF family. TWEAK binds to its only known receptor, Fn14, enabling it to activate downstream signaling processes in response to tissue injury. The aim of this study was to investigate the role of TWEAK signaling in neonatal hypoxia–ischemia (HI). We found that after neonatal HI, both TWEAK and Fn14 expression were increased to a greater extent in male compared with female mice. To assess the role of TWEAK signaling after HI, the size of the injury was measured in neonatal mice genetically deficient in Fn14 and compared with their wild-type and heterozygote littermates. A significant sex difference in the Fn14 knockout (KO) animals was observed. Fn14 gene KO was beneficial in females; conversely, reducing Fn14 expression exacerbated the brain injury in male mice. Our findings indicate that the TWEAK/Fn14 pathway is critical for development of hypoxic–ischemic brain injury in immature animals. However, as the responses are different in males and females, clinical implementation depends on development of sex-specific therapies.
Collapse
Affiliation(s)
- Anton Kichev
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Ana A Baburamani
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Regina Vontell
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Pierre Gressens
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Linda Burkly
- Department of Neuroinflammation, Biogen, Cambridge, MA, United States
| | - Claire Thornton
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, Kings College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Perinatal Center, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Perinatal Center, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Tisato V, Rimondi E, Brombo G, Volpato S, Zurlo A, Zauli G, Secchiero P, Zuliani G. Serum Soluble Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Levels in Older Subjects with Dementia and Mild Cognitive Impairment. Dement Geriatr Cogn Disord 2018; 41:273-80. [PMID: 27304551 DOI: 10.1159/000446275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been involved in both physiological and pathological conditions, including vascular pathologies and pathologies of the central nervous system. Nonetheless, the knowledge about the role of systemic TRAIL in patients affected by different types of dementia and mild cognitive impairment (MCI) is still limited. OBJECTIVE We assessed serum TRAIL levels in a large cohort of older individuals (n = 644) including patients with late-onset Alzheimer's disease (LOAD), vascular dementia (VAD), 'mixed' dementia (MIX), MCI, and healthy controls. METHODS Circulating TRAIL was measured by ELISA. RESULTS At univariate analysis, TRAIL levels were higher in VAD, MIX, and MCI patients compared with LOAD patients and controls. Using the multiple linear regression model, we found that TRAIL levels were associated with VAD and MCI, but not MIX, independent of potential confounding factors. CONCLUSION The finding of high levels of circulating TRAIL in VAD and MCI seems to suggest that both of these conditions are characterized by a significant vascular damage with respect to LOAD.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Alessenko AV, Bachurin SO, Karatasso YO, Korotaeva AA, Shevzova EF, Shingarova LN. Dimebon correction of changes in phospholipid composition induced by tumor necrosis factor-alpha in experement. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:91-97. [DOI: 10.17116/jnevro201811808191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front Cell Neurosci 2017; 11:248. [PMID: 28878624 PMCID: PMC5572386 DOI: 10.3389/fncel.2017.00248] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.
Collapse
Affiliation(s)
- Claire Thornton
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Carina Mallard
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Syam Nair
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Masako Jinnai
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Department of Clinical Sciences and Physiology and Neuroscience, Perinatal Center, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
15
|
Lai JCY, Rocha-Ferreira E, Ek CJ, Wang X, Hagberg H, Mallard C. Immune responses in perinatal brain injury. Brain Behav Immun 2017; 63:210-223. [PMID: 27865947 DOI: 10.1016/j.bbi.2016.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The perinatal period has often been described as immune deficient. However, it has become clear that immune responses in the neonate following exposure to microbes or as a result of tissue injury may be substantial and play a role in perinatal brain injury. In this article we will review the immune cell composition under normal physiological conditions in the perinatal period, both in the human and rodent. We will summarize evidence of the inflammatory responses to stimuli and discuss how neonatal immune activation, both in the central nervous system and in the periphery, may contribute to perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Xiaoyang Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Henrik Hagberg
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 405 30 Gothenburg, Sweden.
| |
Collapse
|
16
|
El Behi M, Sanson C, Bachelin C, Guillot-Noël L, Fransson J, Stankoff B, Maillart E, Sarrazin N, Guillemot V, Abdi H, Cournu-Rebeix I, Fontaine B, Zujovic V. Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain 2017; 140:967-980. [PMID: 28334918 PMCID: PMC5382952 DOI: 10.1093/brain/awx008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/08/2016] [Indexed: 02/05/2023] Open
Abstract
One major challenge in multiple sclerosis is to understand the cellular and molecular mechanisms leading to disease severity progression. The recently demonstrated correlation between disease severity and remyelination emphasizes the importance of identifying factors leading to a favourable outcome. Why remyelination fails or succeeds in multiple sclerosis patients remains largely unknown, mainly because remyelination has never been studied within a humanized pathological context that would recapitulate major events in plaque formation such as infiltration of inflammatory cells. Therefore, we developed a new paradigm by grafting healthy donor or multiple sclerosis patient lymphocytes in the demyelinated lesion of nude mice spinal cord. We show that lymphocytes play a major role in remyelination whose efficacy is significantly decreased in mice grafted with multiple sclerosis lymphocytes compared to those grafted with healthy donors lymphocytes. Mechanistically, we demonstrated in vitro that lymphocyte-derived mediators influenced differentiation of oligodendrocyte precursor cells through a crosstalk with microglial cells. Among mice grafted with lymphocytes from different patients, we observed diverse remyelination patterns reproducing for the first time the heterogeneity observed in multiple sclerosis patients. Comparing lymphocyte secretory profile from patients exhibiting high and low remyelination ability, we identified novel molecules involved in oligodendrocyte precursor cell differentiation and validated CCL19 as a target to improve remyelination. Specifically, exogenous CCL19 abolished oligodendrocyte precursor cell differentiation observed in patients with high remyelination pattern. Multiple sclerosis lymphocytes exhibit intrinsic capacities to coordinate myelin repair and further investigation on patients with high remyelination capacities will provide new pro-regenerative strategies.
Collapse
Affiliation(s)
- Mohamed El Behi
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Charles Sanson
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Corinne Bachelin
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Léna Guillot-Noël
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Jennifer Fransson
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Bruno Stankoff
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France.,Assistance Publique-Hôpitaux de Paris, Neurology Service, Hôpital Saint Antoine-HUEP, Paris 12, France
| | - Elisabeth Maillart
- Assistance Publique-Hôpitaux de Paris, Neurology Department Pitié Salpétrière University Hospital Paris, France
| | - Nadège Sarrazin
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Vincent Guillemot
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Hervé Abdi
- School of Brain and Behavioral Sciences, The University of Texas, Dallas, USA
| | - Isabelle Cournu-Rebeix
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Bertrand Fontaine
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France.,Assistance Publique-Hôpitaux de Paris, Neurology Service, Hôpital Saint Antoine-HUEP, Paris 12, France.,Assistance Publique-Hôpitaux de Paris, Neurology Department Pitié Salpétrière University Hospital Paris, France
| | - Violetta Zujovic
- Sorbonne-Universités-UPMC 06, INSERM, CNRS, UMR ICM-75-1127-7225, 47 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
17
|
Xu W, Jin W, Zhang X, Chen J, Ren C. Remote Limb Preconditioning Generates a Neuroprotective Effect by Modulating the Extrinsic Apoptotic Pathway and TRAIL-Receptors Expression. Cell Mol Neurobiol 2017; 37:169-182. [PMID: 26971954 PMCID: PMC11482232 DOI: 10.1007/s10571-016-0360-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/29/2016] [Indexed: 01/12/2023]
Abstract
As remote limb preconditioning (RPC) ameliorates brain damage after ischemic cerebral stroke (ICS), the purpose of the present study was to explore the molecular mechanisms in the course of RPC. Results of TUNEL staining and cleaved caspase-3 expression showed that ischemia-induced neuronal apoptosis was inhibited by RPC. The expression changes in cleaved caspase-8, cFLIP, Bid itself, and its truncated form represented that RPC suppressed the activation of extrinsic apoptotic pathway during ICS. Then, the level of cytoplasmic cytochrome c was also decreased by RPC. In addition, RPC might partially suppress TNF-related apoptosis-inducing ligand (TRAIL)-induced extrinsic apoptosis through downregulation of TRAIL death receptors and upregulation of TRAIL decoy receptors. As a counterproof, immunoneutralization of TRAIL in dMCAO rats resulted in significant restraint of tissue damage and in a marked functional recovery. Our data complemented the knowledge of RPC neuroprotective mechanism and provided new evidence for its clinical application.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Shanghai No. 5 Hospital, Fudan University, No. 801 Heqing Road, Shanghai, 200240, China
| | - Wei Jin
- Department of Neurology, Shanghai No. 5 Hospital, Fudan University, No. 801 Heqing Road, Shanghai, 200240, China
| | - Xiaoxiao Zhang
- Department of Neurology, Shanghai No. 5 Hospital, Fudan University, No. 801 Heqing Road, Shanghai, 200240, China
| | - Jing Chen
- Department of Neurology, Shanghai No. 5 Hospital, Fudan University, No. 801 Heqing Road, Shanghai, 200240, China
| | - Chuancheng Ren
- Department of Neurology, Shanghai No. 5 Hospital, Fudan University, No. 801 Heqing Road, Shanghai, 200240, China.
| |
Collapse
|
18
|
Mohammadi A, Fazeli B, Taheri M, Sahebkar A, Poursina Z, Vakili V, Yazdi SZ, Keramati Z, Boostani R, Hampson I, Rafatpanah H. Modulatory effects of curcumin on apoptosis and cytotoxicity-related molecules in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients. Biomed Pharmacother 2017; 85:457-462. [DOI: 10.1016/j.biopha.2016.11.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
|
19
|
Wilffert D, Donzelli R, Asselman A, Hermans J, Govorukhina N, Ten Hacken NH, Quax WJ, van de Merbel NC, Bischoff R. Quantitative antibody-free LC-MS/MS analysis of sTRAIL in sputum and saliva at the sub-ng/mL level. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:205-210. [PMID: 27250581 DOI: 10.1016/j.jchromb.2016.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/22/2016] [Indexed: 11/28/2022]
Abstract
Soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) induces apoptosis via the extrinsic death receptor pathway and may be a biomarker in the pathogenesis of a broad range of diseases. To investigate the role of sTRAIL in asthma, we developed a quantitative LC-MS/MS method with a lower limit of quantitation (LLOQ) of ≈3pM in induced sputum (174pg/mL) and saliva (198pg/mL) without the use of antibodies. sTRAIL was enriched by immobilized metal affinity chromatography (IMAC) solid-phase extraction (SPE) followed by tryptic digestion and subsequent enrichment of a signature peptide by strong cation exchange (SCX) SPE. The method was validated with respect to stability, accuracy and precision using the standard addition approach and fully metabolically (15)N-labelled hrTRAIL as internal standard. Our results indicate that it is possible to quantify cytokines like sTRAIL at the pM level by LC-MS/MS without the use of antibodies, which has, to our knowledge, never been shown before.
Collapse
Affiliation(s)
- Daniel Wilffert
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Riccardo Donzelli
- Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Angela Asselman
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jos Hermans
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Natalia Govorukhina
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Nick H Ten Hacken
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wim J Quax
- Pharmaceutical Biology, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Nico C van de Merbel
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; PRA Health Sciences, Bioanalytical Laboratory, Amerikaweg 18, 9407 TK Assen, The Netherlands
| | - Rainer Bischoff
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
20
|
Kao S, Soares VY, Kristiansen AG, Stankovic KM. Activation of TRAIL-DR5 pathway promotes sensorineural degeneration in the inner ear. Aging Cell 2016; 15:301-8. [PMID: 26791792 PMCID: PMC4783338 DOI: 10.1111/acel.12437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor (TNF) family cytokines are important mediators of inflammation. Elevated levels of serum TNF‐α are associated with human sensorineural hearing loss via poorly understood mechanisms. We demonstrate, for the first time, expression of TNF‐related apoptosis‐inducing ligand (TRAIL) and its signaling death receptor 5 (DR5) in the murine inner ear and show that exogenous TRAIL can trigger hair cell and neuronal degeneration, which can be partly prevented with DR5‐blocking antibodies.
Collapse
Affiliation(s)
- Shyan‐Yuan Kao
- Eaton Peabody Laboratories and Department of Otolaryngology Massachusetts Eye and Ear Infirmary Boston MA USA
| | - Vitor Y.R. Soares
- Eaton Peabody Laboratories and Department of Otolaryngology Massachusetts Eye and Ear Infirmary Boston MA USA
- Department of Otology and Laryngology Harvard Medical School Boston MA USA
| | - Arthur G. Kristiansen
- Eaton Peabody Laboratories and Department of Otolaryngology Massachusetts Eye and Ear Infirmary Boston MA USA
| | - Konstantina M. Stankovic
- Eaton Peabody Laboratories and Department of Otolaryngology Massachusetts Eye and Ear Infirmary Boston MA USA
- Department of Otology and Laryngology Harvard Medical School Boston MA USA
- Program in Speech and Hearing Bioscience and Technology Harvard Medical School Boston MA USA
| |
Collapse
|
21
|
Tsareva E, Kulakova O, Boyko A, Favorova O. Pharmacogenetics of multiple sclerosis. Pharmacogenet Genomics 2016; 26:103-15. [DOI: 10.1097/fpc.0000000000000194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
TRAIL Promotes Tumor Growth in a Syngeneic Murine Orthotopic Pancreatic Cancer Model and Affects the Host Immune Response. Pancreas 2016; 45:401-8. [PMID: 26390425 DOI: 10.1097/mpa.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is currently being evaluated as a possible biological agent for cancer treatment. However, many tumor cells are resistant to TRAIL-induced apoptosis. In these cases, TRAIL may activate different pathways promoting tumor growth as well as showing different interactions with the immunological tumor microenvironment. In this study, the impact of TRAIL on tumor growth and survival in a syngeneic model of TRAIL-resistant pancreatic cancer cells was investigated. METHODS Murine 6606PDA pancreatic cancer cells were injected into the pancreatic heads of TRAIL mice and their littermates. To examine a direct effect of TRAIL on tumor cells, cultures of 6606PDA were TRAIL stimulated. RESULTS The TRAIL mice displayed significantly decreased tumor volumes and an enhanced overall survival in pancreatic cancer. The decreased tumor growth in TRAIL mice was accompanied by a decrease of regulatory CD4 cells within tumors. Concordantly, TRAIL treatment of wild-type mice enhanced tumor growth and increased the fraction of regulatory CD4 cells. Yet, a direct effect of TRAIL on 6606PDA cells was not detected. CONCLUSIONS Thus, TRAIL can promote tumor growth in TRAIL-resistant tumor cells. This may restrict possible future clinical applications of TRAIL in pancreatic cancer.
Collapse
|
23
|
López-Gómez C, Oliver-Martos B, Pinto-Medel MJ, Suardiaz M, Reyes-Garrido V, Urbaneja P, Fernández Ó, Leyva L. TRAIL and TRAIL receptors splice variants during long-term interferon β treatment of patients with multiple sclerosis: evaluation as biomarkers for therapeutic response. J Neurol Neurosurg Psychiatry 2016; 87:130-7. [PMID: 25736057 PMCID: PMC4752633 DOI: 10.1136/jnnp-2014-309932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We aimed to assess the effects of interferon β (IFNβ) treatment on the expression of the splice variants of the Tumour necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) and its receptors in different cell subpopulations (CD14+, CD4+ and CD8+) from patients with multiple sclerosis (MS), and to determine whether this expression discriminated responders from non-responders to IFNβ therapy. METHODS We examined mRNA expression of the TRAIL and TRAIL receptors variants in patients with MS, at baseline and after one year of IFNβ therapy, according to responsiveness to this drug. RESULTS Long-term therapy with IFNβ increased the expression of TRAIL-α in T cell subsets exclusively from responders and decreased the expression of the isoform 2 of TRAILR-2 in monocytes from responders as well as non-responders. Lower expression of TRAIL-α, and higher expression of TRAIL-β in monocytes and T cells, was found before the onset of IFNβ therapy in patients who will subsequently become responders. Baseline expression of TRAILR-1 was also significantly higher in monocytes and CD4+ T cells from responders. CONCLUSIONS The present study shows that long-term IFNβ treatment has a direct influence on TRAIL-α and TRAILR-2 isoform 2 expression. Besides, receiver operating characteristic analysis revealed that the baseline expression of TRAIL-α in monocytes and T cells, and that of TRAILR-1 in monocytes and CD4+ T cells, showed a predictive value of the clinical response to IFNβ therapy, pointing to a role of TRAIL system in the mechanism of action of IFNβ in MS that will need further investigation.
Collapse
Affiliation(s)
- Carlos López-Gómez
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Begoña Oliver-Martos
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - María-Jesús Pinto-Medel
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Margarita Suardiaz
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Virginia Reyes-Garrido
- Department of Neurology, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Patricia Urbaneja
- Department of Neurology, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Óscar Fernández
- Department of Neurology, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Laura Leyva
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| |
Collapse
|
24
|
Alessenko A, Bachurin S, Gurianova S, Karatasso Y, Shevtsova E, Shingarova L. Tumor necrosis factor-alpha - potential target for neuroprotector dimebon. ACTA ACUST UNITED AC 2016; 62:418-25. [DOI: 10.18097/pbmc20166204418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dimebon (Dimebolin) is an antihistamine drug which has been used in Russia since 1983. Recently Dimebolin has attracted renewed interest after being shown to have positive effects on persons suffering from Alzheimer's disease. Animal studies have shown that dimebon acts through multiple mechanisms, both blocking the action of neurotoxic beta-amyloid peptides and inhibiting L-type calcium channels, modulating the action of AMPA and NMDA glutamate receptors. Our experiments with cell culture L929 and mice have shown that dimebon may exert its neuroprotective effect by blocking cytotoxic signals induced by proinflammatory cytokines such as TNF-a which are believed to play a central role in Alzheimer's disease. Dimebon (10 mg/ml) protected mouse fibroblasts L929 against the toxic action of TNF-a. Our study included 65 male mice. TNF-a (10 mg per mouse), dimebon (0,2 mg/kg) and their combination were injected intraperitonealy. Changes in the level of molecular species of sphingomyelin and galactosyl ceramide in hippocampus, cerebellum and cerebral cortex within 30 min, 2 h, 4 h, and 24 h after injection were detected by chromato-mass-spectrometry. Maximal changes in sphingomyelin and galactosyl ceramides contents of different molecular species after single TNF-a administration were found in the hippocampus, and were less expressed in the cerebral cortex and cerebellum after 24 h. Dimebon itself did not induce changes in the sphingolipid spectrum in brain sections, but protected them against disorders induced by TNF-a in the brain. Modern strategies in the search of new therapeutic approaches are based on the multitarget properties of new drugs. According to our results TNF-a may serve as a new target for dimebon.
Collapse
Affiliation(s)
- A.V. Alessenko
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - S.O. Bachurin
- Institute of Physiologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - S.V. Gurianova
- Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Y.O. Karatasso
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - E.F. Shevtsova
- Institute of Physiologically Active Substances of the Russian Academy of Sciences, Chernogolovka, Russia
| | - L.N. Shingarova
- Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Sonar S, Lal G. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity. Front Immunol 2015; 6:364. [PMID: 26257732 PMCID: PMC4507150 DOI: 10.3389/fimmu.2015.00364] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/05/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, proliferation, differentiation, and migration of immune cells into the central nervous system (CNS). Several TNF superfamily molecules are known to control alloimmunity, autoimmunity, and immunity. Development of transgenic and gene knockout animals, and monoclonal antibodies against TNFSF molecules have increased our understanding of individual receptor-ligand interactions, and their intracellular signaling during homeostasis and neuroinflammation. A strong clinical association has been observed between TNFSF members and CNS autoimmunity such as multiple sclerosis and also in its animal model experimental autoimmune encephalomyelitis. Therefore, they are promising targets for alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are widely distributed and have diverse functions, we have restricted the discussions in this review to TNFSF receptor-ligand interactions and their role in the pathogenesis of neuroinflammation and CNS autoimmunity.
Collapse
|
26
|
Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol 2015; 57 Suppl 3:17-28. [PMID: 25800488 DOI: 10.1111/dmcn.12723] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Perinatal insults are a leading cause of infant mortality and amongst survivors are frequently associated with neurocognitive impairment, cerebral palsy (CP), and seizure disorders. The events leading to perinatal brain injury are multifactorial. This review describes how one subinjurious factor affecting the brain sensitizes it to a second injurious factor, causing an exacerbated injurious cascade. We will review the clinical and experimental evidence, including observations of high rates of maternal and fetal infections in term-born infants with neonatal encephalopathy and cerebral palsy. In addition, we will discuss preclinical evidence for the sensitizing effects of inflammation on injuries, such as hypoxia-ischaemia, our current understanding of the mechanisms underpinning the sensitization process, and the possibility for neuroprotection.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Inserm, U1141, Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Department of Child Neurology, APHP, Robert Debré Hospital, Paris, France; PremUP, Paris, France; Division of Imaging Sciences, Department of Perinatal Imaging and Health, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jia S, Dong W, Zhou X, Chen Z, Yun W. Association between TNFSF10 polymorphism and migraine susceptibility in a Chinese population. J Int Med Res 2015; 43:326-31. [PMID: 25712717 DOI: 10.1177/0300060514565681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/03/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the correlation between migraine in a Chinese population and a 4 base pair (GAGT) insertion/deletion polymorphism (rs35975099) localized near the 3' end of the tumour necrosis factor superfamily 10 gene, TNFSF10. METHODS Ethnically Han Chinese patients with migraine and healthy control subjects were recruited. TNFSF10 genotype and allele frequencies were determined via polymerase chain reaction and polyacrylamide gel electrophoresis. RESULTS Rs35975099 was in Harvey-Weinberg equilibrium in patients with migraine (n = 269) and control subjects (n = 374). There were no significant relationships between allele or genotype frequency and migraine. CONCLUSION There was no functional significance of the TNFSF10 gene polymorphism rs35975099 in migraine pathogenesis.
Collapse
Affiliation(s)
- Shasha Jia
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianju Zhou
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Zhiguo Chen
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Wenwei Yun
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
28
|
Xiao ML, Liu JQ, Chen C. Effect of tumor necrosis factor-related apoptosis-inducing ligand on developing human oligodendrocytes in culture. Mol Biol 2014. [DOI: 10.1134/s002689331406020x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Tumor necrosis factor-related apoptosis-inducing ligand in vascular inflammation and atherosclerosis: a protector or culprit? Vascul Pharmacol 2014; 63:135-44. [PMID: 25451562 DOI: 10.1016/j.vph.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/19/2014] [Accepted: 10/25/2014] [Indexed: 12/16/2022]
Abstract
In addition to inducing tumor cell apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) shows broad biological functions both in vitro and in vivo. TRAIL gene deletion enhanced atherogenesis in hyperlipidemic mice, supporting that endogenous TRAIL has protective actions in maintaining blood vessel homeostasis and repressing atherosclerosis. The mechanisms of this beneficial effect are not understood. It remains to be determined whether the athero-protective action of TRAIL is via direct impacts on residential vascular cells or indirectly by modulating systemic immune functions. However, in vitro experiments indicate that excessive TRAIL may stimulate endothelial cell apoptosis, smooth muscle proliferation and migration, and inflammatory responses. Moreover, TRAIL can stimulate lipid uptake and foam cell formation in cultured macrophages. Here we provide a critical review on the potential relationships between TRAIL and atherosclerosis. We propose that increased TRAIL production may also have potential detrimental effects on vascular inflammation and atherosclerosis. Further in vivo experiments are warranted to elucidate the effects of exogenous TRAIL on atherogenesis.
Collapse
|
30
|
Kichev A, Rousset CI, Baburamani AA, Levison SW, Wood TL, Gressens P, Thornton C, Hagberg H. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling and cell death in the immature central nervous system after hypoxia-ischemia and inflammation. J Biol Chem 2014; 289:9430-9. [PMID: 24509861 PMCID: PMC3979382 DOI: 10.1074/jbc.m113.512350] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family. The interaction of TRAIL with death receptor 4 (DR4) and DR5 can trigger apoptotic cell death. The aim of this study was to investigate the role of TRAIL signaling in neonatal hypoxia-ischemia (HI). Using a neonatal mouse model of HI, mRNA, and protein expression of TRAIL, DR5 and the TRAIL decoy receptors osteoprotegerin (OPG), mDcTRAILR1, and mDcTRAILR2 were determined. In vitro, mRNA expression of these genes was measured in primary neurons and oligodendrocyte progenitor cells (OPCs) after inflammatory cytokine (TNF-α/IFN-γ) treatment and/or oxygen and glucose deprivation (OGD). The toxicity of these various paradigms was also measured. The expression of TRAIL, DR5, OPG, and mDcTRAILR2 was significantly increased after HI. In vitro, inflammatory cytokines and OGD treatment significantly induced mRNAs for TRAIL, DR5, OPG, and mDcTRAILR2 in primary neurons and of TRAIL and OPG in OPCs. TRAIL protein was expressed primarily in microglia and astroglia, whereas DR5 co-localized with neurons and OPCs in vivo. OGD enhanced TNF-α/IFN-γ toxicity in both neuronal and OPC cultures. Recombinant TRAIL exerted toxicity alone or in combination with OGD and TNF-α/IFN-γ in primary neurons but not in OPC cultures. The marked increases in the expression of TRAIL and its receptors after cytokine exposure and OGD in primary neurons and OPCs were similar to those found in our animal model of neonatal HI. The toxicity of TRAIL in primary neurons suggests that TRAIL signaling participates in neonatal brain injury after inflammation and HI.
Collapse
Affiliation(s)
- Anton Kichev
- From the Centre for the Developing Brain, Perinatal Brain Injury Group, Kings College London, London SE1 7EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Poon VY, Choi S, Park M. Growth factors in synaptic function. Front Synaptic Neurosci 2013; 5:6. [PMID: 24065916 PMCID: PMC3776238 DOI: 10.3389/fnsyn.2013.00006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons.
Collapse
Affiliation(s)
- Vivian Y Poon
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore, Singapore
| | | | | |
Collapse
|
32
|
How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J Neuropathol Exp Neurol 2013; 72:370-85. [PMID: 23584204 DOI: 10.1097/nen.0b013e3182909f2f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most devastating CNS bacterial infection, bacterial meningitis, has both acute and long-term neurologic consequences. The CNS defends itself against bacterial invasion through a combination of physical barriers (i.e. blood-brain barrier, meninges, and ependyma), which contain macrophages that express a range of pattern-recognition receptors that detect pathogens before they gain access to the CNS and cerebrospinal fluid. This activates an antipathogen response consisting of inflammatory cytokines, complement, and chemoattractants. Regulation of the antipathogen inflammatory response is essential for preventing irreversible brain injury and protecting stem cell populations in the ventricle wall. The severity of brain inflammation is regulated by the clearance of apoptotic inflammatory cells and neurons. Death signaling pathways are expressed by glia to stimulate apoptosis of neutrophils, lymphocytes, and damaged neurons and to regulate in flammation and remove necrotic cells. The emerging group of neuroimmunoregulatory molecules adjusts the balance of the anti-inflammatory and proinflammatory response to provide optimal conditions for effective clearance of pathogens and apoptotic cells but reduce the severity of the inflammatory response to prevent injury to brain cells, including stem cell populations. The neuroimmunoregulatory molecules and other CNS anti-inflammatory pathways represent potential therapeutic targets capable of reducing brain injury caused by bacterial infection.
Collapse
|
33
|
Dave RS. Morphine affects HIV-induced inflammatory response without influencing viral replication in human monocyte-derived macrophages. ACTA ACUST UNITED AC 2012; 64:228-36. [PMID: 22066570 DOI: 10.1111/j.1574-695x.2011.00894.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Opiate-abusing individuals are in the top three risk-factor groups for HIV infection. In fact, almost 30% of HIV-infected individuals in the USA are reported to abuse opiates, highlighting the intersection of drugs of abuse with HIV/AIDS. Opiate-abusers are cognitively impaired and suffer from neurological dysfunctions that may lead to high-risk sexual behavior, poor adherence to antiretroviral regimens, and hepatitis-C virus infection. Collectively, these factors may contribute to accelerated HIV central nervous system (CNS) disease progression. To understand the role of morphine in disease progression, we sought to determine whether morphine influences HIV-induced inflammation or viral replication in human monocyte-derived macrophages (h-mdms) and MAGI cells infected with HIV and exposed to morphine. Chronic morphine exposure of HIV-infected h-mdms led to significant alterations in the secretion of IL-6 and monocyte chemoattractant protein 2 (MCP-2). Morphine enhanced IL-6 secretion and blunted MCP-2 secretion from HIV-infected h-mdms. However, exposure of HIV-infected h-mdms to morphine had no effect on tumor necrosis factor alpha secretion. Morphine had no effect on later stages of viral replication in HIV-infected h-mdms. Morphine had a potentially additive effect on the HIV-induced production of IL-6 and delayed HIV-induced MCP-2 production. These results suggest that in HIV-infected opiate-abusers, enhanced CNS inflammation might result even when HIV disease is controlled.
Collapse
Affiliation(s)
- Rajnish S Dave
- Department of Neuroscience, Center for Neurovirology, Temple University, MERB 774A, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
34
|
Azizi G, Mirshafiey A. The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis. Immunopharmacol Immunotoxicol 2012; 34:881-95. [DOI: 10.3109/08923973.2012.705292] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Grace PM, Hurley D, Barratt DT, Tsykin A, Watkins LR, Rolan PE, Hutchinson MR. Harnessing pain heterogeneity and RNA transcriptome to identify blood-based pain biomarkers: a novel correlational study design and bioinformatics approach in a graded chronic constriction injury model. J Neurochem 2012; 122:976-94. [PMID: 22697386 DOI: 10.1111/j.1471-4159.2012.07833.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables.
Collapse
Affiliation(s)
- Peter M Grace
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rajasekharan S, Bar-Or A. From bench to MS bedside: challenges translating biomarker discovery to clinical practice. J Neuroimmunol 2012; 248:66-72. [PMID: 22381245 DOI: 10.1016/j.jneuroim.2012.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
Abstract
A substantial need exists for developing and validating a range of biomarkers that would address a number of important unmet clinical needs in the MS field. In spite of considerable efforts over last years, very few putative biomarkers have been fully validated or successfully integrated into routine clinical practice. Here, we consider some of the main challenges that have limited such effective translation from biomarker discovery to the bedside in the context of MS, the prototypic chronic human CNS inflammatory illness. We will define the types of biomarkers that would be relevant for MS, identify their ideal attributes, and then discuss individual challenges and strategies to overcome them.
Collapse
Affiliation(s)
- Sathyanath Rajasekharan
- McGill Centre for Biomedical Innovation, McGill University, Montreal, Quebec, Canada H3A 2R7
| | | | | |
Collapse
|
37
|
Molecular mechanisms of neonatal brain injury. Neurol Res Int 2012; 2012:506320. [PMID: 22363841 PMCID: PMC3272851 DOI: 10.1155/2012/506320] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 12/12/2022] Open
Abstract
Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.
Collapse
|
38
|
Pillai MR, Collison LW, Wang X, Finkelstein D, Rehg JE, Boyd K, Szymczak-Workman AL, Doggett T, Griffith TS, Ferguson TA, Vignali DAA. The plasticity of regulatory T cell function. THE JOURNAL OF IMMUNOLOGY 2011; 187:4987-97. [PMID: 22013112 DOI: 10.4049/jimmunol.1102173] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (T(regs)) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. Whereas T(regs) possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any interrelationship or cross-regulatory mechanisms exist to orchestrate and control their utilization is unknown. In this study, we assessed the functional capacity of T(regs) lacking the ability to secrete both IL-10 and IL-35, which individually are required for maximal T(reg) activity. Surprisingly, IL-10/IL-35 double-deficient T(regs) were fully functional in vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (Ctse) expression, enhanced TRAIL (Tnfsf10) expression, and soluble TRAIL release, rendering IL-10/IL-35 double-deficient T(regs) functionally dependent on TRAIL in vitro and in vivo. Lastly, whereas C57BL/6 T(regs) are normally IL-10/IL-35 dependent, BALB/c T(regs), which express high levels of cathepsin E and enhanced TRAIL expression, are partially TRAIL dependent by default. These data reveal that cross-regulatory pathways exist that control the utilization of suppressive mechanisms, thereby providing T(reg) functional plasticity.
Collapse
Affiliation(s)
- Meenu R Pillai
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mc Guire C, Beyaert R, van Loo G. Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci 2011; 34:619-28. [PMID: 21999927 DOI: 10.1016/j.tins.2011.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/13/2011] [Accepted: 09/18/2011] [Indexed: 12/31/2022]
Abstract
Death receptors (DRs) are members of the tumor necrosis factor receptor (TNF-R) superfamily that are characterised by the presence of a conserved intracellular death domain and are able to trigger a signalling pathway leading to apoptosis. Strong evidence suggests that DRs contribute to the pathology of tissue destructive diseases, including multiple sclerosis (MS), the most common inflammatory demyelinating disease of the central nervous system (CNS). Here, we review the evidence supporting a role for DRs in MS pathology and its implications for the development of therapeutic strategies for MS and other demyelinating pathologies of the CNS.
Collapse
Affiliation(s)
- Conor Mc Guire
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
40
|
TRAIL/TRAIL receptor system and susceptibility to multiple sclerosis. PLoS One 2011; 6:e21766. [PMID: 21814551 PMCID: PMC3140982 DOI: 10.1371/journal.pone.0021766] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/06/2011] [Indexed: 01/10/2023] Open
Abstract
The TNF-related apoptosis inducing ligand (TRAIL)/TRAIL receptor system participates in crucial steps in immune cell activation or differentiation. It is able to inhibit proliferation and activation of T cells and to induce apoptosis of neurons and oligodendrocytes, and seems to be implicated in autoimmune diseases. Thus, TRAIL and TRAIL receptor genes are potential candidates for involvement in susceptibility to multiple sclerosis (MS). To test whether single-nucleotide polymorphisms (SNPs) in the human genes encoding TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 are associated with MS susceptibility, we performed a candidate gene case-control study in the Spanish population. 59 SNPs in the TRAIL and TRAIL receptor genes were analysed in 628 MS patients and 660 controls, and validated in an additional cohort of 295 MS patients and 233 controls. Despite none of the SNPs withstood the highly conservative Bonferroni correction, three SNPs showing uncorrected p values<0.05 were successfully replicated: rs4894559 in TRAIL gene, p = 9.8×10−4, OR = 1.34; rs4872077, in TRAILR-1 gene, p = 0.005, OR = 1.72; and rs1001793 in TRAILR-2 gene, p = 0.012, OR = 0.84. The combination of the alleles G/T/A in these SNPs appears to be associated with a reduced risk of developing MS (p = 2.12×10−5, OR = 0.59). These results suggest that genes of the TRAIL/TRAIL receptor system exerts a genetic influence on MS.
Collapse
|
41
|
Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 2011; 585:3770-80. [PMID: 21550344 DOI: 10.1016/j.febslet.2011.04.066] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/17/2022]
Abstract
The presence of the blood-brain barrier (BBB) restricts the movement of soluble mediators and leukocytes from the periphery to the central nervous system (CNS). Leukocyte entry into the CNS is nonetheless an early event in multiple sclerosis (MS), an inflammatory disorder of the CNS. Whether BBB dysfunction precedes immune cell infiltration or is the consequence of perivascular leukocyte accumulation remains enigmatic, but leukocyte migration modifies BBB permeability. Immune cells of MS subjects express inflammatory cytokines, reactive oxygen species (ROS) and enzymes that can facilitate their migration to the CNS by influencing BBB function, either directly or indirectly. In this review, we describe how immune cells from the peripheral blood overcome the BBB and promote CNS inflammation in MS through BBB disruption.
Collapse
Affiliation(s)
- Catherine Larochelle
- Neuroimmunology Research Laboratory, Center of Excellence in Neuromics, CRCHUM, Notre-Dame Hospital, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
42
|
Kountouras J, Zavos C, Deretzi G, Gavalas E, Polyzos S, Katsinelos P, Grigoriadis N, Koutlas E, Rudolf J, Tsiptsios I. Impact of Helicobacter pylori on chronic hepatitis C-related cognitive dysfunction. J Neuroimmunol 2011; 233:254-6; author reply 257-8. [DOI: 10.1016/j.jneuroim.2010.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 09/20/2010] [Indexed: 01/22/2023]
|
43
|
Wilk A, Urbanska K, Yang S, Wang JY, Amini S, Del Valle L, Peruzzi F, Meggs L, Reiss K. Insulin-like growth factor-I-forkhead box O transcription factor 3a counteracts high glucose/tumor necrosis factor-α-mediated neuronal damage: implications for human immunodeficiency virus encephalitis. J Neurosci Res 2010; 89:183-98. [PMID: 21162126 DOI: 10.1002/jnr.22542] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/17/2022]
Abstract
In HIV patients, antiretroviral medications trigger metabolic abnormalities, including insulin resistance. In addition, the inflammatory cytokine tumor necrosis factor-α (TNFα), which is elevated in human immunodeficiency virus encephalitis (HIVE), also induces insulin resistance and inflicts neuronal damage in vitro. In differentiated PC12 cells and rat cortical neurons, high glucose (HG; 25 mM) triggers reactive oxygen species (ROS) accumulation, contributing to the retraction of neuronal processes, with only a minimal involvement of neuronal apoptosis. In the presence of TNFα, HG-treated neurons undergo massive apoptosis. Because mammalian homolog of the Forkhead family of transcription factors, Forkhead box O transcription factor 3a (FOXO3a), controls ROS metabolism, we asked whether FOXO3a could affect the fate of differentiated neurons in the paradigm of HIVE. We observed FOXO3a nuclear translocation in HG-treated neuronal cultures, accompanied by partial loss of mitochondrial potential and gradual retraction of neuronal processes. Addition of TNFα to HG-treated neurons increased expression of the FOXO-dependent proapoptotic gene Bim, which resulted in extensive apoptotic death. Insulin-like growth factor-I (IGF-I) significantly lowered intracellular ROS, which was accompanied by IGF-I-mediated FOXO3a nuclear export and decrease in its transcriptional activity. The clinical relevance of these findings is supported by detection of nuclear FOXO3a in TUNEL-positive cortical neurons from HIVE, especially in brain areas characterized by elevated TNFα.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, Louisianna 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ikeda T, Hirata S, Fukushima S, Matsunaga Y, Ito T, Uchino M, Nishimura Y, Senju S. Dual Effects of TRAIL in Suppression of Autoimmunity: The Inhibition of Th1 Cells and the Promotion of Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5259-67. [DOI: 10.4049/jimmunol.0902797] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Watzlawik J, Warrington AE, Rodriguez M. Importance of oligodendrocyte protection, BBB breakdown and inflammation for remyelination. Expert Rev Neurother 2010; 10:441-57. [PMID: 20187865 DOI: 10.1586/ern.10.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the CNS. A better understanding of why remyelination fails in MS is necessary to improve remyelination strategies. Remyelination is mediated by oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, it is still unclear whether OPCs detectable in MS lesions survive the inflammatory response but are unable to myelinate or whether OPC and oligodendrocyte death is primarily responsible for remyelination failure and detectable OPCs enter demyelinated areas from adjacent tissue as the lesion evolves. Remyelination strategies should, therefore, focus on stimulation of differentiation or prevention of apoptosis, as well as establishment of a supportive environment for OPC-mediated remyelination, which may be especially important in chronically demyelinated lesions.
Collapse
Affiliation(s)
- Jens Watzlawik
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
46
|
Hwang H, Lee S, Lee WH, Lee HJ, Suk K. Stimulation of glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL) induces inflammatory activation of microglia in culture. J Neurosci Res 2010; 88:2188-96. [DOI: 10.1002/jnr.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|