1
|
Banerjee A, Bardhan A, Sarkar P, Datta C, Pal DK, Saha A, Ghosh A. Dysregulation of DNA epigenetic modulators during prostate carcinogenesis in an eastern Indian patient population: Prognostic implications. Pathol Res Pract 2024; 253:154970. [PMID: 38056136 DOI: 10.1016/j.prp.2023.154970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The role of epigenetic alteration in prostate cancer pathogenesis was reported. We aimed to analyze dysregulation of DNA methylase (DNA methyl transferase/DNMT) and demethylase (ten eleven translocase/TET) and the associated interplay between them during prostate tumorigenesis. Promoter methylation and RNA/protein expression of selected DNMT and TETs were analysed in normal prostate, benign prostatic hyperplasia (BPH), and prostate cancer (PCa). Genomic 5-hydroxymethylcytosine (5hmC) level was detected and correlated with DNMT and TET proteins. Clinicopathological association of molecular data was done. Our data revealed a very low frequency of promoter methylation for DNMT1 (5-3% and high frequency for TET1 (22-38%), TET2 (68-90 %), and TET3 (43-32 %) in BPH and PCa. The promoter methylation of DNMT1 (p = 0.019) showed a significantly decreasing trend, while that of TET1 (p = 0.0005) and TET2 (p < 0.0001) showed an increasing trend from normal prostate to BPH to PCa, indicating their epigenetic dysregulation during prostate tumorigenesis. RNA/protein overexpression of DNMT1 and reduced expression of TET1 and TET2 in PCa compared to BPH were associated with the promoter methylation status of genes. The 5hmC level was significantly lower in PCa than in BPH and correlated negatively with DNMT1 but positively with TET1 and TET2 proteins, suggesting dysregulation of DNA methylase and de-methylase activities during prostate tumorigenesis. Lastly, tumors having methylated TET1 and TET2 promoters showed advanced clinicopathological features (a higher PSA level/Gleason score) and increased risk of bone metastasis. In conclusion, DNMT1 upregulation and epigenetic silencing of TET1 and TET2 was seen during PCa development. TET1 and TET2 promoter methylation has prognostic importance.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Abhishek Bardhan
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Purandar Sarkar
- Institute of Health Sciences, Presidency University, New Town, Kolkata, West Bengal, India
| | - Chhanda Datta
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Abhik Saha
- Institute of Health Sciences, Presidency University, New Town, Kolkata, West Bengal, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
2
|
Yehya A, Ghamlouche F, Zahwe A, Zeid Y, Wakimian K, Mukherji D, Abou-Kheir W. Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:667-690. [PMID: 36176747 PMCID: PMC9511807 DOI: 10.20517/cdr.2022.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men globally. Despite improvements in the diagnosis and treatment of PCa, a significant proportion of patients with high-risk localized disease and all patients with advanced disease at diagnosis will experience progression to metastatic castration-resistant prostate cancer (mCRPC). Multiple drugs are now approved as the standard of care treatments for patients with mCRPC that have been shown to prolong survival. Although the majority of patients will respond initially, primary and secondary resistance to these therapies make mCRPC an incurable disease. Several molecular mechanisms underlie the development of mCRPC, with the androgen receptor (AR) axis being the main driver as well as the key drug target. Understanding resistance mechanisms is crucial for discovering novel therapeutic strategies to delay or reverse the progression of the disease. In this review, we address the diverse mechanisms of drug resistance in mCRPC. In addition, we shed light on emerging targeted therapies currently being tested in clinical trials with promising potential to overcome mCRPC-drug resistance.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Amin Zahwe
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Yousef Zeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
3
|
Singh R, Mills IG. The Interplay Between Prostate Cancer Genomics, Metabolism, and the Epigenome: Perspectives and Future Prospects. Front Oncol 2021; 11:704353. [PMID: 34660272 PMCID: PMC8511631 DOI: 10.3389/fonc.2021.704353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is a high-incidence cancer, often detected late in life. The prostate gland is an accessory gland that secretes citrate; an impaired citrate secretion reflects imbalances in the activity of enzymes in the TCA Cycle in mitochondria. Profiling studies on prostate tumours have identified significant metabolite, proteomic, and transcriptional modulations with an increased mitochondrial metabolic activity associated with localised prostate cancer. Here, we focus on the androgen receptor, c-Myc, phosphatase and tensin Homolog deleted on chromosome 10 (PTEN), and p53 as amongst the best-characterised genomic drivers of prostate cancer implicated in metabolic dysregulation and prostate cancer progression. We outline their impact on metabolic function before discussing how this may affect metabolite pools and in turn chromatin structure and the epigenome. We reflect on some recent literature indicating that mitochondrial mutations and OGlcNAcylation may also contribute to this crosstalk. Finally, we discuss the technological challenges of assessing crosstalk given the significant differences in the spatial sensitivity and throughput of genomic and metabolomic profiling approaches.
Collapse
Affiliation(s)
- Reema Singh
- Nuffield Department of Surgical Sciences John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Patrick G Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast, United Kingdom
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9010217. [PMID: 31952344 PMCID: PMC7017057 DOI: 10.3390/cells9010217] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The JAK/STAT3 signaling pathway plays an essential role in various types of cancers. Activation of this pathway leads to increased tumorigenic and metastatic ability, the transition of cancer stem cells (CSCs), and chemoresistance in cancer via enhancing the epithelial–mesenchymal transition (EMT). EMT acts as a critical regulator in the progression of cancer and is involved in regulating invasion, spread, and survival. Furthermore, accumulating evidence indicates the failure of conventional therapies due to the acquisition of CSC properties. In this review, we summarize the effects of JAK/STAT3 activation on EMT and the generation of CSCs. Moreover, we discuss cutting-edge data on the link between EMT and CSCs in the tumor microenvironment that involves a previously unknown function of miRNAs, and also discuss new regulators of the JAK/STAT3 signaling pathway.
Collapse
|
5
|
Tzelepi V, Logotheti S, Efstathiou E, Troncoso P, Aparicio A, Sakellakis M, Hoang A, Perimenis P, Melachrinou M, Logothetis C, Zolota V. Epigenetics and prostate cancer: defining the timing of DNA methyltransferase deregulation during prostate cancer progression. Pathology 2019; 52:218-227. [PMID: 31864524 DOI: 10.1016/j.pathol.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/31/2023]
Abstract
DNA methyltransferases (DNMTs) regulate gene expression by methylating cytosine residues within CpG dinucleotides. Aberrant methylation patterns have been shown in a variety of human tumours including prostate cancer. However, the expression of DNMTs in clinical samples across the spectrum of prostate cancer progression has not been studied before. Tissue microarrays were constructed from the prostatectomy specimens of 309 patients across the spectrum of prostate cancer progression: hormone-naïve low-grade prostate cancer (n=49), hormone-naïve high-grade prostate cancer (n=151), hormonally treated high-grade prostate cancer (n=65), and castrate-resistant prostate cancer (CRPC) including neuroendocrine carcinoma (n=44). Adjacent non-neoplastic parenchyma was also available in 100 patients. In 71 patients with high-grade carcinoma and lymph node metastasis, tissue from the metastasis was also available for analysis. Immunohistochemical staining was performed with antibodies against DNMT1, DNMT2, DNMT3A, DNMT3B, and DNMT3L. Our results showed that DNMT1 and DNMT3L were upregulated early in prostate cancer progression, whereas DNMT2 was upregulated as a response to androgen ablation. DNMT1, DNMT3A, and DNMT3B were higher in the late stages of prostate cancer progression, i.e., the emergence of castrate resistance and androgen-independent growth. Lastly, DNMT1, DNMT2, and DNMT3L were upregulated in lymph node metastases compared to primary carcinomas. Our results highlight a cascade of epigenetic events in prostate cancer progression.
Collapse
Affiliation(s)
- Vasiliki Tzelepi
- Department of Pathology, Medical School, University of Patras, Greece.
| | - Souzana Logotheti
- Department of Pathology, Medical School, University of Patras, Greece
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Minas Sakellakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Anh Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Petros Perimenis
- Department of Urology, Medical School, University of Patras, Greece
| | - Maria Melachrinou
- Department of Pathology, Medical School, University of Patras, Greece
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, USA
| | - Vasiliki Zolota
- Department of Pathology, Medical School, University of Patras, Greece
| |
Collapse
|
6
|
Strmiska V, Michalek P, Lackova Z, Guran R, Krizkova S, Vanickova L, Zitka O, Stiborova M, Eckschlager T, Klejdus B, Pacik D, Tvrdikova E, Keil C, Haase H, Adam V, Heger Z. Sarcosine is a prostate epigenetic modifier that elicits aberrant methylation patterns through the SAMe-Dnmts axis. Mol Oncol 2019; 13:1002-1017. [PMID: 30628163 PMCID: PMC6487735 DOI: 10.1002/1878-0261.12439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
DNA hypermethylation is one of the most common epigenetic modifications in prostate cancer (PCa). Several studies have delineated sarcosine as a PCa oncometabolite that increases the migration of malignant prostate cells while decreasing their doubling time. Here, we show that incubation of prostate cells with sarcosine elicited the upregulation of sarcosine N‐demethylation enzymes, sarcosine dehydrogenase and pipecolic acid oxidase. This process was accompanied by a considerable increase in the production of the major methyl‐donor S‐adenosylmethionine (SAMe), together with an elevation of cellular methylation potential. Global DNA methylation analyses revealed increases in methylated CpG islands in distinct prostate cell lines incubated with sarcosine, but not in cells of nonprostate origin. This phenomenon was further associated with marked upregulation of DNA methyltransferases (Dnmts). Epigenetic changes were recapitulated through blunting of Dnmts using the hypomethylating agent 5‐azacytidine, which was able to inhibit sarcosine‐induced migration of prostate cells. Moreover, spatial mapping revealed concomitant increases in sarcosine, SAMe and Dnmt1 in histologically confirmed malignant prostate tissue, but not in adjacent or nonmalignant tissue, which is in line with the obtained in vitro data. In summary, we show here for the first time that sarcosine acts as an epigenetic modifier of prostate cells and that this may contribute to its oncometabolic role.
Collapse
Affiliation(s)
- Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Zuzana Lackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Lucie Vanickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague 5, Czech Republic
| | - Borivoj Klejdus
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Mendel University in Brno, Czech Republic
| | - Dalibor Pacik
- Department of Urology, University Hospital Brno, Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eliska Tvrdikova
- Department of Pathology, University Hospital Brno, Czech Republic
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Technical University of Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technical University of Berlin, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Czech Republic
| |
Collapse
|
7
|
Huang Y, Jiang X, Liang X, Jiang G. Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 2018; 15:6063-6076. [PMID: 29616091 PMCID: PMC5876469 DOI: 10.3892/ol.2018.8123] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
With increases in the mortality rate and number of patients with prostate cancer (PCa), PCa, particularly the advanced and metastatic disease, has been the focus of a number of studies globally. Over the past seven decades, androgen deprivation therapy has been the primary therapeutic option for patients with advanced PCa; however, the majority of patients developed a poor prognosis stage of castration resistant prostate cancer (CRPC), which eventually led to mortality. Due to CRPC being incurable, laboratory investigations and clinical studies focusing on CRPC have been conducted worldwide. Clarification of the molecular pathways that may lead to CRPC is important for discovering novel therapeutic strategies to delay or reverse the progression of disease. A sustained androgen receptor (AR) signal is still regarded as the main cause of CRPC. Increasing number of studies have proposed different potential mechanisms that cause CRPC, and this has led to the development of novel agents targeting the AR-dependent pathway or AR-independent signaling. In the present review, the major underlying mechanisms causing CRPC, including several major categories of AR-dependent mechanisms, AR bypass signaling, AR-independent mechanisms and other important hypotheses (including the functions of autophagy, PCa stem cell and microRNAs in CRPC progression), are summarized with retrospective pre-clinical or clinical trials to guide future research and therapy.
Collapse
Affiliation(s)
- Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
8
|
Xiang S, Zou P, Tang Q, Zheng F, Wu J, Chen Z, Hann SS. HOTAIR-mediated reciprocal regulation of EZH2 and DNMT1 contribute to polyphyllin I-inhibited growth of castration-resistant prostate cancer cells in vitro and in vivo. Biochim Biophys Acta Gen Subj 2017; 1862:589-599. [PMID: 29221985 DOI: 10.1016/j.bbagen.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Polyphyllin I (PPI), one of the steroidal saponins in paris polyphylla, has been reported to exhibit antitumor effects. However, the detailed molecular mechanism underlying this has not been elucidated. METHODS Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and Flow cytometry assays, respectively. Cell invasion and migration were examined by Transwell invasion and wound healing assays. Western blot analysis was performed to examine the protein expressions of zeste homolog 2 (EZH2), DNA methyltransferase 1 (DNMT1). QRT-PCR was used to examine the levels of long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR). Small interfering RNAs (siRNAs) method was used to knockdown HOTAIR. Exogenously expressions of HOTAIR, DNMT1 and EZH2 were carried out by Transient transfection assays. EZH2 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. A nude mice xenograft model was used to confirm the findings in vitro. RESULTS We showed that PPI significantly inhibited growth, induced cell cycle arrest of castration-resistant prostate cancer (CRPC) cells. In addition, PPI also reduced the migration and invasion in CRPC cells. In mechanism, we found that PPI decreased the protein expressions of EZH2, DNMT1 and levels of HOTAIR. Interestingly, silenced HOTAIR reduced EZH2 and DNMT1 protein expressions. On the contrary, exogenously expressed HOTAIR resisted PPI-inhibited EZH2 and DNMT1 protein expressions, EZH2 promoter activity and cell growth. Moreover, excessive EZH2 antagonized PPI-suppressed DNMT1 protein expression or vice versa. Consistent with this, PPI inhibited tumor growth, HOTAIR, the protein expressions of DNMT1 and EZH2 in vivo. CONCLUSION Our results show that PPI inhibits growth of CRPC cells through inhibition of HOTAIR expression, subsequently; this results in the repression of DNMT1 and EZH2 expressions. The interactions among HOTAIR, DNMT1 and EZH2, and reciprocal regulation of DNMT1 and EZH2 contribute to the overall responses of PPI. This study reveals a novel mechanism for HOTAIR-mediated regulating DNMT1 and EZH2 in response to PPI in inhibition of the growth of CRPC cells.
Collapse
Affiliation(s)
- SongTao Xiang
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - PeiLiang Zou
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China; Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - JingJing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - ZhiQiang Chen
- Department of Urology Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|
9
|
A new transgenic mouse model for conditional overexpression of the Polycomb Group protein EZH2. Transgenic Res 2016; 26:187-196. [DOI: 10.1007/s11248-016-9993-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023]
|
10
|
Corbin JM, Ruiz-Echevarría MJ. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling. Int J Mol Sci 2016; 17:E1208. [PMID: 27472325 PMCID: PMC5000606 DOI: 10.3390/ijms17081208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.
Collapse
Affiliation(s)
- Joshua M Corbin
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Maria J Ruiz-Echevarría
- Department of Pathology, Oklahoma University Health Sciences Center and Stephenson Cancer Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
11
|
Kwak DH, Heo SY, Kim CH, Kim JS, Kim SU, Chang KT, Choo YK. Anti-inflammatory actions of plant-derived multiple monoclonal antibody CO17-1A × BR55 related with anti-cancer effects in AOM/DSS-induced colorectal cancer mouse via down-regulating of ERK1/2. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1211176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Wang X, Chen E, Yang X, Wang Y, Quan Z, Wu X, Luo C. 5-azacytidine inhibits the proliferation of bladder cancer cells via reversal of the aberrant hypermethylation of the hepaCAM gene. Oncol Rep 2015; 35:1375-84. [PMID: 26677113 DOI: 10.3892/or.2015.4492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte cell adhesion molecule (hepaCAM), a tumor-suppressor gene, is rarely expressed in bladder carcinoma. However, little is known concerning the mechanisms of low hepaCAM expression in bladder cancer. Abnormal hypermethylation in the promoter plays a crucial role in cancer by silencing tumor-suppressor genes, which is catalyzed by DNA methyltransferases (DNMTs). In the present study, a total of 31 bladder cancer and 22 adjacent tissues were assessed by immunohistochemistry to detect DNMT3A/3B and hepaCAM expression. Methylation of hepaCAM was determined by methylation‑specific polymerase chain reaction (MSP). The mRNA and protein levels of DNMT3A/3B and hepaCAM were determined by RT-PCR and western blot analysis after treatment with 5-azacytidine (AZAC). Following AZAC treatment, the proliferation of bladder cancer cells was detected by CCK-8 and colony formation assays. Cell cycle distribution was examined by flow cytometry. To further evaluate the tumor‑suppressive roles of AZAC and the involved mechanisms, the anti-tumorigenicity of AZAC was tested in vivo. The expression of DNMT3A/3B protein was markedly increased in the bladder carcinoma tissues (P<0.05), and had a negative linear correlation with hepaCAM expression in the same patients according to Pearson's analysis (r=-0.7176/-0.7127, P<0.05). The MSP results indicated that the hepaCAM gene was hypermethylated in three bladder cancer cell lines. Furthermore, we found that downregulation of DNMT3A/3B expression, after treatment with AZAC, reversed the hypermethylation and expression of hepaCAM in bladder cancer cells. In addition, AZAC inhibited the proliferation of bladder cancer cells and arrested cells at the G0/G1 phase. The in vivo results showed that expression of DNMT3A/3B and hepaCAM as well as tumor growth of nude mice were markedly altered which corresponded with the in vitro results. Due to the ability to reactivate expression of hepaCAM and inhibit growth of bladder cancer cells, AZAC may represent an effective treatment for bladder cancer.
Collapse
Affiliation(s)
- Xiaorong Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - E Chen
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Xue Yang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Yin Wang
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
13
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
14
|
Wu S, Wang X, Chen JX, Chen Y. Predictive factors for the sensitivity of radiotherapy and prognosis of esophageal squamous cell carcinoma. Int J Radiat Biol 2014; 90:407-13. [PMID: 24576011 DOI: 10.3109/09553002.2014.894649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identify predictive biomarkers for radiosensitization and prognosis of esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS A total of 150 advanced stage ESCC patients were treated with preoperative radiotherapy. The protein levels of Dicer 1, DNA methyltransferase 1 (Dnmt1), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and the mRNA levels of Dicer 1, Dnmt1, and let-7b microRNA (miRNA) were measured in ESCC tumor tissues before and after radiotherapy. Global DNA methylation was measured and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed. RESULTS Negative Dicer 1, Dnmt1, and DNA-PKcs protein expression were observed in 72%, 67.3%, and 50.7% of ESCC patients, respectively. Primary Dicer 1 and Dnmt1 expression positively correlated with radiation sensitization and longer survival of ESCC patients, while increased Dicer 1 and Dnmt1 expression after radiation correlated with increased apoptosis in residual tumor tissues. Dicer 1 and Dnmt1 expression correlated with let-7b miRNA expression and global DNA methylation levels, respectively. In contrast, positive DNA-PKcs expression negatively correlated with radiation-induced pathological reactions, and increased DNA-PKcs expression correlated with increased apoptosis after radiation. CONCLUSION Global DNA hypomethylation and low miRNA expression are involved in the sensitization of ESCC to radiotherapy and prognosis of patients with ESCC.
Collapse
|
15
|
Valdez CD, Kunju L, Daignault S, Wojno KJ, Day ML. The E2F1/DNMT1 axis is associated with the development of AR negative castration resistant prostate cancer. Prostate 2013; 73:1776-85. [PMID: 24038143 DOI: 10.1002/pros.22715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/06/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Research on castration resistant prostate cancer (CRPC) has focused primarily on functional alterations of the androgen receptor (AR). However, little is known about the loss of AR gene expression itself and the possible contribution of AR negative cells to CRPC. METHODS Human and murine prostate cancer tissue microarrays (TMAs) were evaluated with antibodies specific for E2F1, DNA methyltransferase 1 or AR. The human prostate cancer TMA consisted of clinical samples ranging from normal tissue to samples of metastatic disease. The murine TMA was comprised of benign, localized or metastatic prostate cancer acquired from TRAMP mice treated with castration and/or 5'-Aza-2'-deoxycytidine (5Aza). RESULTS Immunohistochemical analysis revealed increased nuclear DNMT1 staining in localized PCa (P < 0.0001) and metastatic PCa (P < 0.0001) compared to normal tissue. Examination of specific diagnoses revealed that Gleason seven tumors exhibited greater nuclear DNMT1 staining than Gleason six tumors (P < 0.05) and that metastatic tissue exhibited greater levels of nuclear DNMT1 than Gleason seven tumors (P < 0.01). Evaluation of the murine tissue cores revealed that 8.2% and 8.1% of benign tissue cores stained positive for E2F1 and DNMT1 respectively, while 97.0% were AR positive. Conversely, 81% and 100% of tumors were positive for E2F1 and DNMT1 respectively. This was in stark contrast to only 18% of tumors positive for AR. Treatment of mice with 5Aza reduced DNMT1 staining by 30%, while AR increased by 27%. CONCLUSIONS These findings demonstrate that the E2F1/DNMT1 inhibitory axis of AR transcription is activated during the emergence of CRPC.
Collapse
Affiliation(s)
- Conrad David Valdez
- Department of Urology, University of Michigan, Ann Arbor, Michigan; Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | |
Collapse
|
16
|
Wu CT, Chen MF, Chen WC, Hsieh CC. The role of IL-6 in the radiation response of prostate cancer. Radiat Oncol 2013; 8:159. [PMID: 23806095 PMCID: PMC3717100 DOI: 10.1186/1748-717x-8-159] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Background Hormone-resistant (HR) prostate cancers are highly aggressive and respond poorly to treatment. IL-6/STAT3 signaling has been identified to link with the transition of HR and aggressive tumor behavior. The role of IL-6 in the radiation response of prostate cancer was investigated in the present study. Material and methods The murine prostate cancer cell line (TRAMP-C1) and the hormone-resistant cell sub-line, TRAMP-HR, were used to assess the radiation response using in vitro clonogenic assays and tumor growth delay in vivo. Biological changes following irradiation were investigated by means of experimental manipulation of IL-6 signaling. Correlations among IL-6 levels, tumor regrowth, angiogenesis and myeloid-derived suppressor cell (MDSC) recruitment were examined in an animal model. Results HR prostate cancer cells had a higher expression of IL-6 and more activated STAT3, compared to TRAMP-C1 cells. HR prostate cancer cells had a greater capacity to scavenge reactive oxygen species, suffered less apoptosis, and subsequently were more likely to survive after irradiation. Moreover, IL-6 expression was positively linked to irradiation and radiation resistance. IL-6 inhibition enhanced the radiation sensitivity of prostate cancer, which was associated with increased p53, RT-induced ROS and oxidative DNA damage. Furthermore, when mice were irradiated with a sub-lethal dose, inhibition of IL-6 protein expression attenuated angiogenesis, MDSC recruitment, and decreased tumor regrowth. Conclusion These data demonstrate that IL-6 is important in the biological sequelae following irradiation. Therefore, treatment with concurrent IL-6 inhibition is a potential therapeutic strategy for increasing the radiation response of prostate cancer.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | | | | | | |
Collapse
|
17
|
Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, van der Kwast T, Mizokami A, Morrissey C, Jarvi K, Diamandis EP. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol Cell Proteomics 2013; 12:1589-601. [PMID: 23443136 DOI: 10.1074/mcp.m112.023887] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the most common malignancy and the second leading cause of cancer-related deaths in men. One common treatment is androgen-deprivation therapy, which reduces symptoms in most patients. However, over time, patients develop tumors that are androgen-independent and ultimately fatal. The mechanisms that cause this transition remain largely unknown, and as a result, there are no effective treatments against androgen-independent prostate cancer. As a model platform, we used the LNCaP cell line and its androgen-independent derivative, LNCaP-SF. Utilizing stable isotope labeling with amino acids in cell culture coupled to mass spectrometry, we assessed the differential global protein expression of the two cell lines. Our proteomic analysis resulted in the quantification of 3355 proteins. Bioinformatic prioritization resulted in 42 up-regulated and 46 down-regulated proteins in LNCaP-SF cells relative to LNCaP cells. Our top candidate, HMGCS2, an enzyme involved in ketogenesis, was found to be 9-fold elevated in LNCaP-SF cells, based on peptide ratios. After analyzing the remaining enzymes of this pathway (ACAT1, BDH1, HMGCL, and OXCT1), we observed increased expression of these proteins in the LNCaP-SF cells, which was further verified using Western blotting. To determine whether these enzymes were up-regulated in clinical samples, we performed quantitative PCR and immunohistochemistry on human prostate cancer tissues, from which we observed significantly increased transcript and protein levels in high-grade cancer (Gleason grade ≥ 8). In addition, we observed significant elevation of these enzymes in the LuCaP 96AI castration-resistant xenograft. Further assessment of ACAT1 on human castration-resistant metastatic prostate cancer tissues revealed substantially elevated expression of ACAT1 in these specimens. Taken together, our results indicate that enzymes of the ketogenic pathway are up-regulated in high-grade prostate cancer and could serve as potential tissue biomarkers for the diagnosis or prognosis of high-grade disease.
Collapse
Affiliation(s)
- Punit Saraon
- Department of Pathology and Laboratory Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen MF, Lu MS, Lin PY, Chen PT, Chen WC, Lee KD. The role of DNA methyltransferase 3b in esophageal squamous cell carcinoma. Cancer 2012; 118:4074-89. [PMID: 22213175 DOI: 10.1002/cncr.26736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/11/2011] [Accepted: 11/01/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND The identification of potential tumor markers can improve therapeutic planning and patient management. The objective of this study was to highlight the role of DNA methyltransferase 3b (DNMT3b) in esophageal squamous cell carcinoma (SCC). METHODS One hundred seventy-three esophageal SCC samples were analyzed using immunohistochemical staining to correlate the expression of DNMT3b with clinical outcome. Furthermore, a human esophageal SCC cell line, CE81T, was selected for cellular and animal experiments to investigate changes in tumor behavior and treatment response after the manipulation of DNMT3b expression. RESULTS The incidence of nuclear DNMT3b immunoreactivity in esophageal cancer specimens was significantly higher than in nonmalignant epithelium, and this incidence was linked positively to developing distant metastasis (56% in localized disease vs 80% in distant metastasis; P = .002). Furthermore, increased expression of DNMT3b was linked significantly to lower treatment response rates (P = .002) and reduced survival rates (P = .000). Inhibition of DNMT3b expression resulted in slower cellular proliferation, increased cell death, a less invasive capacity, and less epithelial-mesenchymal-transition changes. Moreover, DNMT3b silencing vectors sensitized esophageal cancer cells to irradiation and cisplatin treatment. The current results also indicated that constitutional activation of signal transducer and activator of transcription 3 (STAT3) signaling associated with inhibited expression of suppressor of cytokine signaling 3 (SOCS3) may be the mechanism underlying more aggressive tumor growth in DNMT3b-positive esophageal cancer. CONCLUSIONS DNMT3b was linked significantly to a poor prognosis for patients with esophageal cancer. Moreover, the current results indicated that targeting this enzyme may be a promising strategy for treating esophageal cancer, as evidenced by inhibited aggressive tumor behavior and treatment resistance.
Collapse
Affiliation(s)
- Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | | | | | | | | | | |
Collapse
|
19
|
Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl) 2012; 90:1343-55. [PMID: 22660275 DOI: 10.1007/s00109-012-0916-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/26/2012] [Accepted: 05/10/2012] [Indexed: 01/15/2023]
Abstract
Hormone-resistant (HR) prostate cancers are highly aggressive and respond poorly to treatment. A better understanding of the molecular mechanisms involved in HR should lead to more rational approaches to therapy. The role of IL-6/STAT3 signaling in the transition of HR with aggressive tumor behavior and its possible link with myeloid-derived suppressor cells (MDSCs) were identified. In the present study, murine prostate cancer cell line (TRAMP-C1) and a hormone-resistant cell sub-line (TRAMP-HR) were used. Changes in tumor growth, invasion ability, and the responsible pathway were investigated in vitro and in vivo. We also examined the role of IL-6 in HR tumor progression and the recruitment of MDSCs. As seen in both in vitro and in vivo experiments, HR had aggressive tumor growth compared to TRAMP-C1. From mRNA and protein analysis, a higher expression of IL-6 associated with a more activated STAT3 was noted in HR tumor. When IL-6 signaling in prostate cancer was blocked, aggressive tumor behavior could be overcome. The underlying changes included decreased cell proliferation, less epithelial-mesenchymal transition, and decreased STAT3 activation. In addition to tumor progression, circulating IL-6 levels were significantly correlated with MDSC recruitment in vivo. Inhibition of IL-6 abrogated the recruitment of MDSCs in tumor- bearing mice, associated with slower tumor growth and attenuated angiogenesis. In conclusion, altered IL-6/STAT3 signaling is crucial in HR transition, aggressive behavior, and MDSC recruitment. These findings provide evidence for therapeutically targeting IL-6 signaling in prostate cancer.
Collapse
|
20
|
Abstract
Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.
Collapse
|
21
|
Zhang Q, Chen L, Helfand BT, Jang TL, Sharma V, Kozlowski J, Kuzel TM, Zhu LJ, Yang XJ, Javonovic B, Guo Y, Lonning S, Harper J, Teicher BA, Brendler C, Yu N, Catalona WJ, Lee C. TGF-β regulates DNA methyltransferase expression in prostate cancer, correlates with aggressive capabilities, and predicts disease recurrence. PLoS One 2011; 6:e25168. [PMID: 21980391 PMCID: PMC3184137 DOI: 10.1371/journal.pone.0025168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND DNA methyltransferase (DNMT) is one of the major factors mediating the methylation of cancer related genes such as TGF-β receptors (TβRs). This in turn may result in a loss of sensitivity to physiologic levels of TGF-β in aggressive prostate cancer (CaP). The specific mechanisms of DNMT's role in CaP remain undetermined. In this study, we describe the mechanism of TGF-β-mediated DNMT in CaP and its association with clinical outcomes following radical prostatectomy. METHODOLOGY/PRINCIPAL FINDINGS We used human CaP cell lines with varying degrees of invasive capability to describe how TGF-β mediates the expression of DNMT in CaP, and its effects on methylation status of TGF-β receptors and the invasive capability of CaP in vitro and in vivo. Furthermore, we determined the association between DNMT expression and clinical outcome after radical prostatectomy. We found that more aggressive CaP cells had significantly higher TGF-β levels, increased expression of DNMT, but reduced TβRs when compared to benign prostate cells and less aggressive prostate cancer cells. Blockade of TGF-β signaling or ERK activation (p-ERK) was associated with a dramatic decrease in the expression of DNMT, which results in a coincident increase in the expression of TβRs. Blockade of either TGF-β signaling or DNMT dramatically decreased the invasive capabilities of CaP. Inhibition of TGF-β in an TRAMP-C2 CaP model in C57BL/6 mice using 1D11 was associated with downregulation of DNMTs and p-ERK and impairment in tumor growth. Finally, independent of Gleason grade, increased DNMT1 expression was associated with biochemical recurrence following surgical treatment for prostate cancer. CONCLUSIONS AND SIGNIFICANCE Our findings demonstrate that CaP derived TGF-β may induce the expression of DNMTs in CaP which is associated with methylation of its receptors and the aggressive potential of CaP. In addition, DNMTs is an independent predictor for disease recurrence after prostatectomy, and may have clinical implications for CaP prognostication and therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alva AS, Hahn NM, Aparicio AM, Singal R, Yellapragada S, Sonpavde G. Hypomethylating agents for urologic cancers. Future Oncol 2011; 7:447-63. [PMID: 21417907 DOI: 10.2217/fon.11.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Silencing of tumor suppressor genes by promoter-region methylation as an epigenetic mechanism of gene regulation is increasingly recognized as beneficial in cancer. Initially developed as cytotoxic high-dose therapies, azacitidine and decitabine are now being reinvestigated in lower-dose cancer treatment regimens with a different paradigm - hypomethylation. Recent evidence for benefit in myelodysplastic syndromes and acute myeloid leukemias has renewed interest in hypomethylation as a therapeutic option in epithelial cancers. In this article, we describe the mechanistic aspects of DNA methylation, which alters gene expression, and review the evidence for hypomethylation as a therapeutic option in urologic cancers. Potential correlative studies that may assist in developing tailored therapy with hypomethylating agents are reviewed. Given that the population with urologic cancers is typically elderly with multiple comorbidities, the excellent tolerability of lower-dose hypomethylating agents provides a high therapeutic index and rational development is warranted, bearing in mind that the cytostatic and delayed activity present challenges in the choice of appropriate trial end points.
Collapse
Affiliation(s)
- Ajjai S Alva
- Baylor College of Medicine & Michael E DeBakey VA Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wu CT, Wu CF, Lu CH, Lin CC, Chen WC, Lin PY, Chen MF. Expression and function role of DNA methyltransferase 1 in human bladder cancer. Cancer 2011; 117:5221-33. [DOI: 10.1002/cncr.26150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/19/2011] [Accepted: 03/02/2011] [Indexed: 12/31/2022]
|