1
|
Zhu Y, Yang X, Yang Y, Yan X, Li C, Chen S. Identification and Functional Analysis of Ras-Related Associated with Diabetes Gene ( rrad) in Edwardsiella piscicida-Resistant Individuals of Japanese Flounder ( Paralichthys olivaceus). Int J Mol Sci 2024; 25:10532. [PMID: 39408905 PMCID: PMC11476895 DOI: 10.3390/ijms251910532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Ras-related associated with diabetes (RRAD) is a member of the Ras GTPase superfamily that plays a role in several cellular functions, such as cell proliferation and differentiation. In particular, the superfamily acts as an NF-κB signaling pathway inhibitor and calcium regulator to participate in the immune response pathway. A recent transcriptome study revealed that rrad was expressed in the spleen of disease-resistant Japanese flounder (Paralichthys olivaceus) individuals compared with disease-susceptible individuals, and the results were also verified by qPCR. Thus, the present study aimed to explore how rrad regulates antimicrobial immunity via the NF-κB pathway. First, the coding sequence of P. olivaceus rrad was identified. The sequence was 1092 bp in length, encoding 364 amino acids. Based on phylogenetic and structural relationship analyses, P. olivaceus rrad appeared to be more closely related to teleosts. Next, rrad expression differences between disease-resistant and disease-susceptible individuals in immune-related tissues were evaluated, and the results revealed that rrad was expressed preferentially in the spleen of disease-resistant individuals. In response to Edwardsiella piscicida infection, rrad expression in the spleen changed. In vitro, co-culture was carried out to assess the hypo-methylated levels of the rrad promoter in the disease-resistant spleen, which was consistent with the high mRNA expression. The siRNA-mediated knockdown of rrad performed with the gill cell line of P. olivaceus affected many rrad-network-related genes, i.e., dcp1b, amagt, rus1, rapgef1, ralbp1, plce1, rasal1, nckipsd, prkab2, cytbc-1, sh3, and others, as well as some inflammation-related genes, such as bal2 and Il-1β. In addition, flow cytometry analysis showed that rrad overexpression was more likely to induce cell apoptosis, with establishing a link between rrad's function and its potential roles in regulating the NF-κB pathway. Thus,. the current study provided some clarity in terms of understanding the immune response about rrad gene differences between disease-resistant and disease-susceptible P. olivaceus individuals. This study provides a molecular basis for fish rrad gene functional analysis and may serve as a reference for in-depth of bacterial disease resistance of teleost.
Collapse
Affiliation(s)
- Ying Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.Y.); (C.L.)
| | - Xinsheng Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.Y.); (C.L.)
| | - Yingming Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Y.); (X.Y.); (S.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xu Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Y.); (X.Y.); (S.C.)
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.Y.); (C.L.)
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Y.); (X.Y.); (S.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Shiomi A, Kaneko T, Nishikawa K, Tsuchida A, Isoshima T, Sato M, Toyooka K, Doi K, Nishikii H, Shintaku H. High-throughput mechanical phenotyping and transcriptomics of single cells. Nat Commun 2024; 15:3812. [PMID: 38760380 PMCID: PMC11101642 DOI: 10.1038/s41467-024-48088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
The molecular system regulating cellular mechanical properties remains unexplored at single-cell resolution mainly due to a limited ability to combine mechanophenotyping with unbiased transcriptional screening. Here, we describe an electroporation-based lipid-bilayer assay for cell surface tension and transcriptomics (ELASTomics), a method in which oligonucleotide-labelled macromolecules are imported into cells via nanopore electroporation to assess the mechanical state of the cell surface and are enumerated by sequencing. ELASTomics can be readily integrated with existing single-cell sequencing approaches and enables the joint study of cell surface mechanics and underlying transcriptional regulation at an unprecedented resolution. We validate ELASTomics via analysis of cancer cell lines from various malignancies and show that the method can accurately identify cell types and assess cell surface tension. ELASTomics enables exploration of the relationships between cell surface tension, surface proteins, and transcripts along cell lineages differentiating from the haematopoietic progenitor cells of mice. We study the surface mechanics of cellular senescence and demonstrate that RRAD regulates cell surface tension in senescent TIG-1 cells. ELASTomics provides a unique opportunity to profile the mechanical and molecular phenotypes of single cells and can dissect the interplay among these in a range of biological contexts.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Cluster for Pioneering Research, RIKEN, Saitama, Japan
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Kentaro Doi
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | | | - Hirofumi Shintaku
- Cluster for Pioneering Research, RIKEN, Saitama, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Sun Z, Li Y, Tan X, Liu W, He X, Pan D, Li E, Xu L, Long L. Friend or Foe: Regulation, Downstream Effectors of RRAD in Cancer. Biomolecules 2023; 13:biom13030477. [PMID: 36979412 PMCID: PMC10046484 DOI: 10.3390/biom13030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.
Collapse
Affiliation(s)
- Zhangyue Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Yongkang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xiaolu Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Wanyi Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xinglin He
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Deyuan Pan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: ; Tel.: +86-754-88900460; Fax: +86-754-88900847
| |
Collapse
|
4
|
Guo J, Zhu Y, Yu L, Li Y, Guo J, Cai J, Liu L, Wang Z. Aspirin inhibits tumor progression and enhances cisplatin sensitivity in epithelial ovarian cancer. PeerJ 2021; 9:e11591. [PMID: 34414020 PMCID: PMC8340904 DOI: 10.7717/peerj.11591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Ovarian cancer is the most common gynecological malignancy and is difficult to manage due to the emergence of resistance to various chemotherapeutic drugs. New efforts are urgently awaited. Aspirin, which is traditionally considered a nonsteroidal anti-inflammatory drug (NSAID), has been reported to exert potential chemopreventive effects. Therefore, we aimed to investigate the anticancer effect and explore the underlying molecular mechanisms of aspirin on epithelial ovarian cancer (EOC) cells. Methods We conducted wound healing, transwell migration, EdU cell proliferation, colony formation and apoptosis detection assays to observe the effects of aspirin on the migration, proliferation and apoptosis of EOC cells (A2870, Caov-3, and SK-OV-3). EOC cells were treated with a combination of aspirin and cisplatin (CDDP) to observe the effect of aspirin on enhancing CDDP sensitivity. Orthotopic xenograft models of ovarian cancer established with A2780-Luciferase-GFP cells were applied to compare tumor growth inhibition in the control, CDDP and CDDP plus aspirin groups through in vivo imaging, which can be used to continuously monitor tumor growth. The expression and acetylation levels of p53 in EOC cells treated with aspirin were determined using western blotting, and p53 acetylation levels were examined in tumors harvested from the transplanted mice. Quantitative real-time PCR was used to assess the mRNA expression of p53 target genes. Results Aspirin inhibited migration and proliferation and induced apoptosis in EOC cell lines in a concentration-dependent manner. In vitro, aspirin enhanced the sensitivity of EOC cells to CDDP by increasing its inhibitory effect on proliferation and its effect on inducing apoptosis. In vivo, the differences in the tumor growth inhibition rates among the different CDDP experimental groups were statistically significant (p < 0.05). Aspirin did not affect p53 protein expression but increased the p53 acetylation level in a concentration-dependent manner. In addition, the mRNA levels of CDKN1A, BAX, FOXF1, PUMA, and RRAD in EOC cells were significantly increased by the aspirin treatment. Conclusions Aspirin inhibits tumor progression and enhances the CDDP sensitivity of EOC cells. These antitumor effects of aspirin might be mediated by p53 acetylation and subsequent activation of p53 target genes.
Collapse
Affiliation(s)
- Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yapei Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Valente LJ, Tarangelo A, Li AM, Naciri M, Raj N, Boutelle AM, Li Y, Mello SS, Bieging-Rolett K, DeBerardinis RJ, Ye J, Dixon SJ, Attardi LD. p53 deficiency triggers dysregulation of diverse cellular processes in physiological oxygen. J Cell Biol 2021; 219:152074. [PMID: 32886745 PMCID: PMC7594498 DOI: 10.1083/jcb.201908212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which TP53, the most frequently mutated gene in human cancer, suppresses tumorigenesis remain unclear. p53 modulates various cellular processes, such as apoptosis and proliferation, which has led to distinct cellular mechanisms being proposed for p53-mediated tumor suppression in different contexts. Here, we asked whether during tumor suppression p53 might instead regulate a wide range of cellular processes. Analysis of mouse and human oncogene-expressing wild-type and p53-deficient cells in physiological oxygen conditions revealed that p53 loss concurrently impacts numerous distinct cellular processes, including apoptosis, genome stabilization, DNA repair, metabolism, migration, and invasion. Notably, some phenotypes were uncovered only in physiological oxygen. Transcriptomic analysis in this setting highlighted underappreciated functions modulated by p53, including actin dynamics. Collectively, these results suggest that p53 simultaneously governs diverse cellular processes during transformation suppression, an aspect of p53 function that would provide a clear rationale for its frequent inactivation in human cancer.
Collapse
Affiliation(s)
- Liz J Valente
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Amy Tarangelo
- Department of Biology, Stanford University, Stanford, CA
| | - Albert Mao Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Marwan Naciri
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Anthony M Boutelle
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Yang Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Stephano Spano Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY
| | - Kathryn Bieging-Rolett
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiangbin Ye
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
6
|
Wei Z, Guo H, Qin J, Lu S, Liu Q, Zhang X, Zou Y, Gong Y, Shao C. Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. Free Radic Biol Med 2019; 130:267-277. [PMID: 30391675 DOI: 10.1016/j.freeradbiomed.2018.10.457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Cellular senescence, an irreversible proliferative arrest, functions in tissue remodeling during development and is implicated in multiple aging-associated diseases. While senescent cells often manifest an array of senescence-associated phenotypes, such as cell cycle arrest, altered heterochromatin architecture, reprogrammed metabolism and senescence-associated secretory phenotype (SASP), the identification of senescence cells has been hindered by lack of specific and universal biomarkers. To systematically identify universal biomarkers of cellular senescence, we integrated multiple transcriptome data sets of senescent cells obtained through different in vitro manipulation modes as well as age-related gene expression data of human tissues. Our analysis showed that RRAD (Ras-related associated with diabetes) expression is up-regulated in all the manipulation modes and increases with age in human skin and adipose tissues. The elevated RRAD expression was then confirmed in senescent human fibroblasts that were induced by Ras, H2O2, ionizing radiation, hydroxyurea, etoposide and replicative passage, respectively. Further functional study suggests that RRAD up-regulation acts as a negative feedback mechanism to counter cellular senescence by reducing the level of reactive oxygen species. Finally, we found both p53 and NF-κB bind to RRAD genomic regions and modulate RRAD transcription. This study established RRAD to be a biomarker as well as a novel negative regulator of cellular senescence.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, China; Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haiyang Guo
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Shihua Lu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiao Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yongxin Zou
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Changshun Shao
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China; State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Dembic M, Andersen HS, Bastin J, Doktor TK, Corydon TJ, Sass JO, Lopes Costa A, Djouadi F, Andresen BS. Next generation sequencing of RNA reveals novel targets of resveratrol with possible implications for Canavan disease. Mol Genet Metab 2019; 126:64-76. [PMID: 30446350 DOI: 10.1016/j.ymgme.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
Resveratrol (RSV) is a small compound first identified as an activator of sirtuin 1 (SIRT1), a key factor in mediating the effects of caloric restriction. Since then, RSV received great attention for its widespread beneficial effects on health and in connection to many diseases. RSV improves the metabolism and the mitochondrial function, and more recently it was shown to restore fatty acid β-oxidation (FAO) capacities in patient fibroblasts harboring mutations with residual enzyme activity. Many of RSV's beneficial effects are mediated by the transcriptional coactivator PGC-1α, a direct target of SIRT1 and a master regulator of the mitochondrial fatty acid oxidation. Despite numerous studies RSV's mechanism of action is still not completely elucidated. Our aim was to investigate the effects of RSV on gene regulation on a wide scale, possibly to detect novel genes whose up-regulation by RSV may be of interest with respect to disease treatment. We performed Next Generation Sequencing of RNA on normal fibroblasts treated with RSV. To investigate whether the effects of RSV are mediated through SIRT1 we expanded the analysis to include SIRT1-knockdown fibroblasts. We identified the aspartoacylase (ASPA) gene, mutated in Canavan disease, to be strongly up-regulated by RSV in several cell lines, including Canavan disease fibroblasts. We further link RSV to the up-regulation of other genes involved in myelination including the glial specific transcription factors POU3F1, POU3F2, and myelin basic protein (MBP). We also observe a strong up-regulation by RSV of the riboflavin transporter gene SLC52a1. Mutations in SLC52a1 cause transient multiple acyl-CoA dehydrogenase deficiency (MADD). Our analysis of alternative splicing identified novel metabolically important genes affected by RSV, among which is particularly interesting the α subunit of the stimulatory G protein (Gsα), which regulates the cellular levels of cAMP through adenylyl cyclase. We conclude that in fibroblasts RSV stimulates the PGC-1α and p53 pathways, and up-regulates genes affecting the glucose metabolism, mitochondrial β-oxidation, and mitochondrial biogenesis. We further confirm that RSV might be a relevant treatment in the correction of FAO deficiencies and we suggest that treatment in other metabolic disorders including Canavan disease and MADD might be also beneficial.
Collapse
Affiliation(s)
- Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Henriette S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jean Bastin
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris, cedex 06, France
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Sciences & IFGA, University of Applied Sciences, Rheinbach, Germany.
| | - Alexandra Lopes Costa
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris, cedex 06, France
| | - Fatima Djouadi
- INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris, cedex 06, France
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
8
|
Wei CC, Nie FQ, Jiang LL, Chen QN, Chen ZY, Chen X, Pan X, Liu ZL, Lu BB, Wang ZX. The pseudogene DUXAP10 promotes an aggressive phenotype through binding with LSD1 and repressing LATS2 and RRAD in non small cell lung cancer. Oncotarget 2018; 8:5233-5246. [PMID: 28029651 PMCID: PMC5354904 DOI: 10.18632/oncotarget.14125] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 01/04/2023] Open
Abstract
Pseudogenes have been considered as non-functional transcriptional relics of human genomic for long time. However, recent studies revealed that they play a plethora of roles in diverse physiological and pathological processes, especially in cancer, and many pseudogenes are transcribed into long noncoding RNAs and emerging as a novel class of lncRNAs. However, the biological roles and underlying mechanism of pseudogenes in the pathogenesis of non small cell lung cancer are still incompletely elucidated. This study identifies a putative oncogenic pseudogene DUXAP10 in NSCLC, which is located in 14q11.2 and 2398 nt in length. Firstly, we found that DUXAP10 was significantly up-regulated in 93 human NSCLC tissues and cell lines, and increased DUXAP10 was associated with patients poorer prognosis and short survival time. Furthermore, the loss and gain of functional studies including growth curves, migration, invasion assays and in vivo studies verify the oncogenic roles of DUXAP10 in NSCLC. Finally, the mechanistic experiments indicate that DUXAP10 could interact with Histone demethylase Lysine specific demethylase1 (LSD1) and repress tumor suppressors Large tumor suppressor 2 (LATS2) and Ras-related associated with diabetes (RRAD) transcription in NSCLC cells. Taken together, these findings demonstrate DUXAP10 exerts the oncogenic roles through binding with LSD1 and epigenetic silencing LATS2 and RRAD expression. Our investigation reveals the novel roles of pseudogene in NSCLC, which may serve as new target for NSCLC diagnosis and therapy.
Collapse
Affiliation(s)
- Chen-Chen Wei
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feng-Qi Nie
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li-Li Jiang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oncology, Haimen People's Hospital, Haimen, People's Republic of China
| | - Qin-Nan Chen
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhen-Yao Chen
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xin Chen
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuan Pan
- Department of Medical Oncology, Nanjing Medical University Affiliated Cancer Hospital of Jiangsu Province, Cancer Institution of Jiangsu Province, Nanjing, People's Republic of China
| | - Zhi-Li Liu
- Department of Oncology, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, People's Republic of China
| | - Bin-Bin Lu
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhao-Xia Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Withers CN, Brown DM, Byiringiro I, Allen MR, Condon KW, Satin J, Andres DA. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice. Bone 2017; 103:270-280. [PMID: 28732776 PMCID: PMC6886723 DOI: 10.1016/j.bone.2017.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/03/2023]
Abstract
The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad-/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity.
Collapse
Affiliation(s)
- Catherine N Withers
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Innocent Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
10
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Sui CJ, Zhou YM, Shen WF, Dai BH, Lu JJ, Zhang MF, Yang JM. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J Mol Med (Berl) 2016; 94:1281-1296. [PMID: 27380494 DOI: 10.1007/s00109-016-1442-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to play pivotal roles in a variety of cancers. However, lncRNAs involved in hepatocellular carcinoma (HCC) initiation and progression remain largely unclear. In this study, we identified an lncRNA gradually increased during hepatocarcinogenesis (lncRNA-GIHCG) using publicly available microarray data. Our results further revealed that GIHCG is upregulated in HCC tissues in comparison with adjacent non-tumor tissues. High GIHCG expression is correlated with large tumor size, microvascular invasion, advanced BCLC stage, and poor survival of HCC patients. Functional experiments showed that GIHCG promotes HCC cells proliferation, migration, and invasion in vitro, and promotes xenografts growth and metastasis in vivo. Mechanistically, we demonstrated that GIHCG physically associates with EZH2 and the promoter of miR-200b/a/429, recruits EZH2 and DNMT1 to the miR-200b/a/429 promoter regions, upregulates histone H3K27 trimethylation and DNA methylation levels on the miR-200b/a/429 promoter, and dramatically silences miR-200b/a/429 expression. Furthermore, the biological functions of GIHCG on HCC are dependent on the silencing of miR-200b/a/429. Collectively, our results demonstrated the roles and functional mechanisms of GIHCG in HCC, and indicated GIHCG may act as a prognostic biomarker and potential therapeutic target for HCC. KEY MESSAGE: lncRNA-GIHCG is upregulated in HCC and associated with poor survival of patients. GIHCG significantly promotes tumor growth and metastasis of HCC. GIHCG physically associates with EZH2. GIHCG upregulates H3K27me3 and DNA methylation levels on the miR-200b/a/429 promoter. GIHCG epigenetically silences miR-200b/a/429 expression.
Collapse
Affiliation(s)
- Cheng-Jun Sui
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yan-Ming Zhou
- Department of Hepatobiliary & Pancreatovascular Surgery, First affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Wei-Feng Shen
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Bing-Hua Dai
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jiong-Jiong Lu
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Min-Feng Zhang
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jia-Mei Yang
- Department of Special Medical Care I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Yan Y, Xie M, Zhang L, Zhou X, Xie H, Zhou L, Zheng S, Wang W. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma. Onco Targets Ther 2016; 9:3925-37. [PMID: 27418837 PMCID: PMC4935086 DOI: 10.2147/ott.s106703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is rapidly becoming one of the most prevalent cancers worldwide and is a prominent source of mortality. Ras-related associated with diabetes (RRAD), one of the first members of the 35–39 kDa class of novel Ras-related GTPases, is linked to several types of cancer, although its function in HCC remains unclear. In this study, we observed that RRAD was downregulated in HCC compared with adjacent normal tissues. This change was associated with a poor prognosis. Furthermore, knockdown of RRAD in SK-Hep-1 cells facilitated cell proliferation, accelerated the G1/S transition during the cell cycle, induced cell migration, and reduced apoptosis. In contrast, overexpression of RRAD in Huh7 cells had the opposite effects. Moreover, we demonstrated that RRAD induced cell proliferation through regulation of the cell cycle by downregulating cyclins and cyclin-dependent kinases. RRAD induced tumor cell apoptosis through the mitochondrial apoptosis pathway. In addition, we confirmed that knockdown of RRAD promoted aerobic glycolysis by upregulating glucose transporter 1, whereas overexpression of RRAD inhibited aerobic glycolysis. In conclusion, RRAD plays a pivotal role as a potential tumor suppressor in HCC. An improved understanding of the roles of RRAD in tumor metabolism may provide insights into its potential as a novel molecular target in HCC therapy.
Collapse
Affiliation(s)
- Yingcai Yan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Minjie Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Linshi Zhang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xiaohu Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Lin Zhou
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Weilin Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
13
|
Liu J, Zhang C, Wu R, Lin M, Liang Y, Liu J, Wang X, Yang B, Feng Z. RRAD inhibits the Warburg effect through negative regulation of the NF-κB signaling. Oncotarget 2016; 6:14982-92. [PMID: 25893381 PMCID: PMC4558130 DOI: 10.18632/oncotarget.3719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/05/2015] [Indexed: 01/28/2023] Open
Abstract
Cancer cells preferentially use aerobic glycolysis to meet their increased energetic and biosynthetic demands, a phenomenon known as the Warburg effect. Its underlying mechanism is not fully understood. RRAD, a small GTPase, is a potential tumor suppressor in lung cancer. RRAD expression is frequently down-regulated in lung cancer, which is associated with tumor progression and poor prognosis. Recently, RRAD was reported to repress the Warburg effect, indicating that down-regulation of RRAD expression is an important mechanism contributing to the Warburg effect in lung cancer. However, the mechanism by which RRAD inhibits the Warburg effect remains unclear. Here, we found that RRAD negatively regulates the NF-κB signaling to inhibit the GLUT1 translocation and the Warburg effect in lung cancer cells. Mechanically, RRAD directly binds to the p65 subunit of the NF-κB complex and inhibits the nuclear translocation of p65, which in turn negatively regulates the NF-κB signaling to inhibit GLUT1 translocation and the Warburg effect. Blocking the NF-κB signaling largely abolishes the inhibitory effects of RRAD on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Taken together, our results revealed a novel mechanism by which RRAD negatively regulates the Warburg effect in lung cancer cells.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Rui Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meihua Lin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Yingjian Liang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Jia Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Xiaolong Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
14
|
RRAD inhibits aerobic glycolysis, invasion, and migration and is associated with poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 37:5097-105. [PMID: 26546438 DOI: 10.1007/s13277-015-4329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer worldwide. However, the mechanism underlying the HCC development remains unclear. Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase which has been implicated in metabolic disease and several types of cancer, yet its functions in HCC remain unknown. A tissue microarray constructed by 90 paired HCC tissues and adjacent non-cancerous liver tissues was used to examine the protein levels of RRAD, and the messenger RNA (mRNA) expression of RRAD was also detected in a subset of this cohort. The prognostic significance of RRAD was estimated by the Kaplan-Meier analysis and Cox regression. The glucose utilization assay and lactate production assay were performed to measure the role of RRAD in HCC glycolysis. The effect of RRAD in HCC invasion and metastasis was analyzed by transwell assays. Our results suggested that the expression of RRAD was downregulated in HCC tissues compared to the adjacent non-tumorous liver tissues both in mRNA and protein levels and lower RRAD expression served as an independent prognostic indicator for the survival of HCC patients. Moreover, RRAD inhibited hepatoma cell aerobic glycolysis by negatively regulating the expression of glucose transporter 1 (GLUT1) and hexokinase II (HK-II). In addition, RRAD inhibition dramatically increased hepatoma cell invasion and metastasis. In conclusion, our study revealed that RRAD expression was decreased in HCC tumor tissues and predicted poor clinical outcome for HCC patients and played an important role in regulating aerobic glycolysis and cell invasion and metastasis and may represent potential targets for improving the treatment of HCC.
Collapse
|
15
|
Liao WL, Tan MW, Yuan Y, Wang GK, Wang C, Tang H, Xu ZY. Brahma-related gene 1 inhibits proliferation and migration of human aortic smooth muscle cells by directly up-regulating Ras-related associated with diabetes in the pathophysiologic processes of aortic dissection. J Thorac Cardiovasc Surg 2015; 150:1292-301.e2. [PMID: 26344687 DOI: 10.1016/j.jtcvs.2015.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To elucidate the mechanisms of Brahma-related gene 1 (Brg1) involvement in the pathophysiologic processes of aortic dissection. METHODS Seventeen dissecting, 4 dilated, and 10 healthy human aorta samples were collected. Expression of Brg1 in the medium of aorta was evaluated by quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining, respectively. The regulation effect of Brg1 on proliferation and migration of human aortic smooth muscle cells (HASMCs) was analyzed in 3 ways: using cell counting, a migration chamber, and a wound scratch assay. A polymerase chain reaction array was used for screening potential target genes of Brg1. A chromatin immunoprecipitation assay was adopted for direct deoxyribonucleic acid-protein binding detection. RESULTS Expression levels of Brg1 were increased in aortic dissection and aortic dilation patients. In vitro results indicated that overexpression of Brg1 inhibited proliferation and migration of HASMCs. The candidate proliferation- and migration-related Brg1 target gene found was Ras-related associated with diabetes (RRAD), expression levels of which were enhanced in dissecting aortic specimens. The direct regulation effect of Brg1 on RRAD was verified by chromatin immunoprecipitation assay results. Furthermore, down-regulating RRAD significantly alleviated the suppression effects of Brg1 on proliferation and migration of HASMCs. CONCLUSIONS Our study illustrated that Brg1 inhibited the proliferation and migration capacity of HASMCs, via the mechanism of direct up-regulation of RRAD, thus playing an important role in the pathophysiologic processes of aortic dissection.
Collapse
MESH Headings
- Adult
- Aged
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/physiopathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/metabolism
- Signal Transduction
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Wei-Lin Liao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Meng-Wei Tan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Yuan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Guo-Kun Wang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Chong Wang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hao Tang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Zhi-Yun Xu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Zhang C, Liu J, Wu R, Liang Y, Lin M, Liu J, Chan CS, Hu W, Feng Z. Tumor suppressor p53 negatively regulates glycolysis stimulated by hypoxia through its target RRAD. Oncotarget 2015; 5:5535-46. [PMID: 25114038 PMCID: PMC4170611 DOI: 10.18632/oncotarget.2137] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer cells display enhanced glycolysis to meet their energetic and biosynthetic demands even under normal oxygen concentrations. Recent studies have revealed that tumor suppressor p53 represses glycolysis under normoxia as a novel mechanism for tumor suppression. As the common microenvironmental stress for tumors, hypoxia drives the metabolic switch from the oxidative phosphorylation to glycolysis, which is crucial for survival and proliferation of cancer cells under hypoxia. The p53's role and mechanism in regulating glycolysis under hypoxia is poorly understood. Here, we found that p53 represses hypoxia-stimulated glycolysis in cancer cells through RRAD, a newly-identified p53 target. RRAD expression is frequently decreased in lung cancer. Ectopic expression of RRAD greatly reduces glycolysis whereas knockdown of RRAD promotes glycolysis in lung cancer cells. Furthermore, RRAD represses glycolysis mainly through inhibition of GLUT1 translocation to the plasma membrane. Under hypoxic conditions, p53 induces RRAD, which in turn inhibits the translocation of GLUT1 and represses glycolysis in lung cancer cells. Blocking RRAD by siRNA greatly abolishes p53's function in repressing glycolysis under hypoxia. Taken together, our results revealed an important role and mechanism of p53 in antagonizing the stimulating effect of hypoxia on glycolysis, which contributes to p53's function in tumor suppression.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA; These two authors contributed equally to this work
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA; These two authors contributed equally to this work
| | - Rui Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Yingjian Liang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Meihua Lin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Jia Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Chang S Chan
- Department of Medicine, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, USA
| |
Collapse
|
17
|
Wang Y, Li G, Mao F, Li X, Liu Q, Chen L, Lv L, Wang X, Wu J, Dai W, Wang G, Zhao E, Tang KF, Sun ZS. Ras-induced epigenetic inactivation of the RRAD (Ras-related associated with diabetes) gene promotes glucose uptake in a human ovarian cancer model. J Biol Chem 2014; 289:14225-38. [PMID: 24648519 DOI: 10.1074/jbc.m113.527671] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RRAD (Ras-related associated with diabetes) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras-regulated transcriptome and epigenome were profiled by comparing T29H (a Ras(V12)-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through reduced representation bisulfite sequencing and digital gene expression. We found that Ras(V12)-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated, and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation in the RRAD promoter and restored RRAD expression in T29H cells. Additionally, treatment with farnesyltransferase inhibitor FTI277 resulted in restored RRAD expression and inhibited DNA methytransferase expression and activity in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting that RRAD is a tumor suppressor gene. Our results indicate that Ras(V12)-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis.
Collapse
Affiliation(s)
- Yan Wang
- From the Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100080, China
| | - Guiling Li
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Fengbiao Mao
- the University of the Chinese Academy of Sciences, Beijing 100080, China, the Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianfeng Li
- the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan Province 410078, China, and
| | - Qi Liu
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Lin Chen
- the Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Lv
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Xin Wang
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Jinyu Wu
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Wei Dai
- From the Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guan Wang
- the Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Enfeng Zhao
- the Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Kai-Fu Tang
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China,
| | - Zhong Sheng Sun
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China, the Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
18
|
Hsiao BY, Chang TK, Wu IT, Chen MY. Rad GTPase inhibits the NFκB pathway through interacting with RelA/p65 to impede its DNA binding and target gene transactivation. Cell Signal 2014; 26:1437-44. [PMID: 24632303 DOI: 10.1016/j.cellsig.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Rad is a Ras-related small GTPase shown to inhibit cancer cell migration, and its expression is frequently lost in lung cancer cells. Here we provide evidence that Rad can negatively regulate the NFκB pathway. Overexpressing Rad in cells lowered both the basal and TNFα-stimulated transcriptional activity of NFκB. Compared with control cells, Rad-overexpressing cells displayed more cytoplasmic distribution of the NFκB subunit RelA/p65, while Rad-knockdown cells had higher levels of nuclear RelA/p65. Depleting Rad did not affect the kinetics of TNFα-induced IκB degradation, suggesting that Rad-mediated regulation of NFκB was through an IκB-independent mechanism. Expression of a nucleus-localized mutant Rad was sufficient to inhibit the NFκB transcriptional activity, whereas expressing the scaffolding protein 14-3-3γ to retain Rad in the cytoplasm alleviated the suppressive effect of Rad on NFκB. GST pull-down assays showed that Rad could directly bind to RelA/p65, and co-immunoprecipitation demonstrated that the Rad-p65 interaction primarily occurred in the nucleus. Adding Rad-containing nuclear extracts or purified GST-Rad in the electrophoretic mobility shift assays dose-dependently decreased the binding of RelA/p65 to an oligonucleotide probe containing the NFκB response element, suggesting that Rad may directly impede the interaction between RelA/p65 and DNA. Rad depletion altered the expression of an array of NFκB target genes, including upregulating MMP9. Knockdown of Rad expression in cells increased both basal and TNFα-stimulated MMP9 activities and cell invasion. Collectively, our results disclose a novel role of nuclear Rad in inhibiting the NFκB pathway function.
Collapse
Affiliation(s)
- Bo-Yuan Hsiao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan.
| | - Tsun-Kai Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
| | - I-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan.
| |
Collapse
|
19
|
Forkhead transcription factor FOXF1 is a novel target gene of the p53 family and regulates cancer cell migration and invasiveness. Oncogene 2013; 33:4837-46. [PMID: 24186199 DOI: 10.1038/onc.2013.427] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 07/12/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
p53 is an established tumor suppressor that can activate the transcription of multiple target genes. Recent evidence suggests that p53 may contribute to the regulation of cell invasion and migration. In this study, we show that the forkhead box transcription factor FOXF1 is a novel target of the p53 family because FOXF1 is upregulated by p53, TAp73 and TAp63. We show that FOXF1 is induced upon DNA damage in a p53-dependent manner. Furthermore, we identified a response element located within the FOXF1 gene that is responsive to wild-type p53, TAp73β and TAp63γ. The ectopic expression of FOXF1 inhibited cancer cell invasion and migration, whereas the inactivation of FOXF1 stimulated cell invasion and migration. We also show that FOXF1 regulates the transcriptional activity of E-cadherin (CDH1) by acting on its FOXF1 consensus binding site located upstream of the E-cadherin gene. Collectively, our results show that FOXF1 is a p53 family target gene, and our data suggest that FOXF1 and p53 form a portion of a regulatory transcriptional network that appears to have an important role in cancer cell invasion and migration.
Collapse
|
20
|
Takeba Y, Matsumoto N, Watanabe M, Takenoshita-Nakaya S, Ohta Y, Kumai T, Takagi M, Koizumi S, Asakura T, Otsubo T. The Rho kinase inhibitor fasudil is involved in p53-mediated apoptosis in human hepatocellular carcinoma cells. Cancer Chemother Pharmacol 2012; 69:1545-55. [DOI: 10.1007/s00280-012-1862-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 03/12/2012] [Indexed: 01/10/2023]
|
21
|
Mo Y, Midorikawa K, Zhang Z, Zhou X, Ma N, Huang G, Hiraku Y, Oikawa S, Murata M. Promoter hypermethylation of Ras-related GTPase gene RRAD inactivates a tumor suppressor function in nasopharyngeal carcinoma. Cancer Lett 2012; 323:147-54. [PMID: 22487779 DOI: 10.1016/j.canlet.2012.03.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is endemic in southern China. In a genome-wide screen for genes inactivated by promoter hypermethylation, we identified Ras-related associated with diabetes (RRAD). Expression of RRAD was down-regulated in 83.3% (30/36) of the biopsies from NPC patients. RRAD was aberrantly methylated in 74.3% (26/35) of primary tumors, but not in normal nasopharyngeal epithelium. Ectopic RRAD expression in NPC cell lines inhibited the cell growth, colony formation, and cell migration. These results indicate that RRAD might act as a functional tumor suppressor and its epigenetic inactivation may play an important role in NPC development.
Collapse
Affiliation(s)
- Yingxi Mo
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ghavami S, Mutawe MM, Schaafsma D, Yeganeh B, Unruh H, Klonisch T, Halayko AJ. Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 302:L420-8. [PMID: 22160308 DOI: 10.1152/ajplung.00312.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Geranylgeranyl transferase 1 (GGT1) is involved in the posttranslational prenylation of signaling proteins, such as small GTPases. We have shown that blocking the formation of isoprenoids with statins regulates survival of human lung mesenchymal cells; thus, we tested the hypothesis that GGT1 may specifically modulate programmed cell death pathways in these cells. To this end, human airway smooth muscle (HASM) cells were treated with the selective GGT1 inhibitor GGTi-298. Apoptosis was seen using assays for cellular DNA content and caspase activation. Induction of autophagy was observed using transmission electron microscopy, immunoblotting for LC3 lipidation and Atg5-12 complex content, and confocal microscopy to detect formation of lysosome-localized LC3 punctae. Notably, GGT1 inhibition induced expression of p53-dependent proteins, p53 upregulated modulator of apoptosis (Noxa), and damage-regulated autophagy modulator (DRAM), this was inhibited by the p53 transcriptional activation inhibitor cyclic-pifithrin-α. Inhibition of autophagy with bafilomycin-A1 or short-hairpin RNA silencing of Atg7 substantially augmented GGTi-298-induced apoptosis. Overall, we demonstrate for the first time that pharmacological inhibition of GGT1 induces simultaneous p53-dependent apoptosis and autophagy in HASM. Moreover, autophagy regulates apoptosis induction. Thus, our findings identify GGT1 as a key regulator of HASM cell viability.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|