1
|
Xin D, Kurien L, Briggs K, Schimek A, Dambra R, Hochdorfer D, Arnouk TA, Brgles M, Gautam S, Hotter D, Solzin J, Kriehuber T, Ashour J, Vigil A, Hawley M, He X. Characterization of VSV-GP morphology by cryo-EM imaging and SEC-MALS. Mol Ther Methods Clin Dev 2025; 33:101429. [PMID: 40083959 PMCID: PMC11904549 DOI: 10.1016/j.omtm.2025.101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025]
Abstract
Vesicular stomatitis virus expressing the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP) is a promising platform for oncolytic viruses and cancer vaccines. In this work, cryoelectron microscopy (cryo-EM) imaging was employed to directly visualize VSV-GP particles. Several different subpopulations of virus particle morphology were observed. Definition and fraction counting of subpopulations enabled quantitative comparison of subpopulation profiles between several VSV-GP samples. In developing an orthogonal method with higher throughput, we showed that the morphological profile of the VSV-GP particles can be characterized by size exclusion chromatography coupled with a multi-angle light scattering detector (SEC-MALS) based on a novel shape-based separation mechanism. Together, the two complementary techniques enable the analysis of morphological profile for VSV-GP and potentially other non-spherical viruses or nanoparticles.
Collapse
Affiliation(s)
- Dongyue Xin
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Leela Kurien
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Katherine Briggs
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | | | - Richard Dambra
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Daniel Hochdorfer
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tanja A. Arnouk
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Marija Brgles
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Saurabh Gautam
- ViraTherapeutics GmbH, Innsbruck, Austria
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Dominik Hotter
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Johannes Solzin
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Kriehuber
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Joseph Ashour
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Adam Vigil
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Michael Hawley
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Xiaorong He
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
2
|
Rauch S, Costacurta F, Schöppe H, Peng JY, Bante D, Erisoez EE, Sprenger B, He X, Moghadasi SA, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Wang D, Naschberger A, Dunzendorfer-Matt T, Kaserer T, von Laer D, Heilmann E. Highly specific SARS-CoV-2 main protease (M pro) mutations against the clinical antiviral ensitrelvir selected in a safe, VSV-based system. Antiviral Res 2024; 231:105969. [PMID: 39053514 DOI: 10.1016/j.antiviral.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the SARS-CoV-2 pandemic, the so far two most effective approved antivirals are the protease inhibitors nirmatrelvir, in combination with ritonavir (Paxlovid) and ensitrelvir (Xocova). However, antivirals and indeed all antimicrobial drugs are sooner or later challenged by resistance mutations. Studying such mutations is essential for treatment decisions and pandemic preparedness. At the same time, generating resistant viruses to assess mutants is controversial, especially with pathogens of pandemic potential like SARS-CoV-2. To circumvent gain-of-function research with non-attenuated SARS-CoV-2, a previously developed safe system based on a chimeric vesicular stomatitis virus dependent on the SARS-CoV-2 main protease (VSV-Mpro) was used to select mutations against ensitrelvir. Ensitrelvir is clinically especially relevant due to its single-substance formulation, avoiding drug-drug interactions by the co-formulated CYP3A4 inhibitor ritonavir in Paxlovid. By treating VSV-Mpro with ensitrelvir, highly-specific resistant mutants against this inhibitor were selected, while being still fully or largely susceptible to nirmatrelvir. We then confirmed several ensitrelvir-specific mutants in gold standard enzymatic assays and SARS-CoV-2 replicons. These findings indicate that the two inhibitors can have distinct viral resistance profiles, which could determine treatment decisions.
Collapse
Affiliation(s)
- Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ju-Yi Peng
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ela Emilie Erisoez
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Bernhard Sprenger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Austria
| | - Xi He
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dai Wang
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Andreas Naschberger
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria; Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
3
|
Zinovieva M, Ryapolova A, Karabelsky A, Minskaia E. Oncolytic Vesicular Stomatitis Virus: Optimisation Strategies for Anti-Cancer Therapies. FRONT BIOSCI-LANDMRK 2024; 29:374. [PMID: 39614430 DOI: 10.31083/j.fbl2911374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024]
Abstract
Oncolytic viruses (OVs) represent a targeted anti-cancer therapy approach due to their ability not only to selectively infect and destroy malignant cells but also to induce an immune response. Vesicular stomatitis virus (VSV) offers a promising platform due to its low prevalence and pathogenicity in humans, lack of pre-existing immunity, easily manipulated genome, rapid growth to high titers in a broad range of cell lines, and inability to integrate into the host genome. However, despite its many advantages, many unresolved problems remain: problematic production based on the reverse genetics system, oncological selectivity, and the overall effectiveness of VSV monotherapy. This review will discuss various attempts at viral genome modifications aimed at improving the oncolytic properties of VSV. These strategies include inhibition of viral genes, modification of genes responsible for targeting cancer cells over healthy ones, insertion of foreign genes for boosting immune response, and changing the order of viral and inserted foreign genes. In addition, possible ways to improve VSV-based anti-tumor therapy and achieve higher efficiency will be considered by evaluating the effectiveness of various delivery methods as well as discussing treatment options by combining VSV with other groups of anticancer drugs.
Collapse
Affiliation(s)
- Margarita Zinovieva
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia Ryapolova
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Karabelsky
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ekaterina Minskaia
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
4
|
Krismer L, Schöppe H, Rauch S, Bante D, Sprenger B, Naschberger A, Costacurta F, Fürst A, Sauerwein A, Rupp B, Kaserer T, von Laer D, Heilmann E. Study of key residues in MERS-CoV and SARS-CoV-2 main proteases for resistance against clinically applied inhibitors nirmatrelvir and ensitrelvir. NPJ VIRUSES 2024; 2:23. [PMID: 38933182 PMCID: PMC11196219 DOI: 10.1038/s44298-024-00028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024]
Abstract
The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an epidemic, zoonotically emerging pathogen initially reported in Saudi Arabia in 2012. MERS-CoV has the potential to mutate or recombine with other coronaviruses, thus acquiring the ability to efficiently spread among humans and become pandemic. Its high mortality rate of up to 35% and the absence of effective targeted therapies call for the development of antiviral drugs for this pathogen. Since the beginning of the SARS-CoV-2 pandemic, extensive research has focused on identifying protease inhibitors for the treatment of SARS-CoV-2. Our intention was therefore to assess whether these protease inhibitors are viable options for combating MERS-CoV. To that end, we used previously established protease assays to quantify inhibition of SARS-CoV-2, MERS-CoV and other main proteases. Nirmatrelvir inhibited several of these proteases, whereas ensitrelvir was less broadly active. To simulate nirmatrelvir's clinical use against MERS-CoV and subsequent resistance development, we applied a safe, surrogate virus-based system. Using the surrogate virus, we previously selected hallmark mutations of SARS-CoV-2-Mpro, such as T21I, M49L, S144A, E166A/K/V and L167F. In the current study, we selected a pool of MERS-CoV-Mpro mutants, characterized the resistance and modelled the steric effect of catalytic site mutants S142G, S142R, S147Y and A171S.
Collapse
Affiliation(s)
- Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Sprenger
- Institute of Biochemistry, University of Innsbruck, CMBI – Center for Molecular Biosciences Innsbruck, Innsbruck, 6020 Austria
| | - Andreas Naschberger
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
| | | | - Anna Fürst
- Institute of Molecular Immunology, Technical University of Munich, Munich, 81675 Germany
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020 Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020 Austria
| |
Collapse
|
5
|
Gautam S, Xin D, Garcia AP, Spiesschaert B. Single-step rapid chromatographic purification and characterization of clinical stage oncolytic VSV-GP. Front Bioeng Biotechnol 2022; 10:992069. [PMID: 36394051 PMCID: PMC9649487 DOI: 10.3389/fbioe.2022.992069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
Purification of viruses, especially for therapeutic purposes, is a tedious and challenging task. The challenges arise due to the size and surface complexity of the virus particles. VSV-GP is a promising oncolytic virus, which has been approved for phase I clinical trials by the Food and Drug Administration (FDA) of United States and Paul Ehrlich Institute (PEI) of Germany. The virus particles of VSV-GP are larger in size than vectors commonly used for gene therapy (e.g., adenovirus, adeno-associated virus, etc.). The current established proprietary clinical-grade manufacturing process for the purification of VSV-GP encompasses several chromatographic and non-chromatographic steps. In this study, we describe a new single-step purification process for the purification of VSV-GP virus, using cation exchange convective flow column with relatively higher yields. The purified virus was characterized for its quality attributes using TCID50 assay (for viral infectivity), host cell protein contaminant ELISA, SDS-PAGE, size exclusion chromatography (SEC), and cryo-electron microscopy. Furthermore, the purified viral therapeutic material was tested in vivo for its efficacy and safety. All these characterization methods demonstrated a therapeutic virus preparation of high purity and yield, which can be readily used for various studies.
Collapse
Affiliation(s)
- Saurabh Gautam
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| | - Dongyue Xin
- Boehringer Ingelheim Pharmaceutical, Inc., Ridgefield, CT, United States
| | - Alan Pardo Garcia
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| | - Bart Spiesschaert
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
- ViraTherapeutics GmbH, Rum, Austria
| |
Collapse
|
6
|
Abstract
Self-replicating RNA viral vectors have been engineered for both prophylactic and therapeutic applications. Mainly the areas of infectious diseases and cancer have been targeted. Both positive and negative strand RNA viruses have been utilized including alphaviruses, flaviviruses, measles viruses and rhabdoviruses. The high-level of RNA amplification has provided efficient expression of viral surface proteins and tumor antigens. Immunization studies in animal models have elicit robust neutralizing antibody responses. In the context of infectious diseases, immunization with self-replicating RNA viral vectors has provided protection against challenges with lethal doses of pathogens in animal models. Similarly, immunization with vectors expressing tumor antigens has resulted in tumor regression and eradication and protection against tumor challenges in animal models. The transient nature and non-integration of viral RNA into the host genome are ideal features for vaccine development. Moreover, self-replicating RNA viral vectors show great flexibility as they can be applied as recombinant viral particles, RNA replicons or DNA replicon plasmids. Several clinical trials have been conducted especially in the area of cancer immunotherapy.
Collapse
|
7
|
Zhang Y, Nagalo BM. Immunovirotherapy Based on Recombinant Vesicular Stomatitis Virus: Where Are We? Front Immunol 2022; 13:898631. [PMID: 35837384 PMCID: PMC9273848 DOI: 10.3389/fimmu.2022.898631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Vesicular stomatitis virus (VSV), a negative-strand RNA virus of the Vesiculovirus genus, has demonstrated encouraging anti-neoplastic activity across multiple human cancer types. VSV is particularly attractive as an oncolytic agent because of its broad tropism, fast replication kinetics, and amenability to genetic manipulations. Furthermore, VSV-induced oncolysis can elicit a potent antitumor cytotoxic T-cell response to viral proteins and tumor-associated antigens, resulting in a long-lasting antitumor effect. Because of this multifaceted immunomodulatory property, VSV was investigated extensively as an immunovirotherapy alone or combined with other anticancer modalities, such as immune checkpoint blockade. Despite these recent opportunities to delineate synergistic and additive antitumor effects with existing anticancer therapies, FDA approval for the use of oncolytic VSV in humans has not yet been granted. This mini-review discusses factors that have prompted the use of VSV as an immunovirotherapy in human cancers and provides insights into future perspectives and research areas to improve VSV-based oncotherapy.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Bolni Marius Nagalo,
| |
Collapse
|
8
|
A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition. Commun Biol 2022; 5:391. [PMID: 35478219 PMCID: PMC9046202 DOI: 10.1038/s42003-022-03277-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Protease inhibitors are among the most powerful antiviral drugs. However, for SARS-CoV-2 only a small number of protease inhibitors have been identified thus far and there is still a great need for assays that efficiently report protease activity and inhibition in living cells. Here, we engineer a safe VSV-based system to report both gain- and loss-of-function of coronavirus main protease (Mpro/3CLpro/Nsp5) activity in living cells. We use SARS-CoV-2 3CLpro in this system to confirm susceptibility to known inhibitors (boceprevir, GC376, PF-00835231, and PF-07321332/nirmatrelvir) and reevaluate other reported inhibitors (baicalein, ebselen, carmofur, ethacridine, ivermectin, masitinib, darunavir, and atazanavir). Moreover, we show that the system can be adapted to report both the function and the chemical inhibition of proteases from different coronavirus species as well as from distantly related viruses. Together with the fact that live cell assays also reflect compound permeability and toxicity, we anticipate that this system will be useful for both identification and optimization of additional coronavirus protease inhibitors.
Collapse
|
9
|
Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front Microbiol 2022; 12:817200. [PMID: 35095820 PMCID: PMC8795712 DOI: 10.3389/fmicb.2021.817200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
Collapse
Affiliation(s)
- Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Samyr Acosta-Contreras
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| |
Collapse
|
10
|
Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. J Pharm Sci 2021; 111:933-950. [PMID: 34919969 DOI: 10.1016/j.xphs.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.
Collapse
|
11
|
Heilmann E, Kimpel J, Hofer B, Rössler A, Blaas I, Egerer L, Nolden T, Urbiola C, Kräusslich HG, Wollmann G, von Laer D. Chemogenetic ON and OFF switches for RNA virus replication. Nat Commun 2021; 12:1362. [PMID: 33649317 PMCID: PMC7921684 DOI: 10.1038/s41467-021-21630-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022] Open
Abstract
Therapeutic application of RNA viruses as oncolytic agents or gene vectors requires a tight control of virus activity if toxicity is a concern. Here we present a regulator switch for RNA viruses using a conditional protease approach, in which the function of at least one viral protein essential for transcription and replication is linked to autocatalytical, exogenous human immunodeficiency virus (HIV) protease activity. Virus activity can be en- or disabled by various HIV protease inhibitors. Incorporating the HIV protease dimer in the genome of vesicular stomatitis virus (VSV) into the open reading frame of either the P- or L-protein resulted in an ON switch. Here, virus activity depends on co-application of protease inhibitor in a dose-dependent manner. Conversely, an N-terminal VSV polymerase tag with the HIV protease dimer constitutes an OFF switch, as application of protease inhibitor stops virus activity. This technology may also be applicable to other potentially therapeutic RNA viruses.
Collapse
Affiliation(s)
- E Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
| | - J Kimpel
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Hofer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - A Rössler
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - I Blaas
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - L Egerer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- ViraTherapeutics GmbH, Innsbruck, Austria
| | - T Nolden
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- ViraTherapeutics GmbH, Innsbruck, Austria
| | - C Urbiola
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria
- ViraTherapeutics GmbH, Innsbruck, Austria
| | - H G Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infectious Disease Research, partner site Heidelberg, Heidelberg, Germany
| | - G Wollmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Innsbruck, Austria.
| | - D von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Kabiljo J, Laengle J, Bergmann M. From threat to cure: understanding of virus-induced cell death leads to highly immunogenic oncolytic influenza viruses. Cell Death Discov 2020; 6:48. [PMID: 32542113 PMCID: PMC7288254 DOI: 10.1038/s41420-020-0284-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses constitute an emerging strategy in immunomodulatory cancer treatment. The first oncolytic virus, Talimogene laherparepvec (T-VEC), based on herpes simplex virus 1 (HSV-1), was approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2015. The field of oncolytic virotherapy is still in its beginnings, since many promising viruses remain only superficially explored. Influenza A virus causes a highly immunogenic acute infection but never leads to a chronic disease. While oncolytic influenza A viruses are in preclinical development, they have not made the transition into clinical practice yet. Recent insights into different types of cell death caused by influenza A virus infection illuminate novel possibilities of enhancing its therapeutic effect. Genetic engineering and experience in influenza A virus vaccine development allow safe application of the virus in patients. In this review we give a summary of efforts undertaken to develop oncolytic influenza A viruses. We discuss strategies for targeting viral replication to cancerous lesions and arming them with immunogenic transgenes. We furthermore describe which modes of cell death are induced by influenza A virus infection and how these insights may be utilized to optimize influenza A virus-based oncolytic virus design.
Collapse
Affiliation(s)
- Julijan Kabiljo
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Laengle
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Michael Bergmann
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
13
|
Berrie DM, Waters RC, Montoya C, Chatel A, Vela EM. Development of a high-yield live-virus vaccine production platform using a novel fixed-bed bioreactor. Vaccine 2020; 38:3639-3645. [PMID: 32247568 DOI: 10.1016/j.vaccine.2020.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/15/2022]
Abstract
The increasing importance of viral vaccine manufacturing has driven the need for high cell density process optimization that allows for higher production levels. Vero cells are one of the more popular adherent cell lines used for viral vaccine production. However, production is limited due to the logistical limitations surrounding adherent cell line processes, such as large equipment footprints, time and labor-intensive processes, and larger costs per dose. We have addressed this limitation with the establishment of a viral vaccine production system utilizing the novel single use scale-X™ carbo bioreactor. The unit is compact and is scalable and one of the novel features of the system is the continuous in-line downstream purification and concentration processes associated with the bioreactor vessel. We present the results from a campaign featuring a proprietary Vero cell line for production of a live recombinant Vesicular stomatitis virus vaccine that features the Lassa Fever virus glycoproteins. Metabolite analyses and viral yield comparison between traditional flasks, cell factories, and the scale-X carbo bioreactor were performed, and on average, the single use bioreactor produced 2-4 logs higher titers per surface area, approximately 5 × 1010 pfu/cm2, compared to classical flatstock, 2.67 × 106 pfu/cm2, and cell factories production, 5.77 × 108 pfu/cm2. Overall, we describe a novel bioreactor platform that allows for a cost-efficient and scalable process for viral vaccine production.
Collapse
Affiliation(s)
- Dalton M Berrie
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL 32615, USA
| | - Robin C Waters
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL 32615, USA
| | - Christopher Montoya
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL 32615, USA
| | - Alex Chatel
- Univercells, Rue de la Maîtise 11, 1400 Nivelles, Belgium
| | - Eric M Vela
- Ology Bioservices, Process Development, 13200 NW Nano Ct., Alachua, FL 32615, USA.
| |
Collapse
|
14
|
Scholz I, Montoya C, Vela E. Examination of vesicular stomatitis virus-induced morphology changes in individual Vero cells by QMod microscopy. Biotechniques 2020; 68:305-310. [PMID: 32202142 DOI: 10.2144/btn-2019-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral infection of cultured cells induces changes in the biophysical characteristics of the affected cells. Advanced microscopic cameras such as Ovizio's QMod, coupled with the appropriate software, can measure a variety of characteristics on a per-cell basis. We have employed this system to monitor the progression of vesicular stomatitis virus infection in Vero cells and to describe the cellular changes associated with advancing vesicular stomatitis virus infection. The measurements of cellular characteristics are operator-independent, and the goal is to establish a robust method to mathematically determine viral infection levels in a given sample. This will provide a means to measure viral titer in a faster and less subjective way than manual reading of plaque assays or tissue culture infectious dose 50 assays.
Collapse
Affiliation(s)
- Isabel Scholz
- Process Development, Ology Bioservices, Alachua, FL 32615, USA
| | | | - Eric Vela
- Process Development, Ology Bioservices, Alachua, FL 32615, USA
| |
Collapse
|
15
|
Heilmann E, Kimpel J, Geley S, Naschberger A, Urbiola C, Nolden T, von Laer D, Wollmann G. The Methyltransferase Region of Vesicular Stomatitis Virus L Polymerase Is a Target Site for Functional Intramolecular Insertion. Viruses 2019; 11:v11110989. [PMID: 31717818 PMCID: PMC6893670 DOI: 10.3390/v11110989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
The L-protein of vesicular stomatitis virus (VSV) is a single-chain multi-domain RNA-dependent RNA polymerase. Previously reported attempts of intramolecular insertions of fluorescent proteins into the L-protein resulted in temperature-sensitive and highly attenuated polymerase activity. Here, we describe a novel insertion site that was selected based on in silico prediction. Of five preselected locations, insertion of the fluorescent protein mCherry in the VSV polymerase between amino acids 1620 and 1621 preserved polymerase function even after extended passaging and showed only mild attenuation compared to wildtype VSV polymerase. High magnification fluorescence imaging revealed a corpuscular cytosolic pattern for the L-protein. To confirm that the insertion site tolerates inclusion of proteins others than mCherry, we cloned mWasabi into the same position in L, generating a VSV-LmWasabi, which was also functional. We also generated a functional dual-color-dual-insertion VSV construct with intramolecularly labeled P and L-proteins. Together, our data present an approach to tag VSV polymerase intramolecularly without perturbing enzymatic activity. This L fusion protein might enable future tracing studies to monitor intracellular location of the VSV transcription and replication machinery in real-time life-imaging studies.
Collapse
Affiliation(s)
- Emmanuel Heilmann
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (E.H.); (J.K.); (C.U.)
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (E.H.); (J.K.); (C.U.)
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Naschberger
- Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Carles Urbiola
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (E.H.); (J.K.); (C.U.)
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Dorotheé von Laer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (E.H.); (J.K.); (C.U.)
- Correspondence: (D.v.L.); (G.W.); Tel.: +43-512-9003-71701 (D.v.L.); +43-512-9003-71742 (G.W.)
| | - Guido Wollmann
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (E.H.); (J.K.); (C.U.)
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (D.v.L.); (G.W.); Tel.: +43-512-9003-71701 (D.v.L.); +43-512-9003-71742 (G.W.)
| |
Collapse
|
16
|
Wilmschen S, Schmitz JE, Kimpel J. Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV. Vaccines (Basel) 2019; 7:vaccines7030119. [PMID: 31546894 PMCID: PMC6789710 DOI: 10.3390/vaccines7030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Extensive research on generating an efficient HIV vaccine is ongoing. A major aim of HIV vaccines is the induction of long-lasting, broadly neutralizing antibodies (bnAbs) that can confer sterile immunity for a prolonged period of time. Several strategies have been explored to reach this goal, i.e. protein immunization, DNA, or viral vectors, or a combination thereof. In this review, we give an overview of approaches using viral vectors for the induction of HIV-specific bnAbs. Many pre-clinical studies were performed using various replication-competent and -incompetent vectors. Amongst them, poxviral and adenoviral vectors were the most prevalent ones. In many studies, viral vectors were combined with a DNA prime or a protein boost. However, neutralizing antibodies were mainly induced against the homologous HIV-1 vaccine strain or tier 1 viruses, and in rare cases, against tier 2 viruses, indicating the need for improved antigens and vaccination strategies. Furthermore, we also review next generation Env antigens that are currently being used in protein vaccination approaches and point out how they could be utilized in viral vectors.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
17
|
Kloker LD, Yurttas C, Lauer UM. Three-dimensional tumor cell cultures employed in virotherapy research. Oncolytic Virother 2018; 7:79-93. [PMID: 30234074 PMCID: PMC6130269 DOI: 10.2147/ov.s165479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oncolytic virotherapy constitutes an upcoming alternative treatment option for a broad spectrum of cancer entities. However, despite great research efforts, there is still only a single US Food and Drug Administration/European Medicines Agency-approved oncolytic virus available for clinical use. One reason for that is the gap between promising preclinical data and limited clinical success. Since oncolytic viruses are biological agents, they might require more realistic in vitro tumor models than common monolayer tumor cell cultures to provide meaningful predictive preclinical evaluation results. For more realistic invitro tumor models, three-dimensional tumor cell-culture systems can be employed in preclinical virotherapy research. This review provides an overview of spheroid and hydrogel tumor cell cultures, organotypic tumor-tissue slices, organotypic raft cultures, and tumor organoids utilized in the context of oncolytic virotherapy. Furthermore, we also discuss advantages, disadvantages, techniques, and difficulties of these three-dimensional tumor cell-culture systems when applied specifically in virotherapy research.
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany,
| | - Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital, University of Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Clinical Tumor Biology, University Hospital, University of Tübingen, Tübingen, Germany, .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tübingen, Germany,
| |
Collapse
|
18
|
Segmentation of the rabies virus genome. Virus Res 2018; 252:68-75. [PMID: 29787783 DOI: 10.1016/j.virusres.2018.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/24/2022]
Abstract
We established a system for the recovery of a segmented recombinant rabies virus, the virus genome RNA of which was divided into two parts: segment 1 encoding the nucleoprotein, phosphoprotein, matrix protein, and glycoprotein genes, and segment 2 encoding the large RNA-dependent RNA polymerase gene. The morphology of the segmented recombinant rabies virus was bullet-like in shape with a length of approximately 130 nm, which is shorter than the 200-nm long non-segmented recombinant rabies virus. The segmented recombinant rabies virus was maintained for at least 18 passages. The virus multiplication rate of the segmented recombinant rabies virus was lower than that of the non-segmented recombinant rabies virus during the passages, and the relative amounts of virus genome RNAs for segment 1 and segment 2 differed in the supernatant of the segmented recombinant rabies virus infected cells. These results suggest that the segmented recombinant rabies virus packages either segment 1 or segment 2 into each virus particle. Thus, co-infection with segmented recombinant rabies virus particles packaging segment 1 or segment 2 may be necessary for the production of progeny virus.
Collapse
|
19
|
Oncotargeting by Vesicular Stomatitis Virus (VSV): Advances in Cancer Therapy. Viruses 2018; 10:v10020090. [PMID: 29473868 PMCID: PMC5850397 DOI: 10.3390/v10020090] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/28/2022] Open
Abstract
Modern oncotherapy approaches are based on inducing controlled apoptosis in tumor cells. Although a number of apoptosis-induction approaches are available, site-specific delivery of therapeutic agents still remain the biggest hurdle in achieving the desired cancer treatment benefit. Additionally, systemic treatment-induced toxicity remains a major limiting factor in chemotherapy. To specifically address drug-accessibility and chemotherapy side effects, oncolytic virotherapy (OV) has emerged as a novel cancer treatment alternative. In OV, recombinant viruses with higher replication capacity and stronger lytic properties are being considered for tumor cell-targeting and subsequent cell lysing. Successful application of OVs lies in achieving strict tumor-specific tropism called oncotropism, which is contingent upon the biophysical interactions of tumor cell surface receptors with viral receptors and subsequent replication of oncolytic viruses in cancer cells. In this direction, few viral vector platforms have been developed and some of these have entered pre-clinical/clinical trials. Among these, the Vesicular stomatitis virus (VSV)-based platform shows high promise, as it is not pathogenic to humans. Further, modern molecular biology techniques such as reverse genetics tools have favorably advanced this field by creating efficient recombinant VSVs for OV; some have entered into clinical trials. In this review, we discuss the current status of VSV based oncotherapy, challenges, and future perspectives regarding its therapeutic applications in the cancer treatment.
Collapse
|
20
|
Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98:2895-2911. [PMID: 29143726 DOI: 10.1099/jgv.0.000980] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic virus (OV) therapy is an anti-cancer approach that uses viruses that preferentially infect, replicate in and kill cancer cells. Vesicular stomatitis virus (VSV, a rhabdovirus) is an OV that is currently being tested in the USA in several phase I clinical trials against different malignancies. Several factors make VSV a promising OV: lack of pre-existing human immunity against VSV, a small and easy to manipulate genome, cytoplasmic replication without risk of host cell transformation, independence of cell cycle and rapid growth to high titres in a broad range of cell lines facilitating large-scale virus production. While significant advances have been made in VSV-based OV therapy, room for improvement remains. Here we review recent studies (published in the last 5 years) that address 'old' and 'new' challenges of VSV-based OV therapy. These studies focused on improving VSV safety, oncoselectivity and oncotoxicity; breaking resistance of some cancers to VSV; preventing premature clearance of VSV; and stimulating tumour-specific immunity. Many of these approaches were based on combining VSV with other therapeutics. This review also discusses another rhabdovirus closely related to VSV, Maraba virus, which is currently being tested in Canada in phase I/II clinical trials.
Collapse
Affiliation(s)
- Sébastien A Felt
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
21
|
Orzechowska BU, Jędryka M, Zwolińska K, Matkowski R. VSV based virotherapy in ovarian cancer: the past, the present and …future? J Cancer 2017; 8:2369-2383. [PMID: 28819441 PMCID: PMC5560156 DOI: 10.7150/jca.19473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
The standard approach to treating patients with advanced epithelial ovarian cancer (EOC) after primary debulking surgery remains taxane and platinum-based chemotherapy. Despite treatment with this strategy, the vast majority of patients relapse and develop drug-resistant metastatic disease that may be driven by cancer stem cells (CSCs) or cancer initiating cells (CICs). Oncolytic viruses circumvent typical drug-resistance mechanisms, therefore they may provide a safe and effective alternative treatment for chemotherapy-resistant CSCs/CICs. Among oncolytic viruses vesicular stomatitis virus (VSV) has demonstrated oncolysis and preferential replication in cancer cells. In this review, we summarize the recent findings regarding existing knowledge on biology of the ovarian cancer and the role of ovarian CSCs (OCSCs) in tumor dissemination and chemoresistance. In addition we also present an overview of recent advances in ovarian cancer therapies with oncolytic viruses (OV). We focus particularly on key genetic or immune response pathways involved in tumorigenesis in ovarian cancer which facilitate oncolytic activity of vesicular stomatitis virus (VSV). We highlight the prospects of targeting OCSCs with VSV. The importance of testing an emerging ovarian cancer animal models and ovarian cancer cell culture conditions influencing oncolytic efficacy of VSV is also addressed.
Collapse
Affiliation(s)
- Beata Urszula Orzechowska
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Marcin Jędryka
- Division of Surgical Oncology, Gynaecological Oncology, Chemotherapy and Department of Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wrocław, Poland
- Lower Silesian Oncology Centre, Wroclaw, Plac Hirszfelda 12, 53-413 Wrocław, Poland
| | - Katarzyna Zwolińska
- Laboratory of Virology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Rafał Matkowski
- Division of Surgical Oncology, Gynaecological Oncology, Chemotherapy and Department of Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wrocław, Poland
- Lower Silesian Oncology Centre, Wroclaw, Plac Hirszfelda 12, 53-413 Wrocław, Poland
| |
Collapse
|
22
|
Falls T, Roy DG, Bell JC, Bourgeois-Daigneault MC. Murine Tumor Models for Oncolytic Rhabdo-Virotherapy. ILAR J 2017; 57:73-85. [PMID: 27034397 DOI: 10.1093/ilar/ilv048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preclinical optimization and validation of novel treatments for cancer therapy requires the use of laboratory animals. Although in vitro experiments using tumor cell lines and ex vivo treatment of patient tumor samples provide a remarkable first-line tool for the initial study of tumoricidal potential, tumor-bearing animals remain the primary option to study delivery, efficacy, and safety of therapies in the context of a complete tumor microenvironment and functional immune system. In this review, we will describe the use of murine tumor models for oncolytic virotherapy using vesicular stomatitis virus. We will discuss studies using immunocompetent and immunodeficient models with respect to toxicity and therapeutic treatments, as well as the various techniques and tools available to study cancer therapy with Rhabdoviruses.
Collapse
Affiliation(s)
- Theresa Falls
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Dominic Guy Roy
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - John Cameron Bell
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| |
Collapse
|
23
|
Wollmann G, Paglino JC, Maloney PR, Ahmadi SA, van den Pol AN. Attenuation of vesicular stomatitis virus infection of brain using antiviral drugs and an adeno-associated virus-interferon vector. Virology 2014; 475:1-14. [PMID: 25462341 DOI: 10.1016/j.virol.2014.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/04/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022]
Abstract
Vesicular stomatitis virus (VSV) shows promise as a vaccine-vector and oncolytic virus. However, reports of neurotoxicity of VSV remain a concern. We compared 12 antiviral compounds to control infection of VSV-CT9-M51 and VSV-rp30 using murine and human brain cultures, and in vivo mouse models. Inhibition of replication, cytotoxicity and infectivity was strongest with ribavirin and IFN-α and to some extent with mycophenolic acid, chloroquine, and adenine 9-β-d-arabinofuranoside. To generate continuous IFN exposure, we made an adeno-associated virus vector expressing murine IFN; AAV-mIFN-β protected mouse brain cells from VSV, as did a combination of IFN, ribavirin and chloroquine. Intracranial AAV-mIFN-β protected the brain against VSV-CT9-M51. In SCID mice bearing human glioblastoma, AAV-mIFN-β moderately enhanced survival. VSV-CT9-M51 doubled median survival when administered after AAV-mIFN-β; some surviving mice showed complete tumor destruction. Together, these data suggest that AAV-IFN or IFN with ribavirin and chloroquine provide an optimal anti-virus combination against VSV in the brain.
Collapse
Affiliation(s)
- Guido Wollmann
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Justin C Paglino
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Patrick R Maloney
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Sebastian A Ahmadi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
24
|
Muik A, Stubbert LJ, Jahedi RZ, Geiβ Y, Kimpel J, Dold C, Tober R, Volk A, Klein S, Dietrich U, Yadollahi B, Falls T, Miletic H, Stojdl D, Bell JC, von Laer D. Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res 2014; 74:3567-78. [PMID: 24812275 DOI: 10.1158/0008-5472.can-13-3306] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As cancer treatment tools, oncolytic viruses (OV) have yet to realize what some see as their ultimate clinical potential. In this study, we have engineered a chimeric vesicular stomatitis virus (VSV) that is devoid of its natural neurotoxicity while retaining potent oncolytic activity. The envelope glycoprotein (G) of VSV was replaced with a variant glycoprotein of the lymphocytic choriomeningitis virus (LCMV-GP), creating a replicating therapeutic, rVSV(GP), that is benign in normal brain but can effectively eliminate brain cancer in multiple preclinical tumor models in vivo. Furthermore, it can be safely administered systemically to mice and displays greater potency against a spectrum of human cancer cell lines than current OV candidates. Remarkably, rVSV(GP) escapes humoral immunity, thus, for the first time, allowing repeated systemic OV application without loss of therapeutic efficacy. Taken together, rVSV(GP) offers a considerably improved OV platform that lacks several of the major drawbacks that have limited the clinical potential of this technology to date.
Collapse
Affiliation(s)
- Alexander Muik
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Lawton J Stubbert
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | | | - Yvonne Geiβ
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Janine Kimpel
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Catherine Dold
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Tober
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Andreas Volk
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Sabine Klein
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | - Ursula Dietrich
- Authors' Affiliations: Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Beta Yadollahi
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Theresa Falls
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen; Department of Pathology, Haukeland University Hospital, Bergen, Norway; and
| | - David Stojdl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Centre for Innovative Cancer Research
| | - Dorothee von Laer
- Institute for Virology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
25
|
Tober R, Banki Z, Egerer L, Muik A, Behmüller S, Kreppel F, Greczmiel U, Oxenius A, von Laer D, Kimpel J. VSV-GP: a potent viral vaccine vector that boosts the immune response upon repeated applications. J Virol 2014; 88:4897-907. [PMID: 24554655 PMCID: PMC3993835 DOI: 10.1128/jvi.03276-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/03/2014] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Antivector immunity limits the response to homologous boosting for viral vector vaccines. Here, we describe a new, potent vaccine vector based on replication-competent vesicular stomatitis virus pseudotyped with the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP), which we previously showed to be safe in mice. In mice, VSV and VSV-GP encoding ovalbumin (OVA) as a model antigen (VSV-OVA and VSV-GP-OVA) induced equal levels of OVA-specific humoral and cellular immune responses upon a single immunization. However, boosting with the same vector was possible only for VSV-GP-OVA as neutralizing antibodies to VSV limited the immunogenicity of the VSV-OVA boost. OVA-specific cytotoxic T-lymphocyte (CTL) responses induced by VSV-GP-OVA were at least as potent as those induced by an adenoviral state-of-the-art vaccine vector and completely protected mice in a Listeria monocytogenes challenge model. VSV-GP is so far the only replication-competent vaccine vector that does not lose efficacy upon repeated application. IMPORTANCE Although there has been great progress in treatment and prevention of infectious diseases in the past several years, effective vaccines against some of the most serious infections, e.g., AIDS, malaria, hepatitis C, or tuberculosis, are urgently needed. Here, several approaches based on viral vector vaccines are under development. However, for all viral vaccine vectors currently in clinical testing, repeated application is limited by neutralizing antibodies to the vector itself. Here, we have exploited the potential of vesicular stomatitis virus pseudotyped with the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP) as a vaccine platform. VSV-GP is the first replication-competent viral vector vaccine that does not induce vector-specific humoral immunity, i.e., neutralizing antibodies, and therefore can boost immune responses against a foreign antigen by repeated applications. The vector allows introduction of various antigens and therefore can serve as a platform technology for the development of novel vaccines against a broad spectrum of diseases.
Collapse
Affiliation(s)
- Reinhard Tober
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Zoltan Banki
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Lisa Egerer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Muik
- Applied Virology and Gene Therapy Unit, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | | | | | - Ute Greczmiel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Dorothee von Laer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
26
|
Chan WM, Rahman MM, McFadden G. Oncolytic myxoma virus: the path to clinic. Vaccine 2013; 31:4252-8. [PMID: 23726825 PMCID: PMC3755036 DOI: 10.1016/j.vaccine.2013.05.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
Many common neoplasms are still noncurative with current standards of cancer therapy. More therapeutic modalities need to be developed to significantly prolong the lives of patients and eventually cure a wider spectrum of cancers. Oncolytic virotherapy is one of the promising new additions to clinical cancer therapeutics. Successful oncolytic virotherapy in the clinic will be those strategies that best combine tumor cell oncolysis with enhanced immune responses against tumor antigens. The current candidate oncolytic viruses all share the common property that they are relatively nonpathogenic to humans, yet they have the ability to replicate selectively in human cancer cells and induce cancer regression by direct oncolysis and/or induction of improved anti-tumor immune responses. Many candidate oncolytic viruses are in various stages of clinical and preclinical development. One such preclinical candidate is myxoma virus (MYXV), a member of the Poxviridae family that, in its natural setting, exhibits a very restricted host range and is only pathogenic to European rabbits. Despite its narrow host range in nature, MYXV has been shown to productively infect various classes of human cancer cells. Several preclinical in vivo modeling studies have demonstrated that MYXV is an attractive and safe candidate oncolytic virus, and hence, MYXV is currently being developed as a potential therapeutic for several cancers, such as pancreatic cancer, glioblastoma, ovarian cancer, melanoma, and hematologic malignancies. This review highlights the preclinical cancer models that have shown the most promise for translation of MYXV into human clinical trials.
Collapse
Affiliation(s)
- Winnie M. Chan
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
27
|
Oncolytic vesicular stomatitis virus in an immunocompetent model of MUC1-positive or MUC1-null pancreatic ductal adenocarcinoma. J Virol 2013; 87:10283-94. [PMID: 23864625 DOI: 10.1128/jvi.01412-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic agent against various malignancies. Here, for the first time, we tested VSV in vitro and in vivo in a clinically relevant, immunocompetent mouse model of pancreatic ductal adenocarcinoma (PDA). Our system allows the study of virotherapy against PDA in the context of overexpression (80% of PDA patients) or no expression of human mucin 1 (MUC1), a major marker for poor prognosis in patients. In vitro, we tested three VSV recombinants, wild-type VSV, VSV-green fluorescent protein (VSV-GFP), and a safe oncolytic VSV-ΔM51-GFP, against five mouse PDA cell lines that either expressed human MUC1 or were MUC1 null. All viruses demonstrated significant oncolytic abilities independent of MUC1 expression, although VSV-ΔM51-GFP was somewhat less effective in two PDA cell lines. In vivo administration of VSV-ΔM51-GFP resulted in significant reduction of tumor growth for tested mouse PDA xenografts (+MUC1 or MUC1 null), and antitumor efficacy was further improved when the virus was combined with the chemotherapeutic drug gemcitabine. The antitumor effect was transient in all tested groups. The developed system can be used to study therapies involving various oncolytic viruses and chemotherapeutics, with the goal of inducing tumor-specific immunity while preventing premature virus clearance.
Collapse
|
28
|
Hastie E, Cataldi M, Marriott I, Grdzelishvili VZ. Understanding and altering cell tropism of vesicular stomatitis virus. Virus Res 2013; 176:16-32. [PMID: 23796410 DOI: 10.1016/j.virusres.2013.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV's broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV's neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, United States
| | | | | | | |
Collapse
|
29
|
Current status of gene therapy for brain tumors. Transl Res 2013; 161:339-54. [PMID: 23246627 PMCID: PMC3733107 DOI: 10.1016/j.trsl.2012.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.
Collapse
|
30
|
Moussavi M, Tearle H, Fazli L, Bell JC, Jia W, Rennie PS. Targeting and killing of metastatic cells in the transgenic adenocarcinoma of mouse prostate model with vesicular stomatitis virus. Mol Ther 2013; 21:842-8. [PMID: 23337981 DOI: 10.1038/mt.2012.285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an oncolytic virus which selectively infects and kills cancer cells. The goal of the present study was to determine whether VSV is capable of targeting metastatic lesions that arise in situ in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. The interferon (IFN)-responsive luciferase containing VSV(AV3) strain was injected intraprostatically into both control and TRAMP mice. Distribution, infectivity, apoptosis, and status of the IFN response were evaluated at the site of viral injection (prostate), as well as in metastatic lesions (lymph nodes), through plaque, polymerase chain reaction (PCR), and immunohistochemical analysis. Bioluminescence analyses demonstrated that VSV(AV3) persisted at high levels in the prostate region of TRAMP mice for up to 96 hours, but at relatively low levels and for only 48 hours in control mice. Live virus was discovered in the lymph nodes of TRAMP mice, but not in control mice. TUNEL staining revealed increased cell death in VSV(AV3) infected metastatic cells present in the lymph nodes of TRAMP mice. There was an evidence of IFN activation in lymph nodes containing metastatic cells. Our results indicate that intraprostatic injections of VSV(AV3) can be used as a means to infect and kill metastatic lesions associated with advanced prostate cancer.
Collapse
Affiliation(s)
- Maryam Moussavi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites. J Virol 2013; 87:3217-28. [PMID: 23283963 DOI: 10.1128/jvi.02984-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is potent and a highly promising agent for the treatment of cancer. However, translation of VSV oncolytic virotherapy into the clinic is being hindered by its inherent neurotoxicity. It has been demonstrated that selected picornaviral internal ribosome entry site (IRES) elements possess restricted activity in neuronal tissues. We therefore sought to determine whether the picornavirus IRES could be engineered into VSV to attenuate its neuropathogenicity. We have used IRES elements from human rhinovirus type 2 (HRV2) and foot-and-mouth disease virus (FMDV) to control the translation of the matrix gene (M), which plays a major role in VSV virulence. In vitro studies revealed slowed growth kinetics of IRES-controlled VSVs in most of the cell lines tested. However, in vivo studies explicitly demonstrated that IRES elements of HRV2 and FMDV severely attenuated the neurovirulence of VSV without perturbing its oncolytic potency.
Collapse
|
32
|
Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol 2012; 93:2529-2545. [PMID: 23052398 PMCID: PMC4091291 DOI: 10.1099/vir.0.046672-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virus (OV) therapy is an emerging anti-cancer approach that utilizes viruses to preferentially infect and kill cancer cells, while not harming healthy cells. Vesicular stomatitis virus (VSV) is a prototypic non-segmented, negative-strand RNA virus with inherent OV qualities. Antiviral responses induced by type I interferon pathways are believed to be impaired in most cancer cells, making them more susceptible to VSV than normal cells. Several other factors make VSV a promising OV candidate for clinical use, including its well-studied biology, a small, easily manipulated genome, relative independence of a receptor or cell cycle, cytoplasmic replication without risk of host-cell transformation, and lack of pre-existing immunity in humans. Moreover, various VSV-based recombinant viruses have been engineered via reverse genetics to improve oncoselectivity, safety, oncotoxicity and stimulation of tumour-specific immunity. Alternative delivery methods are also being studied to minimize premature immune clearance of VSV. OV treatment as a monotherapy is being explored, although many studies have employed VSV in combination with radiotherapy, chemotherapy or other OVs. Preclinical studies with various cancers have demonstrated that VSV is a promising OV; as a result, a human clinical trial using VSV is currently in progress.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Valery Z Grdzelishvili
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
33
|
Highly attenuated recombinant vesicular stomatitis virus VSV-12'GFP displays immunogenic and oncolytic activity. J Virol 2012; 87:1019-34. [PMID: 23135719 DOI: 10.1128/jvi.01106-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vesicular stomatitis virus (VSV) has shown considerable promise both as an immunization vector and as an oncolytic virus. In both applications, an important concern is the safety profile of the virus. To generate a highly attenuated virus, we added two reporter genes to the 3' end of the VSV genome, thereby shifting the NPMGL genes from positions 1 to 5 to positions 3 to 7. The resulting virus (VSV-12'GFP) was highly attenuated, generating smaller plaques than four other attenuated VSVs. In one-step growth curves, VSV-12'GFP displayed the slowest growth kinetics. The mechanism of attenuation appears to be due to reduced expression of VSV genes downstream of the reporter genes, as suggested by a 10.4-fold reduction in L-protein RNA transcript. Although attenuated, VSV-12'GFP was highly effective at generating an immune response, indicated by a high-titer antibody response against the green fluorescent protein (GFP) expressed by the virus. Although VSV-12'GFP was more attenuated than other VSVs on both normal and cancer cells, it nonetheless showed a greater level of infection of human cancer cells (glioma and melanoma) than of normal cells, and this effect was magnified in glioma by interferon application, indicating selective oncolysis. Intravenous VSV-12'GFP selectively infected human gliomas implanted into SCID mice subcutaneously or intracranially. All postnatal day 16 mice given intranasal VSV-12'GFP survived, whereas only 10% of those given VSV-G/GFP survived, indicating reduced neurotoxicity. Intratumoral injection of tumors with VSV-12'GFP dramatically suppressed tumor growth and enhanced survival. Together these data suggest this recombinant virus merits further study for its oncolytic and vaccine potential.
Collapse
|