1
|
Jeon J, Kang TH. Transcription-Coupled Repair and R-Loop Crosstalk in Genome Stability. Int J Mol Sci 2025; 26:3744. [PMID: 40332372 PMCID: PMC12027824 DOI: 10.3390/ijms26083744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Transcription-coupled repair (TCR) and R-loops are two interrelated processes critical to the maintenance of genome stability during transcription. TCR, a specialized sub-pathway of nucleotide excision repair, rapidly removes transcription-blocking lesions from the transcribed strand of active genes, thereby safeguarding transcription fidelity and cellular homeostasis. In contrast, R-loops, RNA-DNA hybrid structures formed co-transcriptionally, play not only regulatory roles in gene expression and replication but can also contribute to genome instability when persistently accumulated. Recent experimental evidence has revealed dynamic crosstalk between TCR and R-loop resolution pathways. This review highlights current molecular and cellular insights into TCR and R-loop biology, discusses the impact of their crosstalk, and explores emerging therapeutic strategies aimed at optimizing DNA repair and reducing disease risk in conditions such as cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Tae-Hong Kang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea;
| |
Collapse
|
2
|
Braidotti S, Ferraro RM, Franca R, Genova E, Giambuzzi F, Mancini A, Marinozzi V, Pugnetti L, Zudeh G, Tesser A, Tommasini A, Decorti G, Giliani SC, Stocco G. Pharmacological evaluation of drug therapies in Aicardi-Goutières syndrome: insights from patient-derived neural stem cells. Front Pharmacol 2025; 16:1549183. [PMID: 40183101 PMCID: PMC11966042 DOI: 10.3389/fphar.2025.1549183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare genetic disorder classified among type I interferonopathies. Current pharmacological management of AGS is symptomatic and supportive, with recent clinical applications of JAK inhibitors (JAKi) and antiretroviral therapies (RTIs). To investigate the effects of these therapies, patient-specific induced pluripotent stem cells (iPSCs) were generated by reprogramming fibroblasts from three AGS patients with distinct genetic mutations (AGS1, AGS2, AGS7) and differentiated into neural stem cells (NSCs). iPSCs and NSCs derived from commercial BJ fibroblasts of a healthy donor served as control. The cytotoxic effects of glucocorticoids, thiopurines, JAK inhibitors (ruxolitinib, baricitinib, tofacitinib, pacritinib), and RTIs (abacavir, lamivudine, zidovudine) were evaluated using the MTT assay. Results showed that glucocorticoids did not compromise NSC viability. Among thiopurines, thioguanine, but not mercaptopurine, exhibited cytotoxicity in NSCs. All tested JAK inhibitors, except pacritinib, were non-toxic to iPSCs and NSCs. Interestingly, high concentrations of certain JAK inhibitors (ruxolitinib, baricitinib, tofacitinib) led to an unexpected increase in cell viability in AGS patient-derived cells compared to control, suggesting potential alterations in cell proliferation or stress responses. RTIs demonstrated no cytotoxicity, except for zidovudine, which showed selective toxicity in AGS2-derived iPSCs compared to controls. These findings suggest that glucocorticoids, JAK inhibitors (excluding pacritinib), and RTIs are likely safe for NSCs of AGS patients, while caution is warranted with thioguanine and pacritinib. Further studies are needed to explore the mechanisms underlying increased cell viability at high JAK inhibitor concentrations and the selective sensitivity to zidovudine.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Rosalba Monica Ferraro
- “Angelo Nocivelli” Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Elena Genova
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Francesco Giambuzzi
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Andrea Mancini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Valentina Marinozzi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Letizia Pugnetti
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Giulia Zudeh
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Alessandra Tesser
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Alberto Tommasini
- Department of Paediatrics, Institute for Maternal and Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| | - Silvia Clara Giliani
- “Angelo Nocivelli” Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gabriele Stocco
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Department of Advanced Translational Diagnostics, Institute for Maternal & Child Health (I.R.C.C.S) Burlo Garofolo, Trieste, Italy
| |
Collapse
|
3
|
Lee H, Cho H, Kim J, Lee S, Yoo J, Park D, Lee G. RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids. Nucleic Acids Res 2022; 50:1801-1814. [PMID: 34788459 PMCID: PMC8886854 DOI: 10.1093/nar/gkab1064] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
RNase H is involved in fundamental cellular processes and is responsible for removing the short stretch of RNA from Okazaki fragments and the long stretch of RNA from R-loops. Defects in RNase H lead to embryo lethality in mice and Aicardi-Goutieres syndrome in humans, suggesting the importance of RNase H. To date, RNase H is known to be a non-sequence-specific endonuclease, but it is not known whether it performs other functions on the structural variants of RNA:DNA hybrids. Here, we used Escherichia coli RNase H as a model, and examined its catalytic mechanism and its substrate recognition modes, using single-molecule FRET. We discovered that RNase H acts as a processive exoribonuclease on the 3' DNA overhang side but as a distributive non-sequence-specific endonuclease on the 5' DNA overhang side of RNA:DNA hybrids or on blunt-ended hybrids. The high affinity of previously unidentified double-stranded (ds) and single-stranded (ss) DNA junctions flanking RNA:DNA hybrids may help RNase H find the hybrid substrates in long genomic DNA. Our study provides new insights into the multifunctionality of RNase H, elucidating unprecedented roles of junctions and ssDNA overhang on RNA:DNA hybrids.
Collapse
Affiliation(s)
- Hyunjee Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - HyeokJin Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jooyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sua Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jungmin Yoo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Single-Molecule Biology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Cell Mechanobiology Laboratory, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
4
|
St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021; 11:1249. [PMID: 34439915 PMCID: PMC8391903 DOI: 10.3390/biom11081249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Commodore St Germain
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Jacqueline H. Barlow
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| |
Collapse
|
5
|
Garau J, Masnada S, Dragoni F, Sproviero D, Fogolari F, Gagliardi S, Izzo G, Varesio C, Orcesi S, Veggiotti P, Zuccotti GV, Pansarasa O, Tonduti D, Cereda C. Case Report: Novel Compound Heterozygous RNASEH2B Mutations Cause Aicardi-Goutières Syndrome. Front Immunol 2021; 12:672952. [PMID: 33981319 PMCID: PMC8107470 DOI: 10.3389/fimmu.2021.672952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Aicardi–Goutières Syndrome (AGS) is a rare disorder characterized by neurological and immunological signs. In this study we have described a child with a phenotype consistent with AGS carrying a novel compound heterozygous mutation in RNASEH2B gene. Next Generation Sequencing revealed two heterozygous variants in RNASEH2B gene. We also highlighted a reduction of RNase H2B transcript and protein levels in all the family members. Lower protein levels of RNase H2A have been observed in all the members of the family as well, whereas a deep depletion of RNase H2C has only been identified in the affected child. The structural analysis showed that both mutations remove many intramolecular contacts, possibly introducing conformational rearrangements with a decrease of the stability of RNase H2B and strongly destabilizing the RNase H2 complex. Taken together, these results highlight the importance of an integrated diagnostic approach which takes into consideration clinical, genetic, and molecular analyses.
Collapse
Affiliation(s)
- Jessica Garau
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Masnada
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy.,C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Francesca Dragoni
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Federico Fogolari
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Stella Gagliardi
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giana Izzo
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.,Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Simona Orcesi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Pierangelo Veggiotti
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy.,C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.,Department of Biomedical and Clinical Science "L. Sacco, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy.,Department of Biomedical and Clinical Science "L. Sacco, University of Milan, Milan, Italy.,Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | - Orietta Pansarasa
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, V. Buzzi Children's Hospital, Milan, Italy.,C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milan, Italy
| | - Cristina Cereda
- Genomic and Post-Genomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
6
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
7
|
Duarte DM, Beatriz da Silva Lima M, Sepodes B. The translational value of animal models in orphan medicines designations for rare paediatric neurological diseases. Regul Toxicol Pharmacol 2020; 118:104810. [PMID: 33122047 DOI: 10.1016/j.yrtph.2020.104810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Rare diseases are characterized by a substantial unmet need mostly because the majority have limited, or no treatment options and a large number also affect children. Appropriate animal models, based on the knowledge of the molecular pathology of the human disease, are a significant element to support the medical plausibility of an orphan designation during the development of orphan medicines for rare neurological diseases. This observational, retrospective study aims to investigate the clinical or nonclinical nature of data submitted to support medical plausibility of orphan designations in the EU (2001-2019), for a group of rare and paediatric neurological diseases. From our sample of 30 diseases, 70% are rare with paediatric onset and 37% have approved orphan designations. The use of nonclinical data was significantly higher than clinical data (65% vs. 35%, p = 0.013) to support medical plausibility. Examples of diseases, with orphan designations based only in nonclinical data, are also discussed: Aicardi-Goutières syndrome and Centronuclear myopathy animal disease models, potentially used to support medical plausibility of medicines. Nonclinical appropriate models, assessing disease relevant endpoints, may contribute to increase the translational value of animal models, in paediatric and rare neurological area, to accelerate research and the effective development of treatment options.
Collapse
Affiliation(s)
| | | | - Bruno Sepodes
- Universidade de Lisboa, Faculdade de Farmácia, Lisbon, Portugal
| |
Collapse
|
8
|
Garcia LM, Hacker JL, Sase S, Adang L, Almad A. Glial cells in the driver seat of leukodystrophy pathogenesis. Neurobiol Dis 2020; 146:105087. [PMID: 32977022 DOI: 10.1016/j.nbd.2020.105087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/16/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023] Open
Abstract
Glia cells are often viewed as support cells in the central nervous system, but recent discoveries highlight their importance in physiological functions and in neurological diseases. Central to this are leukodystrophies, a group of progressive, neurogenetic disease affecting white matter pathology. In this review, we take a closer look at multiple leukodystrophies, classified based on the primary glial cell type that is affected. While white matter diseases involve oligodendrocyte and myelin loss, we discuss how astrocytes and microglia are affected and impinge on oligodendrocyte, myelin and axonal pathology. We provide an overview of the leukodystrophies covering their hallmark features, clinical phenotypes, diverse molecular pathways, and potential therapeutics for clinical trials. Glial cells are gaining momentum as cellular therapeutic targets for treatment of demyelinating diseases such as leukodystrophies, currently with no treatment options. Here, we bring the much needed attention to role of glia in leukodystrophies, an integral step towards furthering disease comprehension, understanding mechanisms and developing future therapeutics.
Collapse
Affiliation(s)
- Luis M Garcia
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Julia L Hacker
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Sunetra Sase
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Laura Adang
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA
| | - Akshata Almad
- Department of Neurology, The Children's Hospital of Philadelphia, PA, Pennsylvania, USA.
| |
Collapse
|
9
|
Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 2020; 21:123-136. [PMID: 32020081 DOI: 10.1038/s41580-019-0209-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mammalian genome is transcribed, generating long non-coding RNAs (lncRNAs) that can undergo post-transcriptional surveillance whereby only a subset of the non-coding transcripts is allowed to attain sufficient stability to persist in the cellular milieu and control various cellular functions. Paralleling protein turnover by the proteasome complex, lncRNAs are also likely to exist in a dynamic equilibrium that is maintained through constant monitoring by the RNA surveillance machinery. In this Review, we describe the RNA surveillance factors and discuss the vital role of lncRNA surveillance in orchestrating various biological processes, including the protection of genome integrity, maintenance of pluripotency of embryonic stem cells, antibody-gene diversification, coordination of immune cell activation and regulation of heterochromatin formation. We also discuss examples of human diseases and developmental defects associated with the failure of RNA surveillance mechanisms, further highlighting the importance of lncRNA surveillance in maintaining cell and organism functions and health.
Collapse
|
10
|
Ferraro RM, Masneri S, Lanzi G, Barisani C, Piovani G, Savio G, Cattalini M, Galli J, Cereda C, Muzi-Falconi M, Orcesi S, Fazzi E, Giliani S. Establishment of three iPSC lines from fibroblasts of a patient with Aicardi Goutières syndrome mutated in RNaseH2B. Stem Cell Res 2019; 41:101620. [DOI: 10.1016/j.scr.2019.101620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022] Open
|
11
|
Tsukiashi M, Baba M, Kojima K, Himeda K, Takita T, Yasukawa K. Construction and characterization of ribonuclease H2 knockout NIH3T3 cells. J Biochem 2019; 165:249-256. [PMID: 30481312 DOI: 10.1093/jb/mvy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease H (RNase H) specifically hydrolyzes the 5'-phosphodiester bonds of the RNA of RNA/DNA hybrid. Both types 1 and 2 RNases H act on the RNA strand of the hybrid, while only type 2 acts on the single ribonucleotide embedded in DNA duplex. In this study, to explore the role of mammalian type 2 RNase H (RNase H2) in cells, we constructed the RNase H2 knockout NIH3T3 cells (KO cells) by CRISPR/Cas9 system. KO cells hydrolyzed RNA strands in RNA/DNA hybrid, but not single ribonucleotides in DNA duplex, while wild-type NIH3T3 cells (WT cells) hydrolyzed both. Genomic DNA in the KO cells was more heavily hydrolyzed than in the WT cells by the alkaline or RNase H2 treatment, suggesting that the KO cells contained more ribonucleotides in genomic DNA than the WT cells. The growth rate of the KO cells was 60% of that of the WT cells. Expression of interferon-stimulated genes (ISGs) in the KO cells was not markedly elevated compared with the WT cells. These results suggest that in NIH3T3 cells, RNase H2 is crucial for suppressing the accumulation of ribonucleotides in genomic DNA but not for the expression of ISGs.
Collapse
Affiliation(s)
- Motoki Tsukiashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kohei Himeda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
12
|
Vaisman A, Woodgate R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 2018; 53:382-402. [PMID: 29972306 DOI: 10.1080/10409238.2018.1483889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The well-being of all living organisms relies on the accurate duplication of their genomes. This is usually achieved by highly elaborate replicase complexes which ensure that this task is accomplished timely and efficiently. However, cells often must resort to the help of various additional "specialized" DNA polymerases that gain access to genomic DNA when replication fork progression is hindered. One such specialized polymerase family consists of the so-called "translesion synthesis" (TLS) polymerases; enzymes that have evolved to replicate damaged DNA. To fulfill their main cellular mission, TLS polymerases often must sacrifice precision when selecting nucleotide substrates. Low base-substitution fidelity is a well-documented inherent property of these enzymes. However, incorrect nucleotide substrates are not only those which do not comply with Watson-Crick base complementarity, but also those whose sugar moiety is incorrect. Does relaxed base-selectivity automatically mean that the TLS polymerases are unable to efficiently discriminate between ribonucleoside triphosphates and deoxyribonucleoside triphosphates that differ by only a single atom? Which strategies do TLS polymerases employ to select suitable nucleotide substrates? In this review, we will collate and summarize data accumulated over the past decade from biochemical and structural studies, which aim to answer these questions.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
13
|
Bartsch K, Damme M, Regen T, Becker L, Garrett L, Hölter SM, Knittler K, Borowski C, Waisman A, Glatzel M, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Rabe B. RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation. Front Immunol 2018; 9:587. [PMID: 29662492 PMCID: PMC5890188 DOI: 10.3389/fimmu.2018.00587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2ΔGFAP mice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results in a second, neuron-specific RNase H2 knockout mouse line. However, when astrocytes were isolated from brains of RNase H2ΔGFAP mice and cultured under mitogenic conditions, they showed signs of DNA damage and premature senescence. Enhanced expression of interferon-stimulated genes (ISGs) represents the most reliable AGS biomarker. Importantly, primary RNase H2ΔGFAP astrocytes displayed significantly increased ISG transcript levels, which we failed to detect in in vivo in brains of RNase H2ΔGFAP mice. Isolated astrocytes primed by DNA damage, including RNase H2-deficiency, exhibited a heightened innate immune response when exposed to bacterial or viral antigens. Taken together, we established a valid cellular AGS model that utilizes the very cell type responsible for disease pathology, the astrocyte, and phenocopies major molecular defects observed in AGS patient cells.
Collapse
Affiliation(s)
- Kareen Bartsch
- Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Markus Damme
- Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katharina Knittler
- Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christopher Borowski
- Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Björn Rabe
- Medical Faculty, Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
14
|
Bartsch K, Knittler K, Borowski C, Rudnik S, Damme M, Aden K, Spehlmann ME, Frey N, Saftig P, Chalaris A, Rabe B. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet 2018; 26:3960-3972. [PMID: 29016854 DOI: 10.1093/hmg/ddx283] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Hypomorphic mutations in the DNA repair enzyme RNase H2 cause the neuroinflammatory autoimmune disorder Aicardi-Goutières syndrome (AGS). Endogenous nucleic acids are believed to accumulate in patient cells and instigate pathogenic type I interferon expression. However, the underlying nucleic acid species amassing in the absence of RNase H2 has not been established yet. Here, we report that murine RNase H2 knockout cells accumulated cytosolic DNA aggregates virtually indistinguishable from micronuclei. RNase H2-dependent micronuclei were surrounded by nuclear lamina and most of them contained damaged DNA. Importantly, they induced expression of interferon-stimulated genes (ISGs) and co-localized with the nucleic acid sensor cGAS. Moreover, micronuclei associated with RNase H2 deficiency were cleared by autophagy. Consequently, induction of autophagy by pharmacological mTOR inhibition resulted in a significant reduction of cytosolic DNA and the accompanied interferon signature. Autophagy induction might therefore represent a viable therapeutic option for RNase H2-dependent disease. Endogenous retroelements have previously been proposed as a source of self-nucleic acids triggering inappropriate activation of the immune system in AGS. We used human RNase H2-knockout cells generated by CRISPR/Cas9 to investigate the impact of RNase H2 on retroelement propagation. Surprisingly, replication of LINE-1 and Alu elements was blunted in cells lacking RNase H2, establishing RNase H2 as essential host factor for the mobilisation of endogenous retrotransposons.
Collapse
Affiliation(s)
- Kareen Bartsch
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Katharina Knittler
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Christopher Borowski
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Sönke Rudnik
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Markus Damme
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Martina E Spehlmann
- Clinic for Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Norbert Frey
- Clinic for Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Athena Chalaris
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Björn Rabe
- Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| |
Collapse
|
15
|
Li P, Du J, Goodier JL, Hou J, Kang J, Kazazian HH, Zhao K, Yu XF. Aicardi-Goutières syndrome protein TREX1 suppresses L1 and maintains genome integrity through exonuclease-independent ORF1p depletion. Nucleic Acids Res 2017; 45:4619-4631. [PMID: 28334850 PMCID: PMC5416883 DOI: 10.1093/nar/gkx178] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/11/2017] [Indexed: 12/22/2022] Open
Abstract
Maintaining genome integrity is important for cells and damaged DNA triggers autoimmunity. Previous studies have reported that Three-prime repair exonuclease 1(TREX1), an endogenous DNA exonuclease, prevents immune activation by depleting damaged DNA, thus preventing the development of certain autoimmune diseases. Consistently, mutations in TREX1 are linked with autoimmune diseases such as systemic lupus erythematosus, Aicardi–Goutières syndrome (AGS) and familial chilblain lupus. However, TREX1 mutants competent for DNA exonuclease activity are also linked to AGS. Here, we report a nuclease-independent involvement of TREX1 in preventing the L1 retrotransposon-induced DNA damage response. TREX1 interacted with ORF1p and altered its intracellular localization. Furthermore, TREX1 triggered ORF1p depletion and reduced the L1-mediated nicking of genomic DNA. TREX1 mutants related to AGS were deficient in inducing ORF1p depletion and could not prevent L1-mediated DNA damage. Therefore, our findings not only reveal a new mechanism for TREX1-mediated L1 suppression and uncover a new function for TREX1 in protein destabilization, but they also suggest a novel mechanism for TREX1-mediated suppression of innate immune activation through maintaining genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - John L Goodier
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jingwei Hou
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jian Kang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Haig H Kazazian
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China.,Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Huang SYN, Williams JS, Arana ME, Kunkel TA, Pommier Y. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J 2016; 36:361-373. [PMID: 27932446 DOI: 10.15252/embj.201592426] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023] Open
Abstract
Ribonuclease activity of topoisomerase I (Top1) causes DNA nicks bearing 2',3'-cyclic phosphates at ribonucleotide sites. Here, we provide genetic and biochemical evidence that DNA double-strand breaks (DSBs) can be directly generated by Top1 at sites of genomic ribonucleotides. We show that RNase H2-deficient yeast cells displayed elevated frequency of Rad52 foci, inactivation of RNase H2 and RAD52 led to synthetic lethality, and combined loss of RNase H2 and RAD51 induced slow growth and replication stress. Importantly, these phenotypes were rescued upon additional deletion of TOP1, implicating homologous recombination for the repair of Top1-induced damage at ribonuclelotide sites. We demonstrate biochemically that irreversible DSBs are generated by subsequent Top1 cleavage on the opposite strand from the Top1-induced DNA nicks at ribonucleotide sites. Analysis of Top1-linked DNA from pull-down experiments revealed that Top1 is covalently linked to the end of DNA in RNase H2-deficient yeast cells, supporting this model. Taken together, these results define Top1 as a source of DSBs and genome instability when ribonucleotides incorporated by the replicative polymerases are not removed by RNase H2.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Mercedes E Arana
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
17
|
Mackenzie KJ, Carroll P, Lettice L, Tarnauskaitė Ž, Reddy K, Dix F, Revuelta A, Abbondati E, Rigby RE, Rabe B, Kilanowski F, Grimes G, Fluteau A, Devenney PS, Hill RE, Reijns MA, Jackson AP. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 2016; 35:831-44. [PMID: 26903602 PMCID: PMC4855687 DOI: 10.15252/embj.201593339] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/22/2016] [Indexed: 01/16/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) provides a monogenic model of nucleic acid-mediated inflammation relevant to the pathogenesis of systemic autoimmunity. Mutations that impair ribonuclease (RNase) H2 enzyme function are the most frequent cause of this autoinflammatory disorder of childhood and are also associated with systemic lupus erythematosus. Reduced processing of eitherRNA:DNAhybrid or genome-embedded ribonucleotide substrates is thought to lead to activation of a yet undefined nucleic acid-sensing pathway. Here, we establishRnaseh2b(A174T/A174T)knock-in mice as a subclinical model of disease, identifying significant interferon-stimulated gene (ISG) transcript upregulation that recapitulates theISGsignature seen inAGSpatients. The inflammatory response is dependent on the nucleic acid sensor cyclicGMP-AMPsynthase (cGAS) and its adaptorSTINGand is associated with reduced cellular ribonucleotide excision repair activity and increasedDNAdamage. This suggests thatcGAS/STINGis a key nucleic acid-sensing pathway relevant toAGS, providing additional insight into disease pathogenesis relevant to the development of therapeutics for this childhood-onset interferonopathy and adult systemic autoimmune disorders.
Collapse
Affiliation(s)
- Karen J Mackenzie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paula Carroll
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Laura Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Kaalak Reddy
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Flora Dix
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ailsa Revuelta
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Erika Abbondati
- Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Rachel E Rigby
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Björn Rabe
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Graeme Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paul S Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin Am Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Yang S, Deng P, Zhu Z, Zhu J, Wang G, Zhang L, Chen AF, Wang T, Sarkar SN, Billiar TR, Wang Q. Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection and suppresses IFN production responding to viral and endogenous RNAs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3436-45. [PMID: 25172485 PMCID: PMC4169998 DOI: 10.4049/jimmunol.1401136] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type I IFNs play central roles in innate immunity; however, overproduction of IFN can lead to immunopathology. In this study, we demonstrate that adenosine deaminase acting on RNA 1 (ADAR1), an RNA-editing enzyme induced by IFN, is essential for cells to avoid inappropriate sensing of cytosolic RNA in an inducible knockout cell model-the primary mouse embryo fibroblast derived from ADAR1 lox/lox and Cre-ER mice as well as in HEK293 cells. ADAR1 suppresses viral and cellular RNA detection by retinoic acid-inducible gene I (RIG-I) through its RNA binding rather than its RNA editing activity. dsRNA binds to both ADAR1 and RIG-I, but ADAR1 reduces RIG-I RNA binding. In the absence of ADAR1, cellular RNA stimulates type I IFN production without viral infection or exogenous RNA stimulation. Moreover, we showed in the ADAR1-inducible knockout mice that ADAR1 gene disruption results in high-level IFN production in neuronal tissues-the hallmark of Aicardi-Goutières syndrome, a heritable autoimmune disease recently found to be associated with ADAR1 gene mutations. In summary, this study found that ADAR1 limits cytosolic RNA sensing by RIG-I through its RNA binding activity; therefore, ADAR1 suppresses type I IFN production stimulated by viral and cellular RNAs. These results explain why loss of ADARA1 causes IFN induction and also indicates a mechanism for the involvement of ADAR1 in autoimmune diseases such as Aicardi-Goutières syndrome.
Collapse
Affiliation(s)
- Shengyong Yang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Peng Deng
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Pathophysiology, Southern Medical University, Guangzhou, China 510515
| | - Zhaowei Zhu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jianzhong Zhu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Guoliang Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Liyong Zhang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Alex F Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tony Wang
- Department of Immunology and Infectious Disease, SRI Biosciences, Lexington Park, MD 20653
| | - Saumendra N Sarkar
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213;
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213;
| |
Collapse
|
19
|
Abstract
R-loops are cellular structures composed of an RNA/DNA hybrid, which is formed when the RNA hybridises to a complementary DNA strand and a displaced single-stranded DNA. R-loops have been detected in various organisms from bacteria to mammals and play crucial roles in regulating gene expression, DNA and histone modifications, immunoglobulin class switch recombination, DNA replication, and genome stability. Recent evidence suggests that R-loops are also involved in molecular mechanisms of neurological diseases and cancer. In addition, mutations in factors implicated in R-loop biology, such as RNase H and SETX (senataxin), lead to devastating human neurodegenerative disorders, highlighting the importance of correctly regulating the level of R-loops in human cells. In this review we summarise current advances in this field, with a particular focus on diseases associated with dysregulation of R-loop structures. We also discuss potential therapeutic approaches for such diseases and highlight future research directions.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Abstract
This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person's view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
21
|
Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:1-55. [PMID: 25201102 DOI: 10.1007/978-1-4939-1221-6_1] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
Collapse
|