1
|
Pemberton JG, Roy K, Kim YJ, Fischer TD, Joshi V, Ferrer E, Youle RJ, Pucadyil TJ, Balla T. Acute diacylglycerol production activates critical membrane-shaping proteins leading to mitochondrial tubulation and fission. Nat Commun 2025; 16:2685. [PMID: 40102394 PMCID: PMC11920102 DOI: 10.1038/s41467-025-57439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial dynamics are orchestrated by protein assemblies that directly remodel membrane structure, however the influence of specific lipids on these processes remains poorly understood. Here, using an inducible heterodimerization system to selectively modulate the lipid composition of the outer mitochondrial membrane (OMM), we show that local production of diacylglycerol (DAG) directly leads to transient tubulation and rapid fragmentation of the mitochondrial network, which are mediated by isoforms of endophilin B (EndoB) and dynamin-related protein 1 (Drp1), respectively. Reconstitution experiments on cardiolipin-containing membrane templates mimicking the planar and constricted OMM topologies reveal that DAG facilitates the membrane binding and remodeling activities of both EndoB and Drp1, thereby independently potentiating membrane tubulation and fission events. EndoB and Drp1 do not directly interact with each other, suggesting that DAG production activates multiple pathways for membrane remodeling in parallel. Together, our data emphasizes the importance of OMM lipid composition in regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Biology, Western University, London, ON, Canada.
- Division of Development & Genetics, Children's Health Research Institute, London Health Sciences Centre Research Institute, London, ON, Canada.
| | - Krishnendu Roy
- Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tara D Fischer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vijay Joshi
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Ferrer
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Evers F, Roverts R, Boshoven C, Kea-Te Lindert M, Verhoef JMJ, Sommerdijk N, Sinden RE, Akiva A, Kooij TWA. Comparative 3D ultrastructure of Plasmodium falciparum gametocytes. Nat Commun 2025; 16:69. [PMID: 39747010 PMCID: PMC11695595 DOI: 10.1038/s41467-024-55413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes. We also provide evidence for a gametocyte-specific cytostome, or cell mouth. Furthermore, we generate the first 3D reconstructions of the parasite's endoplasmic reticulum (ER) and Golgi apparatus as well as gametocyte-induced extraparasitic structures in the infected red blood cell. Assessing interconnectivity between organelles, we find frequent structural appositions between the nucleus, mitochondria, and apicoplast. We provide evidence that the ER is a promiscuous interactor with numerous organelles and the trilaminar pellicle of the gametocyte. Public availability of these volumetric electron microscopy resources will facilitate reinterrogation by others with different research questions and expertise. Taken together, we reconstruct the 3D ultrastructure of P. falciparum gametocytes at nanometre scale and shed light on the unique organellar biology of these deadly parasites.
Collapse
Affiliation(s)
- Felix Evers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mariska Kea-Te Lindert
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Anat Akiva
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Alimohamadi H, Luo EWC, Yang R, Gupta S, Nolden KA, Mandal T, Blake Hill R, Wong GCL. Dynamins combine mechano-constriction and membrane remodeling to enable two-step mitochondrial fission via a 'snap-through' instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608723. [PMID: 39229060 PMCID: PMC11370335 DOI: 10.1101/2024.08.19.608723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitochondrial fission is controlled by dynamin proteins, the dysregulation of which is correlated with diverse diseases. Fission dynamins are GTP hydrolysis-driven mechanoenzymes that self-oligomerize into helical structures that constrict membrane to achieve fission, but details are not well understood. However, dynamins can also remodel membranes by inducing negative Gaussian curvature, the type of curvature required for completion of fission. Here, we examine how these drastically different mechanisms synergistically exert their influences on a membrane, via a mechanical model calibrated with small-angle X-ray scattering structural data. We find that free dynamin can trigger a "snap-through instability" that enforces a shape transition from an oligomer-confined cylindrical membrane to a drastically narrower catenoid-shaped neck within the spontaneous hemi-fission regime, in a manner that depends critically on the length of the confined tube. These results indicate how the combination of dynamin assembly, and paradoxically disassembly, can lead to diverse pathways to scission.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - R. Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, CO, 80045, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90025, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Peñalva DA, Monnappa AK, Natale P, López-Montero I. Mfn2-dependent fusion pathway of PE-enriched micron-sized vesicles. Proc Natl Acad Sci U S A 2024; 121:e2313609121. [PMID: 39012824 PMCID: PMC11287154 DOI: 10.1073/pnas.2313609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Mitofusins (Mfn1 and Mfn2) are the mitochondrial outer-membrane fusion proteins in mammals and belong to the dynamin superfamily of multidomain GTPases. Recent structural studies of truncated variants lacking alpha helical transmembrane domains suggested that Mfns dimerize to promote the approximation and the fusion of the mitochondrial outer membranes upon the hydrolysis of guanine 5'-triphosphate disodium salt (GTP). However, next to the presence of GTP, the fusion activity seems to require multiple regulatory factors that control the dynamics and kinetics of mitochondrial fusion through the formation of Mfn1-Mfn2 heterodimers. Here, we purified and reconstituted the full-length murine Mfn2 protein into giant unilamellar vesicles (GUVs) with different lipid compositions. The incubation with GTP resulted in the fusion of Mfn2-GUVs. High-speed video-microscopy showed that the Mfn2-dependent membrane fusion pathway progressed through a zipper mechanism where the formation and growth of an adhesion patch eventually led to the formation of a membrane opening at the rim of the septum. The presence of physiological concentration (up to 30 mol%) of dioleoyl-phosphatidylethanolamine (DOPE) was shown to be a requisite to observe GTP-induced Mfn2-dependent fusion. Our observations show that Mfn2 alone can promote the fusion of micron-sized DOPE-enriched vesicles without the requirement of regulatory cofactors, such as membrane curvature, or the assistance of other proteins.
Collapse
Affiliation(s)
- Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía BlancaB8000, Argentina
| | - Ajay K. Monnappa
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
| | - Paolo Natale
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid28041, Spain
- Departamento Química Física, Universidad Complutense de Madrid, Madrid28041, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid28041, Spain
| |
Collapse
|
6
|
Le DE, Alkayed NJ, Cao Z, Chattergoon NN, Garcia-Jaramillo M, Thornburg K, Kaul S. Metabolomics of repetitive myocardial stunning in chronic multivessel coronary artery stenosis: Effect of non-selective and selective β1-receptor blockers. J Physiol 2024; 602:3423-3448. [PMID: 38885335 PMCID: PMC11284965 DOI: 10.1113/jp285720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Chronic coronary artery stenosis can lead to regional myocardial dysfunction in the absence of myocardial infarction by repetitive stunning, hibernation or both. The molecular mechanisms underlying repetitive stunning-associated myocardial dysfunction are not clear. We used non-targeted metabolomics to elucidate responses to chronically stunned myocardium in a canine model with and without β-adrenergic blockade treatment. After development of left ventricular systolic dysfunction induced by ameroid constrictors on the coronary arteries, animals were randomized to 3 months of placebo, metoprolol or carvedilol. We compared these two β-blockers with their different β-adrenergic selectivities on myocardial function, perfusion and metabolic pathways involved in tissue undergoing chronic stunning. Control animals underwent sham surgery. Dysfunction in stunned myocardium was associated with reduced fatty acid oxidation and enhanced ketogenic amino acid metabolism, together with alterations in mitochondrial membrane phospholipid composition. These changes were consistent with impaired mitochondrial function and were linked to reduced nitric oxide and peroxisome proliferator-activated receptor signalling, resulting in a decline in adenosine monophosphate-activated protein kinase. Mitochondrial changes were ameliorated by carvedilol more than metoprolol, and improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. In summary, repetitive myocardial stunning commonly seen in chronic multivessel coronary artery disease is associated with adverse metabolic remodelling linked to mitochondrial dysfunction and specific signalling pathways. These changes are reversed by β-blockers, with the non-selective inhibitor having a more favourable impact. This is the first investigation to demonstrate that β-blockade-associated improvement of ventricular function in chronic myocardial stunning is associated with restoration of mitochondrial function. KEY POINTS: The mechanisms responsible for the metabolic changes associated with repetitive myocardial stunning seen in chronic multivessel coronary artery disease have not been fully investigated. In a canine model of repetitive myocardial stunning, we showed that carvedilol, a non-selective β-receptor blocker, ameliorated adverse metabolic remodelling compared to metoprolol, a selective β1-receptor blocker, by improving nitric oxide synthase and adenosine monophosphate protein kinase function, enhancing calcium/calmodulin-dependent protein kinase, probably increasing hydrogen sulphide, and suppressing cyclic-adenosine monophosphate signalling. Mitochondrial fatty acid oxidation alterations were ameliorated by carvedilol to a larger extent than metoprolol; this improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. Both β-blockers improved the cardiac energy imbalance by reducing metabolites in ketogenic amino acid and nucleotide metabolism. These results elucidated why metabolic remodelling with carvedilol is preferable to metoprolol when treating chronic ischaemic left ventricular systolic dysfunction caused by repetitive myocardial stunning.
Collapse
Affiliation(s)
- D. Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Nabil J. Alkayed
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Natasha N. Chattergoon
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Kent Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
7
|
Zhang Q, Meng H, Wang X, Chen Y, Yan Z, Ruan J, Meng F. Low expression of Notch1 may be associated with acute myocardial infarction. Front Cardiovasc Med 2024; 11:1367675. [PMID: 38841263 PMCID: PMC11150703 DOI: 10.3389/fcvm.2024.1367675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The transmembrane protein Notch1 is associated with cell growth, development, differentiation, proliferation, apoptosis, adhesion, and the epithelial mesenchymal transition. Proteomics, as a research method, uses a series of sequencing techniques to study the composition, expression levels, and modifications of proteins. Here, the association between Notch1 and acute myocardial infarction (AMI) was investigated using proteomics, to assess the possibility of using Notch1 as a biomarker for the disease. METHODS Fifty-five eligible patients with AMI and 74 with chronic coronary syndrome (CCS) were enrolled, representing the experimental and control groups, respectively. The mRNA levels were assessed using RT-qPCR and proteins were measured using ELISA, and the results were compared and analyzed. RESULTS Notch1 mRNA levels were 0.52 times higher in the peripheral blood mononuclear cells of the AMI group relative to the CCS group (p < 0.05) while Notch1 protein levels were 0.63 times higher in peripheral blood plasma in AMI patients (p < 0.05). Notch1 levels were not associated with older age, hypertension, smoking, high abdominal-blood glucose, high total cholesterol, and high LDL in AMI. Logistic regression indicated associations between AMI and reduced Notch1 expression, hypertension, smoking, and high fasting glucose. CONCLUSIONS Notch1 expression was reduced in the peripheral blood of patients with AMI relative to those with CCS. The low expression of Notch1 was found to be an independent risk factor for AMI and may thus be an indicator of the disease.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Heyu Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Xue Wang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Yanqiu Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Zhaohan Yan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Jianjun Ruan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Fanbo Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| |
Collapse
|
8
|
Spencer RKW, Santos-Pérez I, Rodríguez-Renovales I, Martinez Galvez JM, Shnyrova AV, Müller M. Membrane fission via transmembrane contact. Nat Commun 2024; 15:2793. [PMID: 38555357 PMCID: PMC10981662 DOI: 10.1038/s41467-024-47122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Division of intracellular organelles often correlates with additional membrane wrapping, e.g., by the endoplasmic reticulum or the outer mitochondrial membrane. Such wrapping plays a vital role in proteome and lipidome organization. However, how an extra membrane impacts the mechanics of the division has not been investigated. Here we combine fluorescence and cryo-electron microscopy experiments with self-consistent field theory to explore the stress-induced instabilities imposed by membrane wrapping in a simple double-membrane tubular system. We find that, at physiologically relevant conditions, the outer membrane facilitates an alternative pathway for the inner-tube fission through the formation of a transient contact (hemi-fusion) between both membranes. A detailed molecular theory of the fission pathways in the double membrane system reveals the topological complexity of the process, resulting both in leaky and leakless intermediates, with energies and topologies predicting physiological events.
Collapse
Affiliation(s)
- Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| | - Isaac Santos-Pérez
- Electron Microscopy and Crystallography Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Izaro Rodríguez-Renovales
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena, Leioa, Spain
| | - Juan Manuel Martinez Galvez
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena, Leioa, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Anna V Shnyrova
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena, Leioa, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany.
| |
Collapse
|
9
|
Huang Y, Ji W, Zhang J, Huang Z, Ding A, Bai H, Peng B, Huang K, Du W, Zhao T, Li L. The involvement of the mitochondrial membrane in drug delivery. Acta Biomater 2024; 176:28-50. [PMID: 38280553 DOI: 10.1016/j.actbio.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Treatment effectiveness and biosafety are critical for disease therapy. Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. To further enhance the precision of disease treatment, future research should shift focus from targeted cellular delivery to targeted subcellular delivery. As the cellular powerhouses, mitochondria play an indispensable role in cell growth and regulation and are closely involved in many diseases (e.g., cancer, cardiovascular, and neurodegenerative diseases). The double-layer membrane wrapped on the surface of mitochondria not only maintains the stability of their internal environment but also plays a crucial role in fundamental biological processes, such as energy generation, metabolite transport, and information communication. A growing body of evidence suggests that various diseases are tightly related to mitochondrial imbalance. Moreover, mitochondria-targeted strategies hold great potential to decrease therapeutic threshold dosage, minimize side effects, and promote the development of precision medicine. Herein, we introduce the structure and function of mitochondrial membranes, summarize and discuss the important role of mitochondrial membrane-targeting materials in disease diagnosis/treatment, and expound the advantages of mitochondrial membrane-assisted drug delivery for disease diagnosis, treatment, and biosafety. This review helps readers understand mitochondria-targeted therapies and promotes the application of mitochondrial membranes in drug delivery. STATEMENT OF SIGNIFICANCE: Bio-membrane modification facilitates the homologous targeting of drugs in vivo by exploiting unique antibodies or antigens, thereby enhancing therapeutic efficacy while ensuring biosafety. Compared to cell-targeted treatment, targeting of mitochondria for drug delivery offers higher efficiency and improved biosafety and will promote the development of precision medicine. As a natural material, the mitochondrial membrane exhibits excellent biocompatibility and can serve as a carrier for mitochondria-targeted delivery. This review provides an overview of the structure and function of mitochondrial membranes and explores the potential benefits of utilizing mitochondrial membrane-assisted drug delivery for disease treatment and biosafety. The aim of this review is to enhance readers' comprehension of mitochondrial targeted therapy and to advance the utilization of mitochondrial membrane in drug delivery.
Collapse
Affiliation(s)
- Yinghui Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wenhui Ji
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ze Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China; Future Display Institute in Xiamen, Xiamen 361005, China.
| |
Collapse
|
10
|
Ronayne CT, Latorre-Muro P. Navigating the landscape of mitochondrial-ER communication in health and disease. Front Mol Biosci 2024; 11:1356500. [PMID: 38323074 PMCID: PMC10844478 DOI: 10.3389/fmolb.2024.1356500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Intracellular organelle communication enables the maintenance of tissue homeostasis and health through synchronized adaptive processes triggered by environmental cues. Mitochondrial-Endoplasmic Reticulum (ER) communication sustains cellular fitness by adjusting protein synthesis and degradation, and metabolite and protein trafficking through organelle membranes. Mitochondrial-ER communication is bidirectional and requires that the ER-components of the Integrated Stress Response signal to mitochondria upon activation and, likewise, mitochondria signal to the ER under conditions of metabolite and protein overload to maintain proper functionality and ensure cellular survival. Declines in the mitochondrial-ER communication occur upon ageing and correlate with the onset of a myriad of heterogeneous age-related diseases such as obesity, type 2 diabetes, cancer, or neurodegenerative pathologies. Thus, the exploration of the molecular mechanisms of mitochondrial-ER signaling and regulation will provide insights into the most fundamental cellular adaptive processes with important therapeutical opportunities. In this review, we will discuss the pathways and mechanisms of mitochondrial-ER communication at the mitochondrial-ER interface and their implications in health and disease.
Collapse
Affiliation(s)
- Conor T. Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Borowiec BG, McDonald AE, Wilkie MP. Upstream migrant sea lamprey (Petromyzon marinus) show signs of increasing oxidative stress but maintain aerobic capacity with age. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111503. [PMID: 37586606 DOI: 10.1016/j.cbpa.2023.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Following the parasitic juvenile phase of their life cycle, sea lamprey (Petromyzon marinus) mature into a reproductive but rapidly aging and deteriorating adult, and typically die shortly after spawning in May or June. However, pre-spawning upstream migrant sea lamprey can be maintained for several months beyond their natural lifespan when held in cold water (∼4-8 °C) under laboratory conditions. We exploited this feature to investigate the interactions between senescence, oxidative stress, and metabolic function in this phylogenetically ancient fish. We investigated how life history traits and mitochondria condition, as indicated by markers of oxidative stress (catalase activity, lipid peroxidation) and aerobic capacity (citrate synthase activity), changed in adult sea lamprey from June to December after capture during their upstream spawning migration. Body mass but not liver mass declined with age, resulting in an increase in hepatosomatic index. Both effects were most pronounced in males, which also tended to have larger livers than females. Lamprey experienced greater oxidative stress with age, as reflected by increasing activity of the antioxidant enzyme catalase and increasing levels of lipid peroxidation in liver mitochondrial isolates over time. Surprisingly, the activity of citrate synthase also increased with age in both sexes. These observations implicate mitochondrial dysfunction and oxidative stress in the senescence of sea lamprey. Due to their unique evolutionary position and the technical advantage of easily delaying the onset of senescence in lampreys using cold water, these animals could represent an evolutionary unique and tractable model to investigate senescence in vertebrates.
Collapse
Affiliation(s)
| | - Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada. https://twitter.com/AEMcDonaldWLU
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
12
|
Korczowska-Łącka I, Słowikowski B, Piekut T, Hurła M, Banaszek N, Szymanowicz O, Jagodziński PP, Kozubski W, Permoda-Pachuta A, Dorszewska J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants (Basel) 2023; 12:1811. [PMID: 37891890 PMCID: PMC10604347 DOI: 10.3390/antiox12101811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
In diseases of the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and even epilepsy and migraine, oxidative stress load commonly surpasses endogenous antioxidative capacity. While oxidative processes have been robustly implicated in the pathogenesis of these diseases, the significance of particular antioxidants, both endogenous and especially exogenous, in maintaining redox homeostasis requires further research. Among endogenous antioxidants, enzymes such as catalase, superoxide dismutase, and glutathione peroxidase are central to disabling free radicals, thereby preventing oxidative damage to cellular lipids, proteins, and nucleic acids. Whether supplementation with endogenously occurring antioxidant compounds such as melatonin and glutathione carries any benefit, however, remains equivocal. Similarly, while the health benefits of certain exogenous antioxidants, including ascorbic acid (vitamin C), carotenoids, polyphenols, sulforaphanes, and anthocyanins are commonly touted, their clinical efficacy and effectiveness in particular neurological disease contexts need to be more robustly defined. Here, we review the current literature on the cellular mechanisms mitigating oxidative stress and comment on the possible benefit of the most common exogenous antioxidants in diseases such as AD, PD, ALS, HD, stroke, epilepsy, and migraine. We selected common neurological diseases of a basically neurodegenerative nature.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Permoda-Pachuta
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland (M.H.)
| |
Collapse
|
13
|
Vlieghe A, Niort K, Fumat H, Guigner JM, Cohen MM, Tareste D. Role of Lipids and Divalent Cations in Membrane Fusion Mediated by the Heptad Repeat Domain 1 of Mitofusin. Biomolecules 2023; 13:1341. [PMID: 37759741 PMCID: PMC10527301 DOI: 10.3390/biom13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.
Collapse
Affiliation(s)
- Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kristina Niort
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Hugo Fumat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590, MNHN, IRD UR 206, 75005 Paris, France
| | - Mickaël M. Cohen
- Sorbonne Université, Institut de Biologie Physico-Chimique (IBPC), CNRS UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - David Tareste
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| |
Collapse
|
14
|
Nyenhuis SB, Wu X, Strub MP, Yim YI, Stanton AE, Baena V, Syed ZA, Canagarajah B, Hammer JA, Hinshaw JE. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature 2023; 620:1109-1116. [PMID: 37612506 DOI: 10.1038/s41586-023-06462-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Xufeng Wu
- Light Microscopy Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Marie-Paule Strub
- Protein Expression Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Abigail E Stanton
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
- Molecular Biology Department, Princeton University, Princeton, NJ, USA
| | - Valentina Baena
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Zulfeqhar A Syed
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Bertram Canagarajah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
15
|
Schuettpelz J, Janer A, Antonicka H, Shoubridge EA. The role of the mitochondrial outer membrane protein SLC25A46 in mitochondrial fission and fusion. Life Sci Alliance 2023; 6:e202301914. [PMID: 36977595 PMCID: PMC10052876 DOI: 10.26508/lsa.202301914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations in SLC25A46 underlie a wide spectrum of neurodegenerative diseases associated with alterations in mitochondrial morphology. We established an SLC25A46 knock-out cell line in human fibroblasts and studied the pathogenicity of three variants (p.T142I, p.R257Q, and p.E335D). Mitochondria were fragmented in the knock-out cell line and hyperfused in all pathogenic variants. The loss of SLC25A46 led to abnormalities in the mitochondrial cristae ultrastructure that were not rescued by the expression of the variants. SLC25A46 was present in discrete puncta at mitochondrial branch points and tips of mitochondrial tubules, co-localizing with DRP1 and OPA1. Virtually, all fission/fusion events were demarcated by a SLC25A46 focus. SLC25A46 co-immunoprecipitated with the fusion machinery, and loss of function altered the oligomerization state of OPA1 and MFN2. Proximity interaction mapping identified components of the ER membrane, lipid transfer proteins, and mitochondrial outer membrane proteins, indicating that it is present at interorganellar contact sites. SLC25A46 loss of function led to altered mitochondrial lipid composition, suggesting that it may facilitate interorganellar lipid flux or play a role in membrane remodeling associated with mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Jana Schuettpelz
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexandre Janer
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
17
|
Moore J, Ewoldt J, Venturini G, Pereira AC, Padilha K, Lawton M, Lin W, Goel R, Luptak I, Perissi V, Seidman CE, Seidman J, Chin MT, Chen C, Emili A. Multi-Omics Profiling of Hypertrophic Cardiomyopathy Reveals Altered Mechanisms in Mitochondrial Dynamics and Excitation-Contraction Coupling. Int J Mol Sci 2023; 24:4724. [PMID: 36902152 PMCID: PMC10002553 DOI: 10.3390/ijms24054724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
| | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Matthew Lawton
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Raghuveera Goel
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Valentina Perissi
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02145, USA
| | - Christopher Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
18
|
Breault NM, Wu D, Dasgupta A, Chen KH, Archer SL. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1105565. [PMID: 36819102 PMCID: PMC9933518 DOI: 10.3389/fcell.2023.1105565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an orphan disease of the cardiopulmonary unit that reflects an obstructive pulmonary vasculopathy and presents with hypertrophy, inflammation, fibrosis, and ultimately failure of the right ventricle (RVF). Despite treatment using pulmonary hypertension (PH)-targeted therapies, persistent functional impairment reduces the quality of life for people with PAH and death from RVF occurs in approximately 40% of patients within 5 years of diagnosis. PH-targeted therapeutics are primarily vasodilators and none, alone or in combination, are curative. This highlights a need to therapeutically explore molecular targets in other pathways that are involved in the pathogenesis of PAH. Several candidate pathways in PAH involve acquired mitochondrial dysfunction. These mitochondrial disorders include: 1) a shift in metabolism related to increased expression of pyruvate dehydrogenase kinase and pyruvate kinase, which together increase uncoupled glycolysis (Warburg metabolism); 2) disruption of oxygen-sensing related to increased expression of hypoxia-inducible factor 1α, resulting in a state of pseudohypoxia; 3) altered mitochondrial calcium homeostasis related to impaired function of the mitochondrial calcium uniporter complex, which elevates cytosolic calcium and reduces intramitochondrial calcium; and 4) abnormal mitochondrial dynamics related to increased expression of dynamin-related protein 1 and its binding partners, such as mitochondrial dynamics proteins of 49 kDa and 51 kDa, and depressed expression of mitofusin 2, resulting in increased mitotic fission. These acquired mitochondrial abnormalities increase proliferation and impair apoptosis in most pulmonary vascular cells (including endothelial cells, smooth muscle cells and fibroblasts). In the RV, Warburg metabolism and induction of glutaminolysis impairs bioenergetics and promotes hypokinesis, hypertrophy, and fibrosis. This review will explore our current knowledge of the causes and consequences of disordered mitochondrial function in PAH.
Collapse
Affiliation(s)
- Nolan M. Breault
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| | - Asish Dasgupta
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON, Canada,Queen’s Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| |
Collapse
|
19
|
Bennett JA, Steward LR, Rudolph J, Voss AP, Aydin H. The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding. PLoS Biol 2022; 20:e3001899. [PMID: 36534696 PMCID: PMC9815587 DOI: 10.1371/journal.pbio.3001899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are complex organelles that play a central role in metabolism. Dynamic membrane-associated processes regulate mitochondrial morphology and bioenergetics in response to cellular demand. In tumor cells, metabolic reprogramming requires active mitochondrial metabolism for providing key metabolites and building blocks for tumor growth and rapid proliferation. To counter this, the mitochondrial serine beta-lactamase-like protein (LACTB) alters mitochondrial lipid metabolism and potently inhibits the proliferation of a variety of tumor cells. Mammalian LACTB is localized in the mitochondrial intermembrane space (IMS), where it assembles into filaments to regulate the efficiency of essential metabolic processes. However, the structural basis of LACTB polymerization and regulation remains incompletely understood. Here, we describe how human LACTB self-assembles into micron-scale filaments that increase their catalytic activity. The electron cryo-microscopy (cryoEM) structure defines the mechanism of assembly and reveals how highly ordered filament bundles stabilize the active state of the enzyme. We identify and characterize residues that are located at the filament-forming interface and further show that mutations that disrupt filamentation reduce enzyme activity. Furthermore, our results provide evidence that LACTB filaments can bind lipid membranes. These data reveal the detailed molecular organization and polymerization-based regulation of human LACTB and provide new insights into the mechanism of mitochondrial membrane organization that modulates lipid metabolism.
Collapse
Affiliation(s)
- Jeremy A. Bennett
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Lottie R. Steward
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Adam P. Voss
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
20
|
Rumora AE, Kim B, Feldman EL. A Role for Fatty Acids in Peripheral Neuropathy Associated with Type 2 Diabetes and Prediabetes. Antioxid Redox Signal 2022; 37:560-577. [PMID: 35152728 PMCID: PMC9499450 DOI: 10.1089/ars.2021.0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Significance: As the global prevalence of diabetes rises, diabetic complications are also increasing at an alarming rate. Peripheral neuropathy (PN) is the most prevalent complication of diabetes and prediabetes, and is characterized by progressive sensory loss resulting from nerve damage. While hyperglycemia is the major risk factor for PN in type 1 diabetes (T1D), the metabolic syndrome (MetS) underlies the onset and progression of PN in type 2 diabetes (T2D) and prediabetes. Recent Advances: Recent reports show that dyslipidemia, a MetS component, is strongly associated with PN in T2D and prediabetes. Dyslipidemia is characterized by an abnormal plasma lipid profile with uncontrolled lipid levels, and both clinical and preclinical studies implicate a role for dietary fatty acids (FAs) in PN pathogenesis. Molecular studies further show that saturated and unsaturated FAs differentially regulate the nerve lipid profile and nerve function. Critical Issues: We first review the properties of FAs and the neuroanatomy of the peripheral nervous system (PNS). Second, we discuss clinical and preclinical studies that implicate the involvement of FAs in PN. Third, we summarize the potential effects of FAs on nerve function and lipid metabolism within the peripheral nerves, sensory neurons, and Schwann cells. Future Directions: Future directions will focus on identifying molecular pathways in T2D and prediabetes that are modulated by FAs in PN. Determining pathophysiological mechanisms that underlie the injurious effects of saturated FAs and beneficial properties of unsaturated FAs will provide mechanistic targets for developing new targeted therapies to treat PN associated with T2D and prediabetes. Antioxid. Redox Signal. 37, 560-577.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Jagirdar G, Elsner M, Scharf C, Simm S, Borucki K, Peter D, Lalk M, Methling K, Linnebacher M, Krohn M, Wolke C, Lendeckel U. Re-Expression of Tafazzin Isoforms in TAZ-Deficient C6 Glioma Cells Restores Cardiolipin Composition but Not Proliferation Rate and Alterations in Gene Expression. Front Genet 2022; 13:931017. [PMID: 35957687 PMCID: PMC9358009 DOI: 10.3389/fgene.2022.931017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Tafazzin—an acyltransferase—is involved in cardiolipin (CL) remodeling. CL is associated with mitochondrial function, structure and more recently with cell proliferation. Various tafazzin isoforms exist in humans. The role of these isoforms in cardiolipin remodeling is unknown. Aim of this study was to investigate if specific isoforms like Δ5 can restore the wild type phenotype with respect to CL composition, cellular proliferation and gene expression profile. In addition, we aimed to determine the molecular mechanism by which tafazzin can modulate gene expression by applying promoter analysis and (Ingenuity Pathway Analyis) IPA to genes regulated by TAZ-deficiency. Expression of Δ5 and rat full length TAZ in C6-TAZ- cells could fully restore CL composition and—as proven for Δ5—this is naturally associated with restoration of mitochondrial respiration. A similar restoration of CL-composition could not be observed after re-expression of an enzymatically dead full-length rat TAZ (H69L; TAZMut). Re-expression of only rat full length TAZ could restore proliferation rate. Surprisingly, the Δ5 variant failed to restore wild-type proliferation. Further, as expected, re-expression of the TAZMut variant completely failed to reverse the gene expression changes, whereas re-expression of the TAZ-FL variant largely did so and the Δ5 variant to somewhat less extent. Very likely TAZ-deficiency provokes substantial long-lasting changes in cellular lipid metabolism which contribute to changes in proliferation and gene expression, and are not or only very slowly reversible.
Collapse
Affiliation(s)
- Gayatri Jagirdar
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head, and Neck Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Daniela Peter
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology, and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology, and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
- *Correspondence: Uwe Lendeckel,
| |
Collapse
|
22
|
Merklinger L, Bauer J, Pedersen PA, Damgaard RB, Morth JP. Phospholipids alter activity and stability of mitochondrial membrane-bound ubiquitin ligase MARCH5. Life Sci Alliance 2022; 5:5/8/e202101309. [PMID: 35459736 PMCID: PMC9034062 DOI: 10.26508/lsa.202101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022] Open
Abstract
This study shows that lipids can act as regulators for the ubiquitination process and can control the stability and activity of a membrane-embedded E3 ubiquitin ligase. Mitochondrial homeostasis is tightly controlled by ubiquitination. The mitochondrial integral membrane ubiquitin ligase MARCH5 is a crucial regulator of mitochondrial membrane fission, fusion, and disposal through mitophagy. In addition, the lipid composition of mitochondrial membranes can determine mitochondrial dynamics and organelle turnover. However, how lipids influence the ubiquitination processes that control mitochondrial homeostasis remains unknown. Here, we show that lipids common to the mitochondrial membranes interact with MARCH5 and affect its activity and stability depending on the lipid composition in vitro. As the only one of the tested lipids, cardiolipin binding to purified MARCH5 induces a significant decrease in thermal stability, whereas stabilisation increases the strongest in the presence of phosphatidic acid. Furthermore, we observe that the addition of lipids to purified MARCH5 alters the ubiquitination pattern. Specifically, cardiolipin enhances auto-ubiquitination of MARCH5. Our work shows that lipids can directly affect the activity of ubiquitin ligases and suggests that the lipid composition in mitochondrial membranes could control ubiquitination-dependent mechanisms that regulate the dynamics and turnover of mitochondria.
Collapse
Affiliation(s)
- Lisa Merklinger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Johannes Bauer
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership University of Oslo, Oslo, Norway
| | - Per A Pedersen
- Department of Biology, University Copenhagen, August Krogh Bygningen, Copenhagen, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
23
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Sardar A, Dewangan N, Panda B, Bhowmick D, Tarafdar PK. Lipid and Lipidation in Membrane Fusion. J Membr Biol 2022; 255:691-703. [PMID: 36102950 PMCID: PMC9472184 DOI: 10.1007/s00232-022-00267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Membrane fusion plays a lead role in the transport of vesicles, neurotransmission, mitochondrial dynamics, and viral infection. There are fusion proteins that catalyze and regulate the fusion. Interestingly, various types of fusion proteins are present in nature and they possess diverse mechanisms of action. We have highlighted the importance of the functional domains of intracellular heterotypic fusion, homotypic endoplasmic reticulum (ER), homotypic mitochondrial, and type-I viral fusion. During intracellular heterotypic fusion, the SNAREs and four-helix bundle formation are prevalent. Type-I viral fusion is controlled by the membrane destabilizing properties of fusion peptide and six-helix bundle formation. The ER/mitochondrial homotypic fusion is controlled by GTPase activity and the membrane destabilization properties of the amphipathic helix(s). Although the mechanism of action of these fusion proteins is diverse, they have some similarities. In all cases, the lipid composition of the membrane greatly affects membrane fusion. Next, examples of lipidation of the fusion proteins were discussed. We suggest that the fatty acyl hydrophobic tail not only acts as an anchor but may also modulate the energetics of membrane fusion intermediates. Lipidation is also important to design more effective peptide-based fusion inhibitors. Together, we have shown that membrane lipid composition and lipidation are important to modulate membrane fusion.
Collapse
Affiliation(s)
- Avijit Sardar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Nikesh Dewangan
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Bishvanwesha Panda
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Debosmita Bhowmick
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Pradip K. Tarafdar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| |
Collapse
|
25
|
Adegbuyiro A, Sedighi F, Jain P, Pinti MV, Siriwardhana C, Hollander JM, Legleiter J. Mitochondrial membranes modify mutant huntingtin aggregation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183663. [PMID: 34089719 PMCID: PMC8328955 DOI: 10.1016/j.bbamem.2021.183663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ tracts are prone to aggregate into oligomers and insoluble fibrils. Mutant htt (mhtt) localizes to variety of organelles, including mitochondria. Specifically, mitochondrial defects, morphological alteration, and dysfunction are observed in HD. Mitochondrial lipids, cardiolipin (CL) in particular, are essential in mitochondria function and have the potential to directly interact with htt, altering its aggregation. Here, the impact of mitochondrial membranes on htt aggregation was investigated using a combination of mitochondrial membrane mimics and tissue-derived mitochondrial-enriched fractions. The impact of exposure of outer and inner mitochondrial membrane mimics (OMM and IMM respectively) to mhtt was explored. OMM and IMM reduced mhtt fibrillization, with IMM having a larger effect. The role of CL in mhtt aggregation was investigated using a simple PC system with varying molar ratios of CL. Lower molar ratios of CL (<5%) promoted fibrillization; however, increased CL content retarded fibrillization. As revealed by in situ AFM, mhtt aggregation and associated membrane morphological changes at the surface of OMM mimics was markedly different compared to IMM mimics. While globular deposits of mhtt with few fibrillar aggregates were observed on OMM, plateau-like domains were observed on IMM. A similar impact on htt aggregation was observed with exposure to purified mitochondrial-enriched fractions. Collectively, these observations suggest mitochondrial membranes heavily influence htt aggregation with implication for HD.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Pranav Jain
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - Mark V Pinti
- Division of Exercise Physiology, West Virginia School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chathuranga Siriwardhana
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States
| | - John M Hollander
- Division of Exercise Physiology, West Virginia School of Medicine, Morgantown, WV 26506, United States; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, WV 26506, United States; Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, United States; Department of Neuroscience, West Virginia University, 1 Medical Center Dr., P.O. Box 9303, Morgantown, WV 26505, United States.
| |
Collapse
|
26
|
Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:416-443. [PMID: 34484866 PMCID: PMC8405900 DOI: 10.1016/j.omtn.2021.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pathological cardiac hypertrophy begins as an adaptive response to increased workload; however, sustained hemodynamic stress will lead it to maladaptation and eventually cardiac failure. Mitochondria, being the powerhouse of the cells, can regulate cardiac hypertrophy in both adaptive and maladaptive phases; they are dynamic organelles that can adjust their number, size, and shape through a process called mitochondrial dynamics. Recently, several studies indicate that promoting mitochondrial fusion along with preventing mitochondrial fission could improve cardiac function during cardiac hypertrophy and avert its progression toward heart failure. However, some studies also indicate that either hyperfusion or hypo-fission could induce apoptosis and cardiac dysfunction. In this review, we summarize the recent knowledge regarding the effects of mitochondrial dynamics on the development and progression of cardiac hypertrophy with particular emphasis on the regulatory role of mitochondrial dynamics proteins through the genetic, epigenetic, and post-translational mechanisms, followed by discussing the novel therapeutic strategies targeting mitochondrial dynamic pathways.
Collapse
Affiliation(s)
- Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Juan Carlos Cueva Jumbo
- School of Preclinical Medicine, Nanobody Research Center, Guangxi Medical University, Nanning 530021, China
| | - Yin Wang
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
27
|
Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci 2021; 284:119876. [PMID: 34389405 DOI: 10.1016/j.lfs.2021.119876] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are biosynthetic, bioenergetic, and signaling organelles which are critical for physiological adaptations and cellular stress responses to the environment. Various endogenous and environmental stress affects critical processes in mitochondrial homeostasis such as oxidative phosphorylation, biogenesis, mitochondrial redox system which leads to the formation of reactive oxygen species (ROS) and free radicals. The state of function of the mitochondrion is particularly dependent on the dynamic balance between mitochondrial biogenesis, fusion and fission, and degradation of damaged mitochondria by mitophagy. Increasing evidence has suggested a prominent role of mitochondrial dysfunction in the onset and progression of various lung pathologies, ranging from acute to chronic disorders. In this comprehensive review, we discuss the emerging findings of multifaceted regulations of mitochondrial dynamics and mitophagy in normal lung homeostasis as well as the prominence of mitochondrial dysfunction as a determining factor in different lung disorders such as lung cancer, COPD, IPF, ALI/ARDS, BPD, and asthma. The review will contribute to the existing understanding of critical molecular machinery regulating mitochondrial dynamic state during these pathological states. Furthermore, we have also highlighted various molecular checkpoints involved in mitochondrial dynamics, which may serve as hopeful therapeutic targets for the development of potential therapies for these lung disorders.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaniya Ahmad
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advance Research and Studies, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
28
|
Mahajan M, Bharambe N, Shang Y, Lu B, Mandal A, Madan Mohan P, Wang R, Boatz JC, Manuel Martinez Galvez J, Shnyrova AV, Qi X, Buck M, van der Wel PCA, Ramachandran R. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. Proc Natl Acad Sci U S A 2021; 118:e2023079118. [PMID: 34261790 PMCID: PMC8307854 DOI: 10.1073/pnas.2023079118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondria form tubular networks that undergo coordinated cycles of fission and fusion. Emerging evidence suggests that a direct yet unresolved interaction of the mechanoenzymatic GTPase dynamin-related protein 1 (Drp1) with mitochondrial outer membrane-localized cardiolipin (CL), externalized under stress conditions including mitophagy, catalyzes essential mitochondrial hyperfragmentation. Here, using a comprehensive set of structural, biophysical, and cell biological tools, we have uncovered a CL-binding motif (CBM) conserved between the Drp1 variable domain (VD) and the unrelated ADP/ATP carrier (AAC/ANT) that intercalates into the membrane core to effect specific CL interactions. CBM mutations that weaken VD-CL interactions manifestly impair Drp1-dependent fission under stress conditions and induce "donut" mitochondria formation. Importantly, VD membrane insertion and GTP-dependent conformational rearrangements mediate only transient CL nonbilayer topological forays and high local membrane constriction, indicating that Drp1-CL interactions alone are insufficient for fission. Our studies establish the structural and mechanistic bases of Drp1-CL interactions in stress-induced mitochondrial fission.
Collapse
Affiliation(s)
- Mukesh Mahajan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Nikhil Bharambe
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Bin Lu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pooja Madan Mohan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Rihua Wang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Juan Manuel Martinez Galvez
- Instituto Biofisika and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Anna V Shnyrova
- Instituto Biofisika and Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Zernike Institute for Advanced Materials, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106;
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
29
|
Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration. Cell Mol Life Sci 2021; 78:4653-4675. [PMID: 33751143 PMCID: PMC11072563 DOI: 10.1007/s00018-021-03807-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.
Collapse
Affiliation(s)
- Fasih Ahmad Rahman
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
30
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
31
|
Hepatic LDL receptor-related protein-1 deficiency alters mitochondrial dynamics through phosphatidylinositol 4,5-bisphosphate reduction. J Biol Chem 2021; 296:100370. [PMID: 33548224 PMCID: PMC7949165 DOI: 10.1016/j.jbc.2021.100370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022] Open
Abstract
The LDL receptor-related protein 1 (LRP1) is a multifunctional transmembrane protein with endocytosis and signal transduction functions. Previous studies have shown that hepatic LRP1 deficiency exacerbates diet-induced steatohepatitis and insulin resistance via mechanisms related to increased lysosome and mitochondria permeability and dysfunction. The current study examined the impact of LRP1 deficiency on mitochondrial function in the liver. Hepatocytes isolated from liver-specific LRP1 knockout (hLrp1−/−) mice showed reduced oxygen consumption compared with control mouse hepatocytes. The mitochondria in hLrp1−/− mouse livers have an abnormal morphology and their membranes contain significantly less anionic phospholipids, including lower levels of phosphatidylethanolamine and cardiolipin that increase mitochondrial fission and impair fusion. Additional studies showed that LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase like protein-1 (PIP5KL1) and phosphatidylinositol 4-phosphate 5-kinase-1β (PIP5K1β). The absence of LRP1 reduces the levels of both PIP5KL1 and PIP5K1β in the plasma membrane and also lowers phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) levels in hepatocytes. These data indicate that LRP1 recruits PIP5KL1 and PIP5K1β to the plasma membrane for PI(4,5)P2 biosynthesis. The lack of LRP1 reduces lipid kinase expression, leading to lower PI(4,5)P2 levels, thereby decreasing the availability of this lipid metabolite in the cardiolipin biosynthesis pathway to cause cardiolipin reduction and the impairment in mitochondria homeostasis. Taken together, the current study identifies another signaling mechanism by which LRP1 regulates cell functions: binding and recruitment of PIP5KL1 and PIP5K1β to the membrane for PI(4,5)P2 synthesis. In addition, it highlights the importance of this mechanism for maintaining the integrity and functions of intracellular organelles.
Collapse
|
32
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
33
|
Wen H, You H, Li Y, Ma K, Jiao M, Wu S, You S, Huang J, Su J, Gu Y, Wang Z, Zheng P, Shui G, Wang Y, Jin M, Du J. Higher Serum Lysophosphatidic Acids Predict Left Ventricular Reverse Remodeling in Pediatric Dilated Cardiomyopathy. Front Pediatr 2021; 9:710720. [PMID: 34485199 PMCID: PMC8415784 DOI: 10.3389/fped.2021.710720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background: The prognosis of pediatric dilated cardiomyopathy (PDCM) is highly variable, ranging from death to cardiac function recovery. Left ventricular reverse remodeling (LVRR) represents a favorable prognosis in PDCM. Disturbance of lipid metabolism is associated with the change of cardiac function, but no studies have examined lipidomics data and LVRR. Methods: Discovery analyses were based on 540 targeted lipids in an observational, prospective China-AOCC (An Integrative-Omics Study of Cardiomyopathy Patients for Diagnosis and Prognosis in China) study. The OPLS-DA and random forest (RF) analysis were used to screen the candidate lipids. Associations of the candidate lipids were examined in Cox proportional hazards regression models. Furthermore, we developed a risk score comprising the significant lipids, with each attributed a score of 1 when the concentration was above the median. All significant findings were replicated in a validation set of the China-AOCC study. Results: There were 59 patients in the discovery set and 24 patients in the validation set. LVRR was observed in 27 patients (32.5%). After adjusting for age, left ventricular ejection fraction (LVEF), and left ventricular end-diastolic dimension (LVEDD) z-score, lysophosphatidic acids (LysoPA) 16:0, LysoPA 18:2, LysoPA 18:1, and LysoPA 18:0 were significantly associated with LVRR in the discovery set, and hazard ratios (HRs) were 2.793 (95% CI, 1.545-5.048), 2.812 (95% CI, 1.542-5.128), 2.831 (95% CI, 1.555-5.154), and 2.782 (95% CI, 1.548-5.002), respectively. We developed a LysoPA score comprising the four LysoPA. When the LysoPA score reached 4, LVRR was more likely to be observed in both sets. The AUC increased with the addition of the LysoPA score to the LVEDD z-score (from 0.693 to 0.875 in the discovery set, from 0.708 to 0.854 in the validation set) for prediction of LVRR. Conclusions: Serum LysoPA can predict LVRR in PDCM patients. When the LysoPA score was combined with the LVEDD z-score, it may help in ascertaining the prognosis and monitoring effects of anti-heart failure pharmacotherapy.
Collapse
Affiliation(s)
- Haichu Wen
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongzhao You
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital and National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ke Ma
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meng Jiao
- Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shijie You
- State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital and National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Huang
- State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital and National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junwu Su
- Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Yan Gu
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Zhiyuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Ping Zheng
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mei Jin
- Department of Pediatric Heart Centre, Beijing Anzhen Hospital, Capital Medical University, Beijing Pediatric Heart Centre, Beijing, China
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
35
|
Murata D, Arai K, Iijima M, Sesaki H. Mitochondrial division, fusion and degradation. J Biochem 2020; 167:233-241. [PMID: 31800050 DOI: 10.1093/jb/mvz106] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrion is an essential organelle for a wide range of cellular processes, including energy production, metabolism, signal transduction and cell death. To execute these functions, mitochondria regulate their size, number, morphology and distribution in cells via mitochondrial division and fusion. In addition, mitochondrial division and fusion control the autophagic degradation of dysfunctional mitochondria to maintain a healthy population. Defects in these dynamic membrane processes are linked to many human diseases that include metabolic syndrome, myopathy and neurodegenerative disorders. In the last several years, our fundamental understanding of mitochondrial fusion, division and degradation has been significantly advanced by high resolution structural analyses, protein-lipid biochemistry, super resolution microscopy and in vivo analyses using animal models. Here, we summarize and discuss this exciting recent progress in the mechanism and function of mitochondrial division and fusion.
Collapse
Affiliation(s)
- Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Kenta Arai
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Bianchi VE. Caloric restriction in heart failure: A systematic review. Clin Nutr ESPEN 2020; 38:50-60. [PMID: 32690177 DOI: 10.1016/j.clnesp.2020.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Nutrition exerts a determinant role in maintaining cardiac function, regulating insulin and mitochondrial efficiency, that are essential to support energy production for contractility. In patients with heart failure (HF), myocardial tissue efficiency is reduced because of decreased mitochondrial oxidative capacity. In HF conditions, cardiomyocytes shift toward glucose and a reduction in fatty acid utilization. Calorie restriction induces weight loss in obese patients and can be beneficial in some HF patients, although this has generated some controversy. This study aims to evaluate the impact of the CR diet on myocardial efficiency in HF patients. METHODS On Pubmed and Embase, articles related to the keywords: "chronic heart failure" with "diet," "nutrition," "insulin resistance," and "caloric restriction" have been searched, Studies, including exercise or food supplementation, were excluded. RESULTS The retrieved articles showed that weight loss, through the activation of insulin and various kinase pathways, regulates the efficiency of myocardial tissue. In contrast, insulin resistance represents a strong cardiovascular risk factor that reduces myocardial function. CONCLUSION CR diet represents the first therapy in overweight HF patients, both with preserved ejection fraction (HFpEF) and with reduced ejection fraction (HFrHF) because reducing body fat, the myocardial function increased. Insulin activity is the critical hormone that regulates mitochondrial function and cardiac efficiency. However, a severely restricted diet may represent a severe risk factor correlated with all-cause mortality, particularly in underweight HF patients. Long-term studies conducted on large populations are necessary to evaluate the effects of CR on myocardial function in HF patients.
Collapse
|
37
|
Moon Y, Jun Y. The Effects of Regulatory Lipids on Intracellular Membrane Fusion Mediated by Dynamin-Like GTPases. Front Cell Dev Biol 2020; 8:518. [PMID: 32671068 PMCID: PMC7326814 DOI: 10.3389/fcell.2020.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 12/04/2022] Open
Abstract
Membrane fusion mediates a number of fundamental biological processes such as intracellular membrane trafficking, fertilization, and viral infection. Biological membranes are composed of lipids and proteins; while lipids generally play a structural role, proteins mediate specific functions in the membrane. Likewise, although proteins are key players in the fusion of biological membranes, there is emerging evidence supporting a functional role of lipids in various membrane fusion events. Intracellular membrane fusion is mediated by two protein families: SNAREs and membrane-bound GTPases. SNARE proteins are involved in membrane fusion between transport vesicles and their target compartments, as well as in homotypic fusion between organelles of the same type. Membrane-bound GTPases mediate mitochondrial fusion and homotypic endoplasmic reticulum fusion. Certain membrane lipids, known as regulatory lipids, regulate these membrane fusion events by directly affecting the function of membrane-bound GTPases, instead of simply changing the biophysical and biochemical properties of lipid bilayers. In this review, we provide a summary of the current understanding of how regulatory lipids affect GTPase-mediated intracellular membrane fusion by focusing on the functions of regulatory lipids that directly affect fusogenic GTPases.
Collapse
Affiliation(s)
- Yeojin Moon
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Youngsoo Jun
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
38
|
Sabouny R, Shutt TE. Reciprocal Regulation of Mitochondrial Fission and Fusion. Trends Biochem Sci 2020; 45:564-577. [DOI: 10.1016/j.tibs.2020.03.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
|
39
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020; 25:E2857. [PMID: 32575813 PMCID: PMC7356350 DOI: 10.3390/molecules25122857] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria emerged from bacterial ancestors during endosymbiosis and are crucial for cellular processes such as energy production and homeostasis, stress responses, cell survival, and more. They are the site of aerobic respiration and adenosine triphosphate (ATP) production in eukaryotes. However, oxidative phosphorylation (OXPHOS) is also the source of reactive oxygen species (ROS), which are both important and dangerous for the cell. Human mitochondria contain mitochondrial DNA (mtDNA), and its integrity may be endangered by the action of ROS. Fortunately, human mitochondria have repair mechanisms that allow protecting mtDNA and repairing lesions that may contribute to the occurrence of mutations. Mutagenesis of the mitochondrial genome may manifest in the form of pathological states such as mitochondrial, neurodegenerative, and/or cardiovascular diseases, premature aging, and cancer. The review describes the mitochondrial structure, genome, and the main mitochondrial repair mechanism (base excision repair (BER)) of oxidative lesions in the context of common features between human mitochondria and bacteria. The authors present a holistic view of the similarities of mitochondria and bacteria to show that bacteria may be an interesting experimental model for studying mitochondrial diseases, especially those where the mechanism of DNA repair is impaired.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
40
|
Ma Y, Wang L, Jia R. The role of mitochondrial dynamics in human cancers. Am J Cancer Res 2020; 10:1278-1293. [PMID: 32509379 PMCID: PMC7269774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023] Open
Abstract
Mitochondria are crucial cellular organelles. Under extracellular stimulations, mitochondria undergo constant fusion and fission dynamics to meet different cellular demands. Mitochondrial dynamics is regulated by specialized proteins and lipids. Dysregulated mitochondrial dynamics has been linked to the initiation and progression of diverse human cancers, affecting aspects such as cancer metastasis, drug resistance and cancer stem cell survival, suggesting that targeting mitochondrial dynamics is a potential therapeutic strategy. In the present review, we summarize the molecular mechanisms underlying fusion and fission dynamics and discuss the effects of mitochondrial dynamics on the development of human cancers.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| | - Lihua Wang
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People’s Hospital of Shanghai, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai, China
| |
Collapse
|
41
|
Uzureau S, Lecordier L, Uzureau P, Hennig D, Graversen JH, Homblé F, Mfutu PE, Oliveira Arcolino F, Ramos AR, La Rovere RM, Luyten T, Vermeersch M, Tebabi P, Dieu M, Cuypers B, Deborggraeve S, Rabant M, Legendre C, Moestrup SK, Levtchenko E, Bultynck G, Erneux C, Pérez-Morga D, Pays E. APOL1 C-Terminal Variants May Trigger Kidney Disease through Interference with APOL3 Control of Actomyosin. Cell Rep 2020; 30:3821-3836.e13. [PMID: 32187552 PMCID: PMC7090385 DOI: 10.1016/j.celrep.2020.02.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 11/18/2022] Open
Abstract
The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.
Collapse
Affiliation(s)
- Sophie Uzureau
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Pierrick Uzureau
- Laboratory of Experimental Medicine (ULB222), CHU Charleroi, Université Libre de Bruxelles, Montigny le Tilleul, Belgium
| | - Dorle Hennig
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Jonas H Graversen
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Fabrice Homblé
- Laboratory of Structure and Function of Biological Membranes, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Pepe Ekulu Mfutu
- Pediatric Nephrology, University Hospital Leuven, 3000 Leuven, Belgium
| | | | - Ana Raquel Ramos
- Institute of Interdisciplinary Research in Human and Molecular Biology, Campus Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Rita M La Rovere
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tomas Luyten
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Marc Dieu
- URBC-Narilis, University of Namur, 5000 Namur, Belgium
| | - Bart Cuypers
- Biomedical Sciences Department, Institute of Tropical Medicine, 2000 Antwerpen, Belgium; Adrem Data Lab, Department of Mathematics and Computer Science, University of Antwerp, 2000 Antwerpen, Belgium
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, 2000 Antwerpen, Belgium
| | - Marion Rabant
- Adult Nephrology-Transplantation Department, Paris Hospitals and Paris Descartes University, 75006 Paris, France
| | - Christophe Legendre
- Pathology Department, Paris Hospitals and Paris Descartes University, 75006 Paris, France
| | - Søren K Moestrup
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, 5000 Odense C, Denmark; Department of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Elena Levtchenko
- Pediatric Nephrology, University Hospital Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Christophe Erneux
- Institute of Interdisciplinary Research in Human and Molecular Biology, Campus Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
42
|
Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Casuso RA, Huertas JR. The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing. Ageing Res Rev 2020; 58:101025. [PMID: 32018055 DOI: 10.1016/j.arr.2020.101025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022]
Abstract
Mitochondria are the hub for energy production within living cells. They can undergo morphological changes in response to nutrient availability and cellular stress. Here, we review how exercise chronically and acutely affects mitochondrial dynamics. Moreover, we discuss whether mitochondrial dysfunction observed in elderly subjects is due to the ageing process per se or due to the associated sedentary state. Finally, we study how endurance exercise can improve mitochondrial dynamics in older subjects, thereby improving their overall health and likely limiting muscle waste.
Collapse
Affiliation(s)
- Rafael A Casuso
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Avda del conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, Avda del conocimiento s/n. 18016 Armilla, Granada, Spain
| |
Collapse
|
44
|
Proliferation of C6 glioma cells requires the phospholipid remodeling enzyme tafazzin independent of cardiolipin composition. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158596. [PMID: 31884050 DOI: 10.1016/j.bbalip.2019.158596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 11/23/2022]
Abstract
The mitochondrial phospholipid (CL) has been linked to mitochondrial and cellular functions. It has been postulated that the composition of CL is of impact for mitochondrial energy metabolism and cell proliferation. Although a correlation between CL composition and proliferation could be demonstrated for several cell types, evidence for a causal relationship remains obscure. Here, we applied two independent approaches, i) supplementation of fatty acids and ii) knock-out of the phospholipid remodeling enzyme tafazzin, to manipulate CL composition and analyzed the response on proliferation of C6 glioma cells. Both strategies caused substantial changes in the distribution of cellular fatty acids as well as in the distribution of fatty acids incorporated in CL that were accompanied by changes of the composition of molecular CL species. These changes did not correlate with cell proliferation. However, knock-out of tafazzin caused dramatic reduction in proliferation of C6 glioma cells independent of CL composition. The mechanism of tafazzin-dependent restriction of proliferation remains unclear. Among the various fatty acids administered only palmitic acid restricted cell proliferation by induction of cell death.
Collapse
|
45
|
Wolke C, Gürtler S, Peter D, Weingärtner J, Domanska G, Lendeckel U, Schild L. Vitamin B6 deficiency in new born rats affects hepatic cardiolipin composition and oxidative phosphorylation. Exp Biol Med (Maywood) 2019; 244:1619-1628. [PMID: 31752529 DOI: 10.1177/1535370219889880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin B6 deficiency during pregnancy translates into a severe vitamin B6 deficiency (plasma levels decreased by 97%) in new-born rats. Further, hallmarks are increased (+89%) concentrations of homocysteine, gross changes in gene methylation and expression, and metabolic alterations including lipid metabolism. This study focuses on determining the effects of vitamin B6-deficiency on cardiolipin composition and oxidative phosphorylation in liver. For this purpose, hepatic cardiolipin composition was analyzed by means of LC/MS/MS, and mitochondrial oxygen consumption was determined by using a Clark-type electrode in a rat model of vitamin B6 deficiency. Liver mitochondria from new-born rats with pre-term vitamin B6 deficiency responded with substantial alterations in cardiolipin composition that include the following changes in the amounts of cardiolipin incorporated fatty acids: increase in C16, decrease in C18, decrease in saturated fatty acid, as well as increase in amount of oxidized cardiolipin species. These changes were accompanied by significantly decreased capacity of oxidative phosphorylation. In conclusion, vitamin B6 deficiency in new born rats induces massive alterations of cardiolipin composition and function of liver mitochondria. These findings support the importance of sufficient periconceptional supply of vitamin B6 to prevent vitamin B6 deficiency.Impact statementVitamin B6 (VitB6) is an active co-enzyme for more than 150 enzymes and is required for a great diversity of biosynthesis and metabolic reactions. There is an increased need for VitB6 during pregnancy and sufficient supply of VitB6 is crucial for the prevention of cleft palate and neural tube defects. We show that liver mitochondria from new-born rats with pre-term VitB6 deficiency respond with substantial alterations in cardiolipin (CL) composition and in the amount of oxidized CL species. These changes are associated with a decrease in the efficiency of oxidative phosphorylation. The results of this study support the significance of sufficient supply of VitB6 during pregnancy (and periconceptional) for diminishing the number of early abortions and minimizing malformation. The established link between VitB6 deficiency, CL composition, and mitochondrial respiration/energy production provides mechanistic insight as to how the VitB6 deficiency translates into the known pathophysiological and clinically relevant conditions.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Sarah Gürtler
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Daniela Peter
- Department of Pathological Biochemistry, Otto-von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| | - Jens Weingärtner
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald D-17489, Germany
| | - Grazyna Domanska
- Institute of Immunology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald D-17475, Germany
| | - Lorenz Schild
- Department of Pathological Biochemistry, Otto-von-Guericke University Magdeburg, Magdeburg D-39120, Germany
| |
Collapse
|
46
|
Agrawal A, Ramachandran R. Exploring the links between lipid geometry and mitochondrial fission: Emerging concepts. Mitochondrion 2019; 49:305-313. [DOI: 10.1016/j.mito.2019.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023]
|
47
|
Garlid AO, Schaffer CT, Kim J, Bhatt H, Guevara-Gonzalez V, Ping P. TAZ encodes tafazzin, a transacylase essential for cardiolipin formation and central to the etiology of Barth syndrome. Gene 2019; 726:144148. [PMID: 31647997 DOI: 10.1016/j.gene.2019.144148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Tafazzin, which is encoded by the TAZ gene, catalyzes transacylation to form mature cardiolipin and shows preference for the transfer of a linoleic acid (LA) group from phosphatidylcholine (PC) to monolysocardiolipin (MLCL) with influence from mitochondrial membrane curvature. The protein contains domains and motifs involved in targeting, anchoring, and an active site for transacylase activity. Tafazzin activity affects many aspects of mitochondrial structure and function, including that of the electron transport chain, fission-fusion, as well as apoptotic signaling. TAZ mutations are implicated in Barth syndrome, an underdiagnosed and devastating disease that primarily affects male pediatric patients with a broad spectrum of disease pathologies that impact the cardiovascular, neuromuscular, metabolic, and hematologic systems.
Collapse
Affiliation(s)
- Anders O Garlid
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA.
| | - Calvin T Schaffer
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Jaewoo Kim
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Hirsh Bhatt
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA
| | - Vladimir Guevara-Gonzalez
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Mathematics, University of California at Los Angeles, CA 90095, USA
| | - Peipei Ping
- Cardiovascular Data Science Training Program at UCLA, University of California at Los Angeles, CA 90095, USA; Department of Physiology, University of California at Los Angeles, CA 90095, USA; Department of Medicine/Cardiology, University of California at Los Angeles, CA 90095, USA; Department of Bioinformatics, University of California at Los Angeles, CA 90095, USA; Scalable Analytics Institute (ScAi), University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
48
|
Prokaryotic and Mitochondrial Lipids: A Survey of Evolutionary Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31502197 DOI: 10.1007/978-3-030-21162-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mitochondria and bacteria share a myriad of properties since it is believed that the powerhouses of the eukaryotic cell have evolved from a prokaryotic origin. Ribosomal RNA sequences, DNA architecture and metabolism are strikingly similar in these two entities. Proteins and nucleic acids have been a hallmark for comparison between mitochondria and prokaryotes. In this chapter, similarities (and differences) between mitochondrial and prokaryotic membranes are addressed with a focus on structure-function relationship of different lipid classes. In order to be suitable for the theme of the book, a special emphasis is reserved to the effects of bioactive sphingolipids, mainly ceramide, on mitochondrial membranes and their roles in initiating programmed cell death.
Collapse
|
49
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
50
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. The Structure and Function of Acylglycerophosphate Acyltransferase 4/ Lysophosphatidic Acid Acyltransferase Delta (AGPAT4/LPAATδ). Front Cell Dev Biol 2019; 7:147. [PMID: 31428612 PMCID: PMC6688108 DOI: 10.3389/fcell.2019.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022] Open
Abstract
Lipid-modifying enzymes serve crucial roles in cellular processes such as signal transduction (producing lipid-derived second messengers), intracellular membrane transport (facilitating membrane remodeling needed for membrane fusion/fission), and protein clustering (organizing lipid domains as anchoring platforms). The lipid products crucial in these processes can derive from different metabolic pathways, thus it is essential to know the localization, substrate specificity, deriving products (and their function) of all lipid-modifying enzymes. Here we discuss an emerging family of these enzymes, the lysophosphatidic acid acyltransferases (LPAATs), also known as acylglycerophosphate acyltransferases (AGPATs), that produce phosphatidic acid (PA) having as substrates lysophosphatidic acid (LPA) and acyl-CoA. Eleven LPAAT/AGPAT enzymes have been identified in mice and humans based on sequence homologies, and their localization, specific substrates and functions explored. We focus on one member of the family, LPAATδ, a protein expressed mainly in brain and in muscle (though to a lesser extent in other tissues); while at the cellular level it is localized at the trans-Golgi network membranes and at the mitochondrial outer membranes. LPAATδ is a physiologically essential enzyme since mice knocked-out for Lpaatδ show severe dysfunctions including cognitive impairment, impaired force contractility and altered white adipose tissue. The LPAATδ physiological roles are related to the formation of its product PA. PA is a multifunctional lipid involved in cell signaling as well as in membrane remodeling. In particular, the LPAATδ-catalyzed conversion of LPA (inverted-cone-shaped lipid) to PA (cone-shaped lipid) is considered a mechanism of deformation of the bilayer that favors membrane fission. Indeed, LPAATδ is an essential component of the fission-inducing machinery driven by the protein BARS. In this process, a protein-tripartite complex (BARS/14-3-3γ/phosphoinositide kinase PI4KIIIβ) is recruited at the trans-Golgi network, at the sites where membrane fission is to occur; there, LPAATδ directly interacts with BARS and is activated by BARS. The resulting formation of PA is essential for membrane fission occurring at those spots. Also in mitochondria PA formation has been related to fusion/fission events. Since PA is formed by various enzymatic pathways in different cell compartments, the BARS-LPAATδ interaction indicates the relevance of lipid-modifying enzymes acting exactly where their products are needed (i.e., PA at the Golgi membranes).
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Biochemistry and Cell Biology and Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|