1
|
Li B, Sadagopan A, Li J, Wu Y, Cui Y, Konda P, Weiss CN, Choueiri TK, Doench JG, Viswanathan SR. A framework for target discovery in rare cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620074. [PMID: 39484513 PMCID: PMC11527139 DOI: 10.1101/2024.10.24.620074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3-translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To generalize to other rare cancers in which experimental models may not be readily available, we employed machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets.
Collapse
Affiliation(s)
- Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yuqianxun Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yantong Cui
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Treger TD, Lawrence JEG, Anderson ND, Coorens THH, Letunovska A, Abby E, Lee-Six H, Oliver TRW, Al-Saadi R, Tullus K, Morcrette G, Hutchinson JC, Rampling D, Sebire N, Pritchard-Jones K, Young MD, Mitchell TJ, Jones PH, Tran M, Behjati S, Chowdhury T. Targetable NOTCH1 rearrangements in reninoma. Nat Commun 2023; 14:5826. [PMID: 37749094 PMCID: PMC10519988 DOI: 10.1038/s41467-023-41118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Reninomas are exceedingly rare renin-secreting kidney tumours that derive from juxtaglomerular cells, specialised smooth muscle cells that reside at the vascular inlet of glomeruli. They are the central component of the juxtaglomerular apparatus which controls systemic blood pressure through the secretion of renin. We assess somatic changes in reninoma and find structural variants that generate canonical activating rearrangements of, NOTCH1 whilst removing its negative regulator, NRARP. Accordingly, in single reninoma nuclei we observe excessive renin and NOTCH1 signalling mRNAs, with a concomitant non-excess of NRARP expression. Re-analysis of previously published reninoma bulk transcriptomes further corroborates our observation of dysregulated Notch pathway signalling in reninoma. Our findings reveal NOTCH1 rearrangements in reninoma, therapeutically targetable through existing NOTCH1 inhibitors, and indicate that unscheduled Notch signalling may be a disease-defining feature of reninoma.
Collapse
Affiliation(s)
- Taryn D Treger
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - John E G Lawrence
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | | | - Tim H H Coorens
- Broad Institute of MIT and Harvard, Cambridge, 02142 MA, USA
| | - Aleksandra Letunovska
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Emilie Abby
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Henry Lee-Six
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Reem Al-Saadi
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Kjell Tullus
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Guillaume Morcrette
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - J Ciaran Hutchinson
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Dyanne Rampling
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | - Neil Sebire
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK
| | | | | | - Thomas J Mitchell
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 OXZ, UK
| | - Maxine Tran
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, NW3 2QG, UK.
- Faculty of Medical Sciences, Division of Surgery and Interventional Science, University College London, London, NW3 2PS, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Tanzina Chowdhury
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, WC1N 3JH, UK.
| |
Collapse
|
3
|
The Curious Case of Cholangiocarcinoma: Opportunities for Environmental Health Scientists to Learn about a Complex Disease. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2018; 2018:2606973. [PMID: 30158988 PMCID: PMC6109541 DOI: 10.1155/2018/2606973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Deaths from complex, noncommunicable diseases such as cancer are predicted to continue to increase worldwide, with low- and middle-income countries bearing the brunt of the burden. This problem requires a concentrated global effort to avoid devastating losses of life as well as economic losses. Cholangiocarcinoma (CCA) is a readily studied model of complex, noncommunicable disease, but it receives little attention outside of the scientific community in Southeast Asia. Here, we bring attention to the opportunity to study CCA as a model to understand the role of multiple, complex factors in cancer. These factors include allostatic load, individual genetic susceptibility, and environmental exposures such as chemicals, diet, socioeconomic factors, and psychosocial stress. The study of CCA offers a unique opportunity to make novel observations that could advance progress in prevention and intervention approaches for prevalent diseases that involve complex, multifactorial interactions.
Collapse
|
4
|
Groisberg R, Hong DS, Roszik J, Janku F, Tsimberidou AM, Javle M, Meric-Bernstam F, Subbiah V. Clinical Next-Generation Sequencing for Precision Oncology in Rare Cancers. Mol Cancer Ther 2018; 17:1595-1601. [PMID: 29654067 DOI: 10.1158/1535-7163.mct-17-1107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/19/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
The European Society for Medical Oncology defines rare cancers as 5 or fewer cases per 100,000 persons per year. For many rare cancers, no standard of care exists, and treatment is often extrapolated. Identifying potentially targetable genomic alterations in rare tumors is a rational approach to improving treatment options. We sought to catalog these mutations in rare tumors and to assess their clinical utility.For this retrospective analysis, we selected rare tumor patients from a dataset of patients who underwent clinical tumor genomic profiling. Sarcomas were excluded. To index potentially actionable alterations, patients' reports were reviewed for mutations in cancer-associated genes and pathways. Respective clinical records were abstracted to appraise the benefit of using a targeted therapy approach. Actionable alterations were defined as targeted by a drug available on-label, off-label, or in clinical trials.The 95 patients analyzed had 40 different tumor subtypes, most common being adenoid cystic (13%), cholangiocarcinoma (7%), and metaplastic breast (6%). At least one genomic alteration was identified in 87 patients (92%). The most common identifiable mutations were in TP53 (23%), KRAS (10%), PIK3CA (9%), CDKN2A/B (8%), BRAF (7%), MLL (7%), and ARID1A (6%). Thirty-six patients (38%) with 21 different tumors had at least one potentially actionable alteration. Thirteen patients received targeted therapy. Of these, 4 had a partial response, 6 had stable disease, and 3 had progressive disease as the best response.The addition of genomic profiling to management of rare cancers adds a potential line of therapy for cancers that have little or no standard of care. In our analysis, tumors with a BRAF alteration responded well to BRAF inhibitors. Mol Cancer Ther; 17(7); 1595-601. ©2018 AACR.
Collapse
Affiliation(s)
- Roman Groisberg
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
5
|
Behjati S, Tarpey PS, Haase K, Ye H, Young MD, Alexandrov LB, Farndon SJ, Collord G, Wedge DC, Martincorena I, Cooke SL, Davies H, Mifsud W, Lidgren M, Martin S, Latimer C, Maddison M, Butler AP, Teague JW, Pillay N, Shlien A, McDermott U, Futreal PA, Baumhoer D, Zaikova O, Bjerkehagen B, Myklebost O, Amary MF, Tirabosco R, Van Loo P, Stratton MR, Flanagan AM, Campbell PJ. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat Commun 2017; 8:15936. [PMID: 28643781 PMCID: PMC5490007 DOI: 10.1038/ncomms15936] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation, we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. It may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.
Collapse
Affiliation(s)
- Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
- Corpus Christi College, Cambridge CB2 1RH, UK
| | - Patrick S. Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Matthew D. Young
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ludmil B. Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Sarah J. Farndon
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Grace Collord
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - David C. Wedge
- Oxford Big Data Institute and Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Inigo Martincorena
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Susanna L. Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Helen Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - William Mifsud
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Mathias Lidgren
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sancha Martin
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Calli Latimer
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Mark Maddison
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Adam P. Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jon W. Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Nischalan Pillay
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
- University College London Cancer Institute, Huntley Street, London WC1E 6BT, UK
| | - Adam Shlien
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - P. Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | | | | | - Ola Myklebost
- Oslo University Hospital, Oslo 0379, Norway
- University of Bergen, Bergen 5020, Norway
| | - M. Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Peter Van Loo
- The Francis Crick Institute, London NW1 1AT, UK
- Department of Human Genetics, University of Leuven, Leuven B-3000, Belgium
| | - Michael R. Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Adrienne M. Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
- University College London Cancer Institute, Huntley Street, London WC1E 6BT, UK
| | - Peter J. Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK
| |
Collapse
|
6
|
Dietel M, Jöhrens K, Laffert MV, Hummel M, Bläker H, Pfitzner BM, Lehmann A, Denkert C, Darb-Esfahani S, Lenze D, Heppner FL, Koch A, Sers C, Klauschen F, Anagnostopoulos I. A 2015 update on predictive molecular pathology and its role in targeted cancer therapy: a review focussing on clinical relevance. Cancer Gene Ther 2015; 22:417-30. [PMID: 26358176 DOI: 10.1038/cgt.2015.39] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
Abstract
In April 2013 our group published a review on predictive molecular pathology in this journal. Although only 2 years have passed many new facts and stimulating developments have happened in diagnostic molecular pathology rendering it worthwhile to present an up-date on this topic. A major technical improvement is certainly given by the introduction of next-generation sequencing (NGS; amplicon, whole exome, whole genome) and its application to formalin-fixed paraffin-embedded (FFPE) tissue in routine diagnostics. Based on this 'revolution' the analyses of numerous genetic alterations in parallel has become a routine approach opening the chance to characterize patients' malignant tumors much more deeply without increasing turn-around time and costs. In the near future this will open new strategies to apply 'off-label' targeted therapies, e.g. for rare tumors, otherwise resistant tumors etc. The clinically relevant genetic aberrations described in this review include mutation analyses of RAS (KRAS and NRAS), BRAF and PI3K in colorectal cancer, KIT or PDGFR alpha as well as BRAF, NRAS and KIT in malignant melanoma. Moreover, we present several recent advances in the molecular characterization of malignant lymphoma. Beside the well-known mutations in NSCLC (EGFR, ALK) a number of chromosomal aberrations (KRAS, ROS1, MET) have become relevant. Only very recently has the clinical need for analysis of BRCA1/2 come up and proven as a true challenge for routine diagnostics because of the genes' special structure and hot-spot-free mutational distribution. The genetic alterations are discussed in connection with their increasingly important role in companion diagnostics to apply targeted drugs as efficient as possible. As another aspect of the increasing number of druggable mutations, we discuss the challenges personalized therapies pose for the design of clinical studies to prove optimal efficacy particularly with respect to combination therapies of multiple targeted drugs and conventional chemotherapy. Such combinations would lead to an extremely high complexity that would hardly be manageable by applying conventional study designs for approval, e.g. by the FDA or EMA. Up-coming challenges such as the application of methylation assays and proteomic analyses on FFPE tissue will also be discussed briefly to open the door towards the ultimate goal of reading a patients' tissue as 'deeply' as possible. Although it is yet to be shown, which levels of biological information are most informative for predictive pathology, an integrated molecular characterization of tumors will likely offer the most comprehensive view for individualized therapy approaches. To optimize cancer treatment we need to understand tumor biology in much more detail on morphological, genetic, proteomic as well as epigenetic grounds. Finally, the complex challenges on the level of drug design, molecular diagnostics, and clinical trials make necessary a close collaboration among academic institutions, regulatory authorities and pharmaceutical companies.
Collapse
Affiliation(s)
- M Dietel
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - K Jöhrens
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - M V Laffert
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - H Bläker
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - B M Pfitzner
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - A Lehmann
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - C Denkert
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - S Darb-Esfahani
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - D Lenze
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - F L Heppner
- Institute of Neuropathology, Charité, University Medicine Berlin, Berlin, Germany
| | - A Koch
- Institute of Neuropathology, Charité, University Medicine Berlin, Berlin, Germany
| | - C Sers
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - F Klauschen
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| | - I Anagnostopoulos
- Institute of Pathology, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
7
|
Wang HQ, Liu AJ. Esophageal granular cell tumors: Case report and literature review. World J Gastrointest Oncol 2015; 7:123-127. [PMID: 26306145 PMCID: PMC4543730 DOI: 10.4251/wjgo.v7.i8.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
We reported 5 cases of granular cell tumors (GCTs) of esophagus and reviewed the literature. There were 4 females and 1 male with a median age of 43 years and an average age of 44 years. All of the cases had solitary tumors. Tumor size was 0.4-2.5 cm in diameter. Gastroscopy revealed that 2 cases were located in the middle esophagus, 1 case in the upper esophagus, and 2 cases in the distal one. Five cases displayed gray-white, pink, yellow mucosal uplifts of esophagus, 3 cases had smooth surface, 1 case was slightly concave, and the biggest tumor had erosion. Tumor cells were large and polygonal with rich granular and eosinophilic cytoplasm, and small oval nuclei. Cells were arranged in nest or aciniform. Immunohistochemistry and histochemistry staining showed S-100+, neuron specific enolase+, Vim+, CD68+, smooth muscle actin-, Des-, CK-, CD117-, CD34-, Ki67-or ≤ 5%+. Periodic acid-Schiff reaction and epithelial membrane antigen were both weakly positive. GCTs of esophagus are rare and most of the cases have good prognosis.
Collapse
|