1
|
Mukherjee U, Ghosh S, Maitra S. Multi-mechanistic effects of bisphenol A on testicular dysfunction and endocrine disruption in adult male Labeo bata: oxidative stress, inflammation, and dysregulated energy sensors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126231. [PMID: 40221117 DOI: 10.1016/j.envpol.2025.126231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Leaching of BPA, a potent endocrine disruptor, from microplastics in aquatic environments has garnered renewed interest in its impact on male reproduction. However, the mechanisms underlying BPA modulation of testicular metabolic, endocrine, and autocrine-paracrine axes in teleost remained relatively unexplored, prompting us to examine BPA-induced testicular dysfunction in adult male Labeo bata. Present results demonstrate that congruent with reduced gonadosomatic index (GSI), chronic BPA treatment at environmentally relevant concentrations enhanced ROS synthesis, oxidative stress, and testicular histopathology characterized by reduced diameter of seminiferous tubules, a sharp decline in spermatozoa, and elevated fibrosis during the spawning season. Elevated NO levels, pro-inflammatory cytokines and NLRP3-inflammasome activation correlated with cleaved caspase -8, -9, -3 activation, altered Bax/Bcl-2 ratio, heightened caspase -3 immunolocalization and TUNEL staining, suggesting DNA damage and apoptosis in BPA-treated testis. Besides, BPA attenuation of cyclin B synthesis and p-p34cdc2 (Thr161) phosphorylation (activation), markers associated with altered meiotic cell cycle progression, corresponded with heightened apoptosis and loss of spermatogenic cells. Importantly, disrupted estrogen and membrane progestin receptor (ERα, ERβ, mPRα-PGRMC1) homeostasis, alteration in gonadotropin receptor (LHCGR) and steroidogenic markers and elevated P450 aromatase immunolocalization indicate endocrine disruption and heightened estrogenic influence of BPA, inducing testicular dysfunction. Congruently, BPA modulation of cellular energy sensors (SIRT1/p-AMPKα/PGC-1α), factors influencing testicular endocrine, paracrine and prostaglandin signalling, and MAPK modulation might indicate pleiotropic regulation by BPA triggering reproductive toxicity. While Pearson's correlation and elevated multi-biomarker IBR indices support testicular dysfunction, present findings highlight the need for further research initiatives and strict regimens to combat ecological risks posed by BPA contamination.
Collapse
Affiliation(s)
- Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
2
|
Zhang S, Wu Q, He W, Zhu H, Wang Z, Liang H, Ni X, Yuan W, Lu D. Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes. Gene 2025; 941:149210. [PMID: 39755265 DOI: 10.1016/j.gene.2024.149210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism. This study investigates the epigenetic regulatory mechanisms by which BPA influences steroid metabolism in the placenta. Using BPA-treated JEG3 cells, we analyzed hormone levels, gene promoter DNA methylation, and gene expression, further validating our findings in placental samples. Additionally, we explored the role of epigenetic modifications in regulating steroid metabolism at the cellular level and assessed related phenotypes in cohort samples. The results demonstrated that BPA significantly reduced the levels of progesterone, estradiol, and testosterone, and notably affected the promoter methylation and expression levels of 63 genes. Enrichment analysis highlighted PLA2G4F, JUN, MRAS, ERBB4, DUSP1, and GADD45G as being primarily enriched in the MAPK signaling pathway. Further studies revealed that the methylation level of the JUN promoter regulates its expression, impacting hormone levels by modulating downstream signaling pathways. In placental samples, male offspring in the hypermethylated JUN promoter group had shorter anogenital distance (AGD) compared to those in the hypomethylated group. These findings suggest that BPA reduces the expression of steroid metabolism genes via the epigenetic regulation of the JUN gene, thereby decreasing progesterone, estradiol, and testosterone levels and leading to shortened AGD in offspring.
Collapse
Affiliation(s)
- Sufen Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Haijun Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiaohua Ni
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Daru Lu
- School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Hsu CC, Ko PY, Kwan TH, Liu MY, Jou IM, Lin CW, Wu PT. Daily supplement of sesame oil prevents postmenopausal osteoporosis via maintaining serum estrogen and aromatase levels in rats. Sci Rep 2024; 14:321. [PMID: 38172141 PMCID: PMC10764805 DOI: 10.1038/s41598-023-50453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Estrogen deficiency is one of the main causes of postmenopausal osteoporosis in elderly women. Hormone replacement therapy has been employed to manage postmenopausal osteoporosis; however, it has raised concerns related to heart attacks and breast cancer. Sesame oil has been reported to affect sex hormone status. The aim of the present study is to evaluate the effect of sesame oil supplement on postmenopausal osteoporosis in rats. We used female Sprague Dawley rats that underwent bilaterally ovariectomy (OVX) as an experimental postmenopausal osteoporosis animal model. These rats were orally administrated sesame oil (0.25 or 0.5 mL/kg/day) for four months as the therapeutic group. We assessed bone mineral density (BMD) and the levels of osteocalcin, procollagen-I C-terminal propeptide (PICP), collagen cross-linked N-telopeptide (NTx), estradiol, and aromatase in the sera. The daily supplementation of sesame oil significantly increased BMD, serum osteocalcin levels, and trabecular areas in the OVX-treated rats. Sesame oil also elevated serum PICP levels and decreased NTx levels in these rats. Furthermore, sesame oil effectively maintained serum estradiol and aromatase levels in the OVX-induced osteoporosis rats. In conclusion, daily supplementation of sesame oil prevents postmenopausal osteoporosis by maintaining serum estrogen and aromatase levels, while also modulating the imbalance between bone formation and resorption in osteoporosis rats.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70428, Taiwan
| | - Po-Yen Ko
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70428, Taiwan
| | - Ting-Hsien Kwan
- Department of Orthopaedics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Ming Jou
- Department of Orthopaedics, E-Da Hospital, Kaohsiung, 82445, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan
- GEG Orthopedic Clinic, Tainan, 74543, Taiwan
| | - Chi-Wei Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 82445, Taiwan.
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, No.1, Yida Road, Jiao-Su Village, Yan-Chao District, Kaohsiung City, 82445, Taiwan.
| | - Po-Ting Wu
- Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70428, Taiwan.
- Department of Orthopaedics, College of Medicine, National Cheng Kung University, 1 University Road, East District, Tainan City, 70101, Taiwan.
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
4
|
Blontzos N, Mavrogianni D, Ntzeros K, Kathopoulis N, Moustogiannis A, Philippou A, Koutsilieris M, Protopapas A. Differential Expression of Insulin Growth Factor 1 (IGF-1) Isoforms in Different Types of Endometriosis: Preliminary Results of a Single-Center Study. Biomolecules 2023; 14:7. [PMID: 38275748 PMCID: PMC10813029 DOI: 10.3390/biom14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Endometriosis is a benign, estrogen-dependent gynecological condition with an uncertain exact pathogenetic mechanism. The aim of this study was to evaluate the potential differential expression of Insulin Growth Factor 1 (IGF-1) isoforms in deeply infiltrating endometriotic (DIE) lesions, in ovarian endometriomas, and in the eutopic endometrium of the same endometriosis patients and to compare their expression with that in the eutopic endometrium of women without endometriosis. A total of 39 patients were included: 28 with endometriosis, of whom 15 had endometriomas only, 7 had DIE nodules only, and 6 had both DIE and endometriomas, and 11 without endometriosis served as controls. We noticed a similar pattern of expression between IGF-1Ea and IGF-1Ec, which differed from that of the IGF-1Eb isoform, possibly implying differential biological actions of different isoforms in DIE subtypes. We observed a tendency of lower expression of IGF-1Ea and IGF-1Ec in endometriomas without DIE compared to endometriomas with concurrent DIE or in DIE nodules. In conclusion, differential expression of IGF-1 isoforms may indicate that DIE with its associated ovarian lesions and simple ovarian endometriosis should be considered as two forms of the disease developing under different molecular pathways.
Collapse
Affiliation(s)
- Nikolaos Blontzos
- Endoscopic Surgery Unit, 1st Department of Obstetrics Gynecology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (N.B.); (A.P.)
- Experimental Laboratory, 1st Department of Obstetrics Gynecology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.M.); (K.N.)
| | - Despoina Mavrogianni
- Experimental Laboratory, 1st Department of Obstetrics Gynecology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.M.); (K.N.)
| | - Konstantinos Ntzeros
- Experimental Laboratory, 1st Department of Obstetrics Gynecology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (D.M.); (K.N.)
| | - Nikolaos Kathopoulis
- Endoscopic Surgery Unit, 1st Department of Obstetrics Gynecology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (N.B.); (A.P.)
| | - Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.M.); (A.P.); (M.K.)
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.M.); (A.P.); (M.K.)
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.M.); (A.P.); (M.K.)
| | - Athanasios Protopapas
- Endoscopic Surgery Unit, 1st Department of Obstetrics Gynecology, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (N.B.); (A.P.)
| |
Collapse
|
5
|
Ahamed A, Hasan M, Samanta A, Alam SSM, Jamil Z, Ali S, Hoque M. Prospective pharmacological potential of cryptotanshinone in cancer therapy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 9:100308. [DOI: 10.1016/j.prmcm.2023.100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
6
|
Pant A, Moar K, K Arora T, Maurya PK. Biomarkers of endometriosis. Clin Chim Acta 2023; 549:117563. [PMID: 37739024 DOI: 10.1016/j.cca.2023.117563] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Endometriosis is one of the most severe female reproductive disorders, affecting 6-10% of women between 18 and 35. It is a gynaecological condition where endometrial tissue develops and settles outside the uterus. The aetiology of endometriosis is primarily influenced by genetic, epigenetic, and non-genetic variables, making it highly challenging to create a therapeutic therapy explicitly targeting the ectopic tissue. The delay in the treatment is due to the limitations in the diagnostic approaches, which are restricted to invasive techniques such as laparoscopy or laparotomy. This accords to 70% of the women being diagnosed at later stages. By understanding the subject, several treatment medications have been produced to lessen the disease's symptoms. Nevertheless, endometriosis cannot be permanently cured. A viable or persuasive standard screening test for endometriosis must be utilized in a clinical context. A helpful assessment method for the early identification of endometriosis could be biomarkers. A major research priority is the identification of a biomarker that is sensitive and specific enough for detecting endometriosis. The present article has reviewed studies published on the expression of biomarkers of endometriosis. It outlines various biomarkers from different sample types, such as serum/plasma and urine, in addition to tissue. This would provide a non-invasive approach to diagnosing the disease at the initial stages without any harmful repercussions. Future high-throughput advances in science and technology are anticipated to result in the creation of a potent remedy for endometriosis. To achieve successful outcomes, it is necessary to research the discussed biomarkers that demonstrate substantial results extensively.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
7
|
Cho SB. Molecular Mechanisms of Endometriosis Revealed Using Omics Data. Biomedicines 2023; 11:2210. [PMID: 37626707 PMCID: PMC10452455 DOI: 10.3390/biomedicines11082210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis is a gynecological disorder prevalent in women of reproductive age. The primary symptoms include dysmenorrhea, irregular menstruation, and infertility. However, the pathogenesis of endometriosis remains unclear. With the advent of high-throughput technologies, various omics experiments have been conducted to identify genes related to the pathophysiology of endometriosis. This review highlights the molecular mechanisms underlying endometriosis using omics. When genes identified in omics experiments were compared with endometriosis disease genes identified in independent studies, the number of overlapping genes was moderate. However, the characteristics of these genes were found to be equivalent when functional gene set enrichment analysis was performed using gene ontology and biological pathway information. These findings indicate that omics technology provides invaluable information regarding the pathophysiology of endometriosis. Moreover, the functional characteristics revealed using enrichment analysis provide important clues for discovering endometriosis disease genes in future research.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
8
|
Wei J, Huang B, Nong Y, Zhang Q, Liu W, Xie Y, Peng T, Wang W, Liang X, Li Q, Liu F. Identification of a Novel Cuproptosis-Related Gene Signature in Eutopic Endometrium of Women with Endometriosis. Reprod Sci 2023; 30:1841-1853. [PMID: 36474131 PMCID: PMC10229735 DOI: 10.1007/s43032-022-01130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Endometriosis (EMs) is a life-long endocrine disorder and a common cause for female infertility and pelvic pain. The key characteristics of eutopic endometrium of EMs patients are high proliferative and migratory potentials. Cuproptosis is a recently identified copper- and-mitochondrial-dependent regulated cell death. Regretfully, its role in EMs remains unclear. In this study, Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed genes (DEGs) indicated strong activation of the PI3K-Akt-mTOR pathway and biological process analysis reported positive regulation of kinase activity. Next, we screened 11 cuproptosis-related DEGs and found all of them were downregulated in the EMs group, which indicated the suppression of cuproptosis in EMs. One key cuproptosis-related gene, PDHA1, was selected via support vector machine, random forest algorithm and lasso regularization to build a risk-scoring model, which was tested in both internal and external validations. In conclusion, the downregulation and kinase activity of PDHA1 may function with the PI3K-Akt-mTOR pathway in some way, which could suppress the cuproptosis level and account for the cancer-like pathology in EMs.
Collapse
Affiliation(s)
- Jiahui Wei
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Baoyi Huang
- Guangzhou Medical University, Guangzhou, 511495, China
| | - Yingqi Nong
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Qianyu Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Wenjuan Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Yanni Xie
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Tong Peng
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Wei Wang
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Xiangping Liang
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Qiuyun Li
- Guangzhou Medical University, Guangzhou, 511495, China
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China
| | - Fenghua Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
| |
Collapse
|
9
|
Shen L, Zhang C, Zhang Y, Yang Y. METTL3 and METTL14-mediated N 6-methyladenosine modification promotes cell proliferation and invasion in a model of endometriosis. Reprod Biomed Online 2023; 46:255-265. [PMID: 36517319 DOI: 10.1016/j.rbmo.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
RESEARCH QUESTION Could METTL3 and METTL14-mediated N6-methyladenosine (m6A) modification play possible cooperative roles in pathogenesis and progression of endometriosis? DESIGN An investigation into m6A methylation profiles and the roles of METTL3 and METTL14 in the m6A regulation and pathogenesis of endometriosis. The m6A methylation and mRNA levels in paired ectopic endometrium and eutopic endometrium were measured using m6A-mRNA epitranscriptomic microarrays. The functions of m6A methylation in mRNAs were predicted using bioinformatics analysis. The levels of m6A methyltransferases were detected using quantitative polymerase chain reaction. The role of METTL3 and METTL14 in endometriosis was explored using eutopic endometrium stromal cells. RESULTS The m6A methylation levels were decreased in 1312 mRNAs and increased in 518 mRNAs; 1797 mRNAs were increased and 2580 mRNAs were reduced in the ectopic endometrium compared with the eutopic endometrium. Pathway analysis found that the genes with hypo-methylated m6A were significantly associated with important pathways in endometriosis, including oestrogen, Hippo, and PI3K-Akt signalling and cell-cell adhesion. Furthermore, METTL3 and METTL14 were downregulated in the ectopic endometrium compared with the eutopic endometrium (P < 0.001). Simultaneous METTL3 and METTL14 knockdown increased cell proliferation and invasion. CONCLUSION Taken together, these data reveal a differential m6A epitranscriptomic pattern in endometriosis. The N6-methyladenosine modification mediated by METTL3 and METTL14 play a cooperative role in promoting cell proliferation and invasion in a model of endometriosis. Therefore, METTL3 and METTL14 may be a novel treatment target of the disease.
Collapse
Affiliation(s)
- Licong Shen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Chun Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yi Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yongwen Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
10
|
Guo R, Yi Z, Wang Y, Wang L. Network pharmacology and experimental validation to explore the potential mechanism of Sanjie Zhentong Capsule in endometriosis treatment. Front Endocrinol (Lausanne) 2023; 14:1110995. [PMID: 36817586 PMCID: PMC9935822 DOI: 10.3389/fendo.2023.1110995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Sanjie Zhentong Capsule (SZC) is gradually becoming widely used in the treatment of endometriosis (EMs) and has demonstrated an excellent curative effect in the clinic. However, the active components and mechanisms of Sanjie Zhentong Capsule (SZC) in the treatment of endometriosis (EMs) remain unclear, and further research is needed to explore the effects of Sanjie Zhentong Capsule (SZC). MATERIALS AND METHODS First, a drug target database of Sanjie Zhentong capsule (SZC) was established by consulting the TCMSP database and related literature. An endometriosis (EMs) disease target database was then established by consulting the GeneCards, OMIM and Drug Bank databases. The overlapping genes of SZC and EMs were determined, and protein-protein interactions (PPIs), gene ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses were performed to predict the potential therapeutic mechanisms. Molecular docking was used to observe whether the key active ingredients and targets predicted by network pharmacology had good binding energy. Finally, in vitro experiments such as CCK-8, flow cytometry and RT-PCR assays were carried out to preliminarily verify the potential mechanisms. RESULTS Through the construction of a pharmacological network, we identified a total of 28 active components in SZC and 52 potential therapeutic targets. According to GO and KEGG enrichment analyses, the effects of SZC treatment may be related to oxidative stress, steroid metabolism, apoptosis and proliferation. We also experimentally confirmed that SZC can regulate the expression of steroid hormone biosynthesis-related genes, inhibit ectopic endometrial stromal cell (EESC) proliferation and oxidative stress, and promote apoptosis. CONCLUSION This study explored the potential mechanism of SZC in the treatment of EMs through network pharmacology and experiments, providing a basis for further future research on SZC in the treatment of EMs.
Collapse
|
11
|
Wu PL, Zhu JW, Zeng C, Li X, Xue Q, Yang HX. IGFBP7 enhances trophoblast invasion via IGF-1R/c-Jun signaling in unexplained recurrent spontaneous abortion. Reproduction 2022; 164:231-241. [PMID: 35900339 DOI: 10.1530/rep-21-0501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
In brief Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Our study shows that decreased levels of IGFBP7 in unexplained recurrent spontaneous abortion (URSA) trophoblast cells inhibit MMP2 and Slug expression as well as trophoblast invasion, suggesting that IGFBP7 should be considered a potential therapeutic protein target in URSA. Abstract Insufficient trophoblast invasion at the maternal-fetal interface contributes to abortion-prone pregnancy. Cyclosporine A (CsA) can exert therapeutic effects on URSA by promoting trophoblast invasion. A previous study showed decreased expression of insulin-like growth factor-binding protein 7 (IGFBP7) in the sera of recurrent spontaneous abortion patients. However, the role of IGFBP7 in URSA remains unknown. The aim of this study was to determine whether IGFBP7 modulates trophoblast invasion in URSA and the underlying molecular mechanisms. We found that IGFBP7 was expressed at lower levels in villous specimens from URSA patients. Manipulating IGFBP7 expression significantly affected the MMP2 and Slug expression in HTR-8/SVneo cells as well as trophoblast invasion in vitro. Inactivation of IGF-1R by IGFBP7 was observed, and IGF-1R inhibition increased the IGFBP7-induced MMP2 and Slug expression in HTR-8/SVneo cells. Moreover, the level of c-Jun was significantly upregulated in the URSA group. Silencing IGFBP7 increased the binding of downstream c-Jun to the MMP2 and Slug promoter regions in HTR-8/SVneo cells, thus suppressing transcription. In addition, increased expression of IGFBP7 in HTR-8/SVneo cells was observed upon CsA treatment. Knockdown of IGFBP7 inhibited the CsA-enhanced MMP2 and Slug expression in HTR-8/SVneo cells. Our results suggest that in normal pregnancy, IGFBP7 induces MMP2 and Slug expression via the IGF-1R-mediated c-Jun signaling pathway, thereby promoting trophoblast invasion. IGFBP7 depletion in URSA inhibits MMP2 and Slug expression as well as trophoblast invasion. Moreover, IGFBP7 participates in CsA-induced trophoblast invasion, suggesting that IGFBP7 is a potential therapeutic target for URSA.
Collapse
Affiliation(s)
- Pei-Li Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing-Wen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hui-Xia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
12
|
Heidari S, Kolahdouz-Mohammadi R, Khodaverdi S, Mohammadi T, Delbandi AA. Changes in MCP-1, HGF, and IGF-1 expression in endometrial stromal cells, PBMCs, and PFMCs of endometriotic women following 1,25(OH)2D3 treatment. J Cell Mol Med 2022; 26:5634-5646. [PMID: 36259314 PMCID: PMC9667513 DOI: 10.1111/jcmm.17592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
1,25(OH)2D3 has anti‐inflammatory and growth inhibitory effects. Our study explored the effect of 1,25(OH)2D3 treatment on the expression of monocyte chemotactic protein‐1 (MCP‐1), hepatocyte growth factor (HGF), and insulin‐like growth factor‐1 (IGF‐1) by peripheral blood mononuclear cells (PBMCs), peritoneal fluid mononuclear cells (PFMCs), endometrial stromal cells (ESCs), and its effect on the proliferation of PBMCs and PFMCs of patients with endometriosis compared with controls. PBMCs, PFMCs, and ESCs were obtained from 10 endometriosis patients and 10 non‐endometriotic individuals. After treating cells with 0.1 μM of 1,25(OH)2D3 for 6, 24, and 48 h, the gene and protein expression of mentioned factors were evaluated by real‐time PCR and ELISA methods, respectively. 1,25(OH)2D3 treatment significantly reduced the protein expression of MCP‐1, HGF, and IGF‐1 in PBMCs and PFMCs of endometriotic patients at 48 h (p < 0.05–<0.01). Also, this treatment significantly reduced MCP‐1, HGF, and IGF‐1 gene and/or protein expression in EESCs and EuESCs at 24 and 48 h (p < 0.05–<0.01). 1,25(OH)2D3 treatment also reduced the proliferation of PBMCs and PFMCs of endometriotic patients compared with controls (p < 0.01). 1,25(OH)2D3 can be considered as a potentially effective agent in the prevention and treatment of endometriosis along with other therapies.
Collapse
Affiliation(s)
- Sahel Heidari
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khodaverdi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mohammadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kumar TVC, Verma SK, Sharma D, Kumar LK, Veerappa VG, Singh D, Onteru SK. Meprin A1 subunit beta gene polymorphism is associated with the length of post-partum anestrus interval in Murrah buffaloes. Gene 2022; 827:146456. [PMID: 35358656 DOI: 10.1016/j.gene.2022.146456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
Abstract
Postpartum anestrus interval (PPAI) is the interval between parturition and the first postpartum estrus exhibition in animals. Appearance of both normal and PPA buffaloes under the same farm conditions indicates the role of possible genetic predisposition to PPA. To identify the genetic and non-genetic factors associated with PPA in buffaloes, we collected data on PPAI and other 38 non-genetic variables from 575 Murrah buffaloes in the field conditions and identified the PPA associated non-genetic factors in our previous study. To explore the genetic factors associated with the unexplained variation in PPAI residuals, the present study identified 41 single nucleotide polymorphisms (SNPs) in 13 candidate genes using Sanger sequencing. Exploration of their association with the PPAI residuals of 50 extreme PPA and 50 normal buffaloes identified the significant (P < 0.01) association of the SNP (g.37219977A>G) in the 3'-UTR region of the Meprin A 1 subunit beta (Mep1b) gene with PPAI, which was further validated (P = 0.058) in a large population sample (n = 417). Bioinformatics analysis of the 3'-UTR region has identified three miRNA, bta-miR-2420, bta-miR-2325b and bta-miR-453 that could regulate Igf-1 in the plasma of animals with different genotypes (GG, AG and AA). The higher Igf-1 levels in the GG genotypes than that of AA and AG genotypes of this SNP (g.37219977A>G) further suggest the association of Mep1b gene with PPA condition in Murrah buffaloes. As a result of this study, we propose that buffaloes with protective alleles at this SNP be selected to improve the herd's reproductive efficiency.
Collapse
Affiliation(s)
- Thota Venkata Chaitanya Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Surya Kant Verma
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Davinder Sharma
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Vedamurthy G Veerappa
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, India.
| |
Collapse
|
14
|
The Double Engines and Single Checkpoint Theory of Endometriosis. Biomedicines 2022; 10:biomedicines10061403. [PMID: 35740424 PMCID: PMC9219825 DOI: 10.3390/biomedicines10061403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a chronic disease characterized by the ectopic localization of the endometrial tissue in the peritoneal cavity. Consequently, it causes local pathological changes and systemic symptoms, affecting at least one in every ten women. This disease is difficult to diagnose early, it is prone to dissemination, is difficult to eradicate, tends to recur, and is regarded as “a cancer of no kill”. Indeed, the development of endometriosis closely resembles that of cancer in the way of mutagenesis, pelvic spreading, and immunological adaptation. While retrograde menstruation has been regarded as the primary cause of endometriosis, the role of ovulation and menstrual stimuli in the development of endometriosis has long been overlooked. The development of ovarian and peritoneal endometrioses, similar to the development of high-grade serous carcinoma in the fallopian tube fimbriae with intraperitoneal metastasis, depends highly on the carcinogens released during ovulation. Moreover, endometriosis carries an extremely hypermutated genome, which is non-inferior to the ultra-mutated endometrial cancer. The hypermutation would lead to an overproduction of new proteins or neoantigens. Because of this, the developing endometriosis may have to turn on the PD-1/PDL-1 “self-tolerance” checkpoint to evade immune surveillance, leaving an Achilles tendon for an immune checkpoint blockade. In this review, we present the double engines and single checkpoint theory of the genesis of endometriosis, provide the current pieces of evidence supporting the hypothesis, and discuss the new directions of prevention and treatment.
Collapse
|
15
|
Powell MJ, Fuller S, Gunderson EP, Benz CC. Reduced cardiovascular risks in women with endometriosis or polycystic ovary syndrome carrying a common functional IGF1R variant. Hum Reprod 2022; 37:1083-1094. [PMID: 35362533 PMCID: PMC9071223 DOI: 10.1093/humrep/deac059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/03/2022] [Indexed: 11/28/2022] Open
Abstract
STUDY QUESTION Is the increased future cardiovascular risk seen in women with endometriosis or polycystic ovary syndrome (PCOS) mitigated by functional insulin-like growth factor-1 receptor (IGF1R) single-nucleotide polymorphism (SNP) rs2016347 as previously shown in women with hypertensive disorders of pregnancy? SUMMARY ANSWER This cohort study found that women with endometriosis or PCOS who carry a T allele of IGF1R SNP rs2016347 had a reduced future risk of developing cardiovascular disease (CVD) and associated risk factors, with risk reduction dependent on cohort era. WHAT IS KNOWN ALREADY Women with endometriosis or PCOS have been shown to have an increased future risk of CVD and associated risk factors with limited predictive ability. STUDY DESIGN, SIZE, DURATION This retrospective cohort study took place in the Nurses' Health Study 2 (NHS2), which enrolled 116 430 participants in 1989 who were followed through 2015. The study population was analyzed in its entirety, and subdivided into entry (pre-1989) and after entry (post-1989) exposure cohorts. All NHS2 participants were eligible for inclusion in the study, 9599 (8.2%) were excluded for missing covariates. PARTICIPANTS/MATERIALS, SETTING, METHODS The NHS2 enrolled female registered nurses from 14 different states who ranged in age from 25 to 42 years at study entry. Data were collected from entry and biennial questionnaires, and analysis conducted from November 2020 to June 2021. Cox proportional hazard models were used to assess risk of CVD, hypertension (HTN), hypercholesterolemia (HC) and type 2 diabetes, both with and without genotyping for rs2016347. MAIN RESULTS AND THE ROLE OF CHANCE While women without endometriosis or PCOS, as a whole, demonstrated no impact of genotype on risk in either cohort, women with endometriosis carrying a T allele had a lower risk of CVD (hazard ratio (HR), 0.48; 95% CI, 0.27-0.86, P = 0.02) and HTN (HR, 0.80; 95% CI, 0.66-0.97, P = 0.03) in the pre-1989 cohort, while those in the post-1989 cohort had a decrease in risk for HC (HR, 0.76; 95% CI, 0.62-0.94, P = 0.01). Women with PCOS in the post-1989 cohort showed a significant protective impact of the T allele on HTN (HR, 0.44; 95% CI, 0.27-0.73, P = 0.002) and HC (HR, 0.62; 95% CI, 0.40-0.95, P = 0.03). LIMITATIONS, REASONS FOR CAUTION Data on specific endometriosis lesion locations or disease stage, as well as on PCOS phenotypes were lacking. In addition, data on systemic medical treatments beyond the use of oral contraceptives were missing, and these treatments may have confounded the results. WIDER IMPLICATIONS OF THE FINDINGS These findings implicate systemic dysregulation of the insulin-like growth factor-1 axis in the development of HTN, HC and clinical CVD in endometriosis and PCOS, suggesting a common underlying pathogenetic mechanism. STUDY FUNDING/COMPETING INTEREST(S) The NHS2 infrastructure for questionnaire data collection was supported by National Institute of Health (NIH) grant U01CA176726. This work was also supported in part by NIH and National Cancer Institute grant U24CA210990; as well, research effort and publication costs were supported by the Elizabeth MA Stevens donor funds provided to the Buck Institute for Research on Aging. The authors declare they have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Mark J Powell
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Sophia Fuller
- Graduate Group in Biostatistics, University of California, Berkeley, School of Public Health, Berkeley, CA, USA
| | - Erica P Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | | |
Collapse
|
16
|
Kamrani S, Amirchaghmaghi E, Ghaffari F, Shahhoseini M, Ghaedi K. Altered gene expression of VEGF, IGFs and H19 lncRNA and epigenetic profile of H19-DMR region in endometrial tissues of women with endometriosis. Reprod Health 2022; 19:100. [PMID: 35459174 PMCID: PMC9034598 DOI: 10.1186/s12978-022-01406-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Endometriosis, as chronic estrogen-dependent disease, is defined by the presence of endometrial-like tissue outside the uterus. Proliferation of endometrial tissue and neoangiogenesis are critical factors in development of endometriosis. Hence, vascular endothelial growth factor (VEGF) as well as insulin‐like growth factor 1 and 2 (IGF1, 2) may be involved as inducers of cellular proliferation or neoangiogenesis. Imprinted long noncoding RNA H19 (lncRNA H19) has been suggested to be involved in pathogenesis of endometriosis via regulation of cellular proliferation and differentiation. Epigenetic aberrations appear to play an important role in its pathogenesis. The present study was designed to elucidate VEGF, IGF1, IGF2 and H19 lncRNA genes expression and epigenetic alterations of differentially methylated region (DMR) of H19 (H19-DMR) regulatory region in endometrial tissues of patients with endometriosis, in comparison with control women. Methods In this case–control study, 24 women with and without endometriosis were studied for the relative expression of VEGF, IGF1, IGF2 and H19 lncRNA genes using real-time polymerase chain reaction (PCR) technique. Occupancy of the MeCP2 on DMR region of H19 gene was assessed using chromatin immunoprecipitation (ChIP), followed by real-time PCR. Results Genes expression profile of H19, IGF1 and IGF2 was decreased in eutopic and ectopic endometrial tissues of endometriosis group, compared to the control tissues. Decreased expression of H19 in ectopic samples was significant in comparison with the controls (P < 0.05). Gene expression of VEGF was increased in eutopic tissues of endometriosis group, compared to control group. Whereas its expression level was lower in ectopic lesions versus eutopic and control endometrial samples. ChIP analysis revealed significant and nearly significant hypomethylation of H19-DMR region II in eutopic and ectopic samples, compared to the control group respectively. This epigenetic change was aligned with expression of IGF2. While methylation of H19-DMR region I was not significantly different between the eutopic, ectopic and control endometrial samples. Conclusion These data showed that VEGF, IGF1, IGF2 and H19 lncRNA genes expression and epigenetic alterations of H19 lncRNA have dynamic role in the pathogenesis of endometriosis, specifically in the way that hypomethylation of H19-DMR region II can be involved in IGF2 dysregulation in endometriosis.
Collapse
Affiliation(s)
- Sedigheh Kamrani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave, Azadi Square, Isfahan, Iran
| | - Elham Amirchaghmaghi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Firouzeh Ghaffari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box: 19395-4644, Tehran, Iran. .,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. .,Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave, Azadi Square, Isfahan, Iran.
| |
Collapse
|
17
|
Quan Q, Wu J, Yu M, Tang J. Immune micro-environment and drug analysis of peritoneal endometriosis based on epithelial-mesenchymal transition classification. Front Endocrinol (Lausanne) 2022; 13:1035158. [PMID: 36523599 PMCID: PMC9745086 DOI: 10.3389/fendo.2022.1035158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a complex event that drives polar epithelial cells transform from adherent cells to motile mesenchymal cells, in which are involved immune cells and stroma cells. EMT plays crucial roles in migration and invasion of endometriosis. The interaction of endometrial implants with the surrounding peritoneal micro-environment probably affects the development of peritoneal endometriosis. To date, very few studies have been carried out on peritoneal endometriosis sub-type classification and micro-environment analysis based on EMT. The purpose of this study is to investigate the potential application of EMT-based classification in precise diagnosis and treatment of peritoneal endometriosis. METHOD Based on EMT hallmark genes, 76 peritoneal endometriosis samples were classified into two clusters by consistent cluster classification. EMT scores, which calculated by Z score of 8 epithelial cell marker genes and 8 mesenchymal cell marker genes, were compared in two clusters. Then, immune scores and the abundances of corresponding immune cells, stroma scores and the abundances of corresponding stroma cells were analyzed by the "xCell" package. Futhermore, a diagnostic model was constructed based on 9 diagnostic markers which related to immune score and stroma score by Lasso-Logistic regression analysis. Finally, based on EMT classification, a total of 8 targeted drugs against two clusters were screened out by drug susceptibility analysis via "pRRophetic" package. RESULTS Hallmark epithelial-mesenchymal transition was the mainly enriched pathway of differentially expressed genes between peritoneal endometriosis tissues and endometrium tissues. Compared with cluster 2, EMT score and the abundances of most infiltrating stroma cell were significantly higher, while the abundances of most infiltrating immune cells were dramatically less. The diagnostic model could accurately distinguish cluster 1 from cluster 2. Pathway analysis showed drug candidates targeting cluster 1 mainly act on the IGF-1 signaling pathway, and drug candidates targeting cluster 2 mainly block the EGFR signaling pathway. CONCLUSION In peritoneal endometriosis, EMT was probably promoted by stroma cell infiltration and inhibited by immune cell infiltration. Besides, our study highlighted the potential uses of the EMT classification in the precise diagnosis and treatment of peritoneal endometriosis.
Collapse
Affiliation(s)
- Qingli Quan
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
- *Correspondence: Qingli Quan, ; Jia Tang,
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Meixing Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jia Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
- *Correspondence: Qingli Quan, ; Jia Tang,
| |
Collapse
|
18
|
Heidari S, Kolahdouz-Mohammadi R, Khodaverdi S, Tajik N, Delbandi AA. Expression levels of MCP-1, HGF, and IGF-1 in endometriotic patients compared with non-endometriotic controls. BMC Womens Health 2021; 21:422. [PMID: 34930225 PMCID: PMC8686524 DOI: 10.1186/s12905-021-01560-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND To study the concentrations of monocyte chemoattractant protein-1 (MCP-1), hepatocyte growth factor (HGF), and insulin-like growth factor-1 (IGF-1) in peritoneal fluid (PF) and serum, and to evaluate their expressions by PF and peripheral blood mononuclear cells (PFMCs and PBMCs, respectively), and ectopic and eutopic endometrial stromal cells of patients with endometriosis (EESCs and EuESCs, respectively) compared with controls. METHODS The concentrations of mentioned cytokines in serum and PF, as well as their expression in PBMCs, PFMCs, EuESCs and EESCs from endometriosis patients and controls were assessed. RESULTS The levels of MCP-1, HGF, and IGF-1 in serum and PF in women with endometriosis were significantly higher than the controls (P < 0.05-P < 0.001). Gene expression of MCP-1 and IGF-1 in the PFMCs, PBMCs and EESCs also showed an increased level compared to controls (P < 0.05-P < 0.01). The protein expression of MCP-1 and IGF-1 by PFMCs was statistically higher in endometriotic women (P < 0.05 and P < 0.01, respectively). The gene and protein expression of HGF in PFMCs and its gene expression by EESCs were significantly higher in endometriotic women compared to controls (P < 0.05-P < 0.01). CONCLUSIONS The higher concentrations of mentioned cytokines in serum and PF and their higher expression by PFMCs and EESCs in endometriosis patients may contribute to the development of endometriosis.
Collapse
Affiliation(s)
- Sahel Heidari
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khodaverdi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Balasubramanian V, Saravanan R, Joseph LD, Dev B, Gouthaman S, Srinivasan B, Dharmarajan A, Rayala SK, Venkatraman G. Molecular dysregulations underlying the pathogenesis of endometriosis. Cell Signal 2021; 88:110139. [PMID: 34464692 DOI: 10.1016/j.cellsig.2021.110139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Endometriosis is a crippling disease characterized by the presence of endometrium-like tissue or scar outside the uterine cavity, commonly confined to the peritoneal and serosal surfaces of the pelvic organs. 10-15% of women in reproductive age are estimated to be affected by endometriosis. Most of these patients present with infertility and suffer from pelvic pain. The benign disease rarely progresses to malignancy. Regardless of its high prevalence, the pathogenesis of the disease is not fully understood. Treatment options for endometriosis are limited and are often based on a symptomatic approach. The unavailability of proper diagnostic approaches, fewer therapeutic options, and sparse understanding of molecular alterations are responsible for the continued disease burden. Exploring the molecular elements causing the pathogenesis of endometriosis may lead to a number of breakthroughs in the treatment of the illness, such as the discovery of new biomarkers for diagnosis and therapeutic targets that can be a guide to better prognosis and reduced recurrence. The goal of this review is to provide the reader a critical understanding of the disease by summarizing the genetic, immunological, hormonal, and epigenetic deregulations that support the molecular basis for development of endometriotic cyst, with a special focus on the study models needed to analyze these changes in the endometriotic microenvironment.
Collapse
Affiliation(s)
- Vaishnavi Balasubramanian
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Roshni Saravanan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Bhawna Dev
- Department of Radiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Shanmugasundaram Gouthaman
- Department of Surgical Oncology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Bhuvana Srinivasan
- Department of Obstetrics and Gynecology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
20
|
Liu T, Huang Y, Lin H. Estrogen disorders: Interpreting the abnormal regulation of aromatase in granulosa cells (Review). Int J Mol Med 2021; 47:73. [PMID: 33693952 PMCID: PMC7952251 DOI: 10.3892/ijmm.2021.4906] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian granulosa cells (GCs) are the most important source of estrogen. Therefore, aromatase (estrogen synthase), which is the key enzyme in estrogen synthesis, is not only an important factor of ovarian development, but also the key to estrogen secretion by GCs. Disorders of the ovarian estrogen secretion are more likely to induce female estrogen-dependent diseases and fertility issues, such as ovarian cancer and polycystic ovary syndrome. Hence, aromatase is an important drug target; treatment with its inhibitors in estrogen-dependent diseases has attracted increasing attention. The present review article focuses on the regulation and mechanism of the aromatase activity in the GCs, as well as the specific regulation of aromatase promoters. In GCs, follicle-stimulating hormone (FSH) is dependent on the cyclic adenosine monophosphate (cAMP) pathway to regulate the aromatase activity, and the regulation of this enzyme is related to the activation of signaling pathways, such as phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK). In addition, endocrine-disrupting substance and other related factors affect the expression of aromatase, which eventually create an imbalance in the estrogen secretion by the target tissues. The present review highlights these useful factors as potential inhibitors for target therapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
21
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
22
|
Guo SW. Cancer-associated mutations in endometriosis: shedding light on the pathogenesis and pathophysiology. Hum Reprod Update 2020; 26:423-449. [PMID: 32154564 DOI: 10.1093/humupd/dmz047] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Thus, it came as a complete surprise when it was reported recently that the majority of deep endometriosis lesions harbour somatic mutations and a sizeable portion of them contain known cancer-associated mutations (CAMs). Four more studies have since been published, all demonstrating the existence of CAMs in different subtypes of endometriosis. While the field is still evolving, the confirmation of CAMs has raised many questions that were previously overlooked. OBJECTIVE AND RATIONALE A comprehensive overview of CAMs in endometriosis has been produced. In addition, with the recently emerged understanding of the natural history of endometriotic lesions as well as CAMs in normal and apparently healthy tissues, this review attempts to address the following questions: Why has there been such a wild discrepancy in reported mutation frequencies? Why does ectopic endometrium have a higher mutation rate than that of eutopic endometrium? Would the presence of CAMs in endometriotic lesions increase the risk of cancer to the bearers? Why do endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart? What clinical implications, if any, do the CAMs have for the bearers? Do these CAMs tell us anything about the pathogenesis and/or pathophysiology of endometriosis? SEARCH METHODS The PubMed database was searched, from its inception to September 2019, for all papers in English using the term 'endometriosis and CAM', 'endometriosis and cancer-driver mutation', 'somatic mutations', 'fibrosis', 'fibrosis and epigenetic', 'CAMs and tumorigenesis', 'somatic mutation and normal tissues', 'oestrogen receptor and fibrosis', 'oxidative stress and fibrosis', 'ARID1A mutation', and 'Kirsten rat sarcoma mutation and therapeutics'. All retrieved papers were read and, when relevant, incorporated into the review results. OUTCOMES Seven papers that identified CAMs in endometriosis using various sequencing methods were retrieved, and their results were somewhat different. Yet, it is apparent that those using microdissection techniques and more accurate sequencing methods found more CAMs, echoing recent discoveries that apparently healthy tissues also harbour CAMs as a result of the replicative aging process. Hence endometriotic lesions, irrespective of subtype, if left intact, would generate CAMs as part of replicative aging, oxidative stress and perhaps other factors yet to be identified and, in some rare cases, develop cancer. The published data still are unable to paint a clear picture on pathogenesis of endometriosis. However, since endometriotic epithelial cells have a higher turnover than their stromal counterpart due to cyclic bleeding, and since the endometriotic stromal component can be formed by refresh influx of mesenchymal cells through epithelial-mesenchymal transition, endothelial-mesenchymal transition, mesothelial-mesenchymal transition and other processes as well as recruitment of bone-marrow-derived stem cells and outflow due to smooth muscle metaplasia, endometriotic epithelial cells have much higher mutation frequencies than their stromal counterpart. The epithelial and stromal cellular components develop in a dependent and co-evolving manner. Genes involved in CAMs are likely to be active players in lesional fibrogenesis, and hyperestrogenism and oxidative stress are likely drivers of both CAMs and fibrogenesis. Finally, endometriotic lesions harbouring CAMs would conceivably be more refractory to medical treatment, due, in no small part, to their high fibrotic content and reduced vascularity and cellularity. WIDER IMPLICATIONS The accumulating data on CAMs in endometriosis have shed new light on the pathogenesis and pathophysiology of endometriosis. They also suggest new challenges in management. The distinct yet co-evolving developmental trajectories of endometriotic stroma and epithelium underscore the importance of the lesional microenvironment and ever-changing cellular identity. Mutational profiling of normal endometrium from women of different ages and reproductive history is needed in order to gain a deeper understanding of the pathogenesis. Moreover, one area that has conspicuously received scant attention is the epigenetic landscape of ectopic, eutopic and normal endometrium.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| |
Collapse
|
23
|
A Novel Method to Differentiate Tonsil-Derived Mesenchymal Stem Cells In Vitro into Estrogen-Secreting Cells. Tissue Eng Regen Med 2020; 18:253-264. [PMID: 33113109 DOI: 10.1007/s13770-020-00307-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The advantages of tonsil-derived mesenchymal stem cells (TMSCs) over other mesenchymal stem cells (MSCs) include higher proliferation rates, various differentiation potentials, efficient immune-modulating capacity, and ease of obtainment. Specifically, TMSCs have been shown to differentiate into the endodermal lineage. Estrogen deficiency is a major cause of postmenopausal osteoporosis and is associated with higher incidences of ischemic heart disease and cerebrovascular attacks during the postmenopausal period. Therefore, stem cell-derived, estrogen-secreting cells might be used for estrogen deficiency. METHODS Here, we developed a novel method that utilizes retinoic acid, insulin-like growth factor-1, basic fibroblast growth factor, and dexamethasone to evaluate the differentiating potential of TMSCs into estrogen-secreting cells. The efficacy of the novel differentiating method for generation of estrogen-secreting cells was also evaluated with bone marrow- and adipose tissue-derived MSCs. RESULTS Incubating TMSCs in differentiating media induced the gene expression of cytochrome P450 19A1 (CYP19A1), which plays a key role in estrogen biosynthesis, and increased 17β-estradiol secretion upon testosterone addition. Furthermore, CYP11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase type-1 gene expression levels were significantly increased in TMSCs. In bone marrow-derived and adipose tissue-derived MSCs, this differentiation method also induced the gene expression of CYP19A1, but not CYP17A1, suggesting TMSCs are a superior source for estrogen secretion. CONCLUSION These results imply that TMSCs can differentiate into functional estrogen-secreting cells, thus providing a novel, alternative cell therapy for estrogen deficiency.
Collapse
|
24
|
Wang P, Liu S, Zhu C, Duan Q, Jiang Y, Gao K, Bu Q, Cao B, An X. MiR-29 regulates the function of goat granulosa cell by targeting PTX3 via the PI3K/AKT/mTOR and Erk1/2 signaling pathways. J Steroid Biochem Mol Biol 2020; 202:105722. [PMID: 32565247 DOI: 10.1016/j.jsbmb.2020.105722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
PTX3, a member of the pentraxin protein family, plays important roles in ovulation as a marker of cumulus cell-oocyte complex expansion. However, the expression and function of PTX3 in goat ovarian GCs remain unclear. We isolated GCs from small and large follicles and found that PTX3 expression was significantly decreased and miR-29 mRNA expression was significantly increased during the growth of antral follicles. MiR-29 decreased PTX3 expression by targeting its 3' untranslated. Furthermore, miR-29 promoted GC proliferation, suppressed steroidogenesis and apoptosis by targeting PTX3 via the activation of the PI3K/AKT/mTOR and Erk1/2 signaling pathways. Treatment with inhibitors also verified these results. Meanwhile, we found that PI3K/AKT/mTOR and Erk1/2 signaling pathways had different role in secretion of E2 and P4 by regulating differently various steroidogenic enzyme (CYP19A1, CYP11A1, StAR and HSD3B) expression. These outcomes indicate the potential role of PTX3 in goat follicular growth and atresia.
Collapse
Affiliation(s)
- Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Quyu Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yue Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
25
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Hu J, Jin J, Qu Y, Liu W, Ma Z, Zhang J, Chen F. ERO1α inhibits cell apoptosis and regulates steroidogenesis in mouse granulosa cells. Mol Cell Endocrinol 2020; 511:110842. [PMID: 32376276 DOI: 10.1016/j.mce.2020.110842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/30/2022]
Abstract
ER oxidoreduclin 1α (ERO1α), an oxidase that exists in the ER, participates in protein folding and secretion and inhibiting apoptosis, and regulates tumor progression, which is a novel factor of poor cancer prognosis. However, the other physiological functions of ERO1α remain undiscovered. Although our preliminary results of this study indicated that ERO1α revealed the robust expression in ovary, especially in granulosa cells, the role of ERO1α in follicular development is not well known. Therefore, the aims of the present study were to explore the role of ERO1α and the possible mechanisms in regulating cell apoptosis and steroidogenesis in ovarian granulosa cells. ERO1α was mainly localized in granulosa cells and oocytes in the adult ovary by immunohistochemistry. Western blot analysis showed that the expression of ERO1α was highest at oestrous stage during the estrous cycle. The effect of ERO1α on cell apoptosis and steroidogenesis was detected by transduction of ERO1α overexpression and knockdown lentiviruses into primary cultured granulosa cells. Flow cytometry analysis showed that ERO1α decreased granulosa cells apoptosis. Western bolt and RT-qPCR analysis found that ERO1α increased the ratio of BCL-2/BAX, and decreased BAD and Caspase-3 expression. ELISA analysis showed that ERO1α enhanced estrogen (E2) secretion. Western bolt and RT-qPCR analysis found that ERO1α increased StAR, CYP11A1, 3β-HSD, CYP17A1, and CYP19A1 expression, and decreased CYP1B1 expression. Furthermore, Western bolt analysis found that ERO1αincreased PDI and PRDX 4 expression, and activated the PI3K/AKT/mTOR signaling pathway through increasing the phosphorylation of AKT and P70 S6 kinase. In summary, these results suggested that ERO1α might play an anti-apoptotic role and regulate steroidogenesis in granulosa cells, at least partly, via activation of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jiaqi Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yuxing Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wanyang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
27
|
Han X, Hu F, Chen F, Wang W. The inhibition of bone morphogenetic protein 1 attenuates endometriosis lesions in vivo and in vitro. Arch Gynecol Obstet 2020; 302:415-422. [PMID: 32524385 DOI: 10.1007/s00404-020-05612-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the potential role of Bone morphogenetic protein 1 (BMP1) in endometriosis lesions. METHODS Endometriosis model in mice was established. The expression of BMP1-3 expression in mice of endometriosis lesions was evaluated. The effect of the treatment with anti-BMP1 antibodies on the expression of MMP2, MMP9, TGF-β, IL-17, IL-1β, Col1a1 and Col1a2 levels in mice was evaluated. In endometriosis cell model, the expression of IL-17, IL-1β, MMP2 and MMP9 levels and MIF, YWHAZ, β-catenin and CAP39 mRNA levels was also detected. RESULTS The expression of BMP1-3 expression was upregulated in mice of endometriosis lesions (p < 0.01). Treatment with anti-BMP1 antibodies dose-dependently reduced MMP2, MMP9, TGF-β, IL-17, IL-1β, Col1a1 and Col1a2 levels in mice (p < 0.01). Treatment with anti-BMP1 antibodies suppressed TGF-β/PI3K/Akt signaling pathway. In vitro cell, si-BMP1 suppressed TGF-β/PI3K/Akt signaling pathway. CONCLUSION The data support the hypothesis that the inhibition of BMP1 is involved in the pathogenesis of endometriosis lesions.
Collapse
Affiliation(s)
- Xinyue Han
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Feifei Hu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Fang Chen
- Department of Obstetrics and Gynecology, Baotou City Central Hospital, Baotou, China
| | - Wei Wang
- Department of Neurology, The University of Hong Kong-Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen City, 518000, China.
| |
Collapse
|
28
|
Lin CJ, Maugars G, Lafont AG, Jeng SR, Wu GC, Dufour S, Chang CF. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase. Gen Comp Endocrinol 2020; 291:113395. [PMID: 31981691 DOI: 10.1016/j.ygcen.2020.113395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022]
Abstract
Duplicated cyp19a1 genes (cyp19a1a encoding aromatase a and cyp19a1b encoding aromatase b) have been identified in an increasing number of teleost species. Cyp19a1a is mainly expressed in the gonads, while cyp19a1b is mainly expressed in the brain, specifically in radial glial cells, as largely investigated by Kah and collaborators. The third round of whole-genome duplication that specifically occurred in the teleost lineage (TWGD or 3R) is likely at the origin of the duplicated cyp19a1 paralogs. In contrast to the situation in other teleosts, our previous studies identified a single cyp19a1 in eels (Anguilla), which are representative species of a basal group of teleosts, Elopomorpha. In the present study, using genome data mining and phylogenetic and synteny analyses, we confirmed that the whole aromatase genomic region was duplicated in eels, with most aromatase-neighboring genes being conserved in duplicate in eels, as in other teleosts. These findings suggest that specific gene loss of one of the 3R-duplicated cyp19a1 paralogs occurred in Elopomorpha after TWGD. Similarly, a single cyp19a1 gene was found in the arowana, which is a representative species of another basal group of teleosts, Osteoglossomorpha. In eels, the single cyp19a1 is expressed in both the brain and the gonads, as observed for the single CYP19A1 gene present in other vertebrates. The results of phylogenetic, synteny, closest neighboring gene, and promoter structure analyses showed that the single cyp19a1 of the basal teleosts shared conserved properties with both teleost cyp19a1a and cyp19a1b paralogs, which did not allow us to conclude which of the 3R-duplicated paralogs (cyp19a1a or cyp19a1b) was lost in Elopomorpha. Elopomorpha and Osteoglossomorpha cyp19a1 genes exhibited preserved ancestral functions, including expression in both the gonad and brain. We propose that the subfunctionalization of the 3R-duplicated cyp19a1 paralogs expressed specifically in the gonad or brain occurred in Clupeocephala, after the split of Clupeocephala from Elopomorpha and Osteoglossomorpha, which represented a driving force for the conservation of both 3R-duplicated paralogs in all extant Clupeocephala. In contrast, the functional redundancy of the undifferentiated 3R-duplicated cyp19a1 paralogs in elopomorphs and osteoglossomorphs would have favored the loss of one 3R paralog in basal teleosts.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gersende Maugars
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Anne-Gaëlle Lafont
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
29
|
Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW, Saunders PTK, Greaves E. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis. FASEB J 2019; 33:11210-11222. [PMID: 31291762 PMCID: PMC6766660 DOI: 10.1096/fj.201900797r] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Endometriosis is a common incurable inflammatory disorder that is associated with debilitating pelvic pain in women. Macrophages are central to the pathophysiology of endometriosis: they dictate the growth and vascularization of endometriosis lesions and more recently have been shown to promote lesion innervation. The aim of this study was to determine the mechanistic role of macrophages in producing pain associated with endometriosis. Herein, we show that macrophage depletion in a mouse model of endometriosis can reverse abnormal changes in pain behavior. We identified that disease-modified macrophages exhibit increased expression of IGF-1 in an in vitro model of endometriosis-associated macrophages and confirmed expression by lesion-resident macrophages in mice and women. Concentrations of IGF-1 were elevated in peritoneal fluid from women with endometriosis and positively correlate with their pain scores. Mechanistically, we demonstrate that macrophage-derived IGF-1 promotes sprouting neurogenesis and nerve sensitization in vitro. Finally, we show that the Igf-1 receptor inhibitor linsitinib reverses the pain behavior observed in mice with endometriosis. Our data support a role for macrophage-derived IGF-1 as a key neurotrophic and sensitizing factor in endometriosis, and we propose that therapies that modify macrophage phenotype may be attractive therapeutic options for the treatment of women with endometriosis-associated pain.-Forster, R., Sarginson, A., Velichkova, A., Hogg, C., Dorning, A., Horne, A. W., Saunders, P. T. K., Greaves, E. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis.
Collapse
Affiliation(s)
- Rachel Forster
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra Sarginson
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Atanaska Velichkova
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chloe Hogg
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ashley Dorning
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Horne
- Medical Research Council (MRC) Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T. K. Saunders
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
30
|
Arablou T, Delbandi AA, Khodaverdi S, Arefi S, Kolahdouz-Mohammadi R, Heidari S, Mohammadi T, Aryaeian N. Resveratrol reduces the expression of insulin-like growth factor-1 and hepatocyte growth factor in stromal cells of women with endometriosis compared with nonendometriotic women. Phytother Res 2019; 33:1044-1054. [PMID: 30838714 DOI: 10.1002/ptr.6298] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/16/2023]
Abstract
Resveratrol, a phytoalexin polyphenol, has antiproliferative, antiangiogenic, anti-inflammatory, and antioxidant properties. The present study has assessed the effect of resveratrol treatment on the expression of insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) in endometrial stromal cells (ESCs) from women with and without endometriosis. Endometrial tissues were obtained from 40 endometriotic patients and 15 nonendometriotic control women. After the enzymatic digestion, 13 eutopic ESCs (EuESCs), 8 ectopic ESCs (EESCs), and 11 control ESCs (CESCs) were treated with resveratrol (100 μM) for 6, 24, and 48 hr. The gene and protein expressions of IGF-1 and HGF were measured using real-time polymerase chain reaction and enzyme-linked immunosorbent assay methods, respectively. Results showed that resveratrol treatment decreased significantly the gene expression of IGF-1 and HGF in EuESCs, EESCs, and CESCs (p < 0.05). The effect of resveratrol treatment on the reduction of IGF-1 gene expression was statistically more noticeable in EESCs compared with CESCs (p < 0.05). Also, in the case of HGF gene expression, the reducing effect of resveratrol treatment was statistically more considerable in EESCs compared with EuESCs and CESCs (p < 0.05 and p < 0.01, respectively). The IGF-1 and HGF protein production decreased significantly in EuESCs and EESCs (p < 0.05) but not in CESCs. These findings suggest that resveratrol treatment could reduce the expression of IGF-1 and HGF in ESCs especially in EESCs, which play a pivotal role in disease progression.
Collapse
Affiliation(s)
- Tahereh Arablou
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Immunology and Infectious Disease Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khodaverdi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Arefi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics and In Vitro Assisted Reproductive (GIVAR) Center, Erfan Hospital, Tehran, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mohammadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Meng K, Wang X, He Y, Yang J, Wang H, Zhang Y, Quan F. The Wilms tumor gene (WT1) (+/−KTS) isoforms regulate steroidogenesis by modulating the PI3K/AKT and ERK1/2 pathways in bovine granulosa cells†. Biol Reprod 2019; 100:1344-1355. [DOI: 10.1093/biolre/ioz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/02/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yuanyuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Jiashu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
32
|
Koninckx PR, Ussia A, Adamyan L, Wattiez A, Gomel V, Martin DC. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril 2018; 111:327-340. [PMID: 30527836 DOI: 10.1016/j.fertnstert.2018.10.013] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the pathophysiology of endometriosis. DESIGN Overview of observations on endometriosis. SETTING Not applicable. PATIENT(S) None. INTERVENTIONS(S) None. MAIN OUTCOME MEASURE(S) The hypothesis is compatible with all observations. RESULT(S) Endometriosis, endometrium-like tissue outside the uterus, has a variable macroscopic appearance and a poorly understood natural history. It is a hereditary and heterogeneous disease with many biochemical changes in the lesions, which are clonal in origin. It is associated with pain, infertility, adenomyosis, and changes in the junctional zone, placentation, immunology, plasma, peritoneal fluid, and chronic inflammation of the peritoneal cavity. The Sampson hypothesis of implanted endometrial cells following retrograde menstruation, angiogenic spread, lymphogenic spread, or the metaplasia theory cannot explain all observations if metaplasia is defined as cells with reversible changes and an abnormal behavior/morphology due to the abnormal environment. We propose a polygenetic/polyepigenetic mechanism. The set of genetic and epigenetic incidents transmitted at birth could explain the hereditary aspects, the predisposition, and the endometriosis-associated changes in the endometrium, immunology, and placentation. To develop typical, cystic ovarian or deep endometriosis lesions, a variable series of additional transmissible genetic and epigenetic incidents are required to occur in a cell which may vary from endometrial to stem cells. Subtle lesions are viewed as endometrium in a different environment until additional incidents occur. Typical cystic ovarian or deep endometriosis lesions are heterogeneous and represent three different diseases. CONCLUSION(S) The genetic epigenetic theory is compatible with all observations on endometriosis. Implications for treatment and prevention are discussed.
Collapse
Affiliation(s)
- Philippe R Koninckx
- Obstetrics-Gynecology, KU Leuven, Bierbeek, Belgium; Gruppo Italo Belga, Rome, Italy; Latiffa Hospital, Dubai, United Arab Emirates; Università Cattolica, Roma, Italy.
| | - Anastasia Ussia
- Gruppo Italo Belga, Rome, Italy; Università Cattolica, Roma, Italy
| | - Leila Adamyan
- Department of Operative Gynecology, Federal State Budget Institution V. I. Kulakov Research Centre for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, and Department of Reproductive Medicine and Surgery, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Arnaud Wattiez
- Latiffa Hospital, Dubai, United Arab Emirates; Department of Obstetrics and Gynecology, University of Strasbourg, Strasbourg, France
| | - Victor Gomel
- Department of Obstetrics and Gynecology, University of British Columbia and Women's Hospital, Vancouver, British Columbia, Canada
| | - Dan C Martin
- School of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, and Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
33
|
Liang Y, Xie H, Wu J, Liu D, Yao S. Villainous role of estrogen in macrophage-nerve interaction in endometriosis. Reprod Biol Endocrinol 2018; 16:122. [PMID: 30518376 PMCID: PMC6282253 DOI: 10.1186/s12958-018-0441-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a complex and heterogeneous disorder with unknown etiology. Dysregulation of macrophages and innervation are important factors influencing the pathogenesis of endometriosis-associated pain. It is known to be an estrogen-dependent disease, estrogen can promote secretion of chemokines from peripheral nerves, enhancing the recruitment and polarization of macrophages in endometriotic tissue. Macrophages have a role in the expression of multiple nerve growth factors (NGF), which mediates the imbalance of neurogenesis in an estrogen-dependent manner. Under the influence of estrogen, co-existence of macrophages and nerves induces an innovative neuro-immune communication. Persistent stimulation by inflammatory cytokines from macrophages on nociceptors of peripheral nerves aggravates neuroinflammation through the release of inflammatory neurotransmitters. This neuro-immune interaction regulated by estrogen sensitizes peripheral nerves, leading to neuropathic pain in endometriosis. The aim of this review is to highlight the significance of estrogen in the interaction between macrophages and nerve fibers, and to suggest a potentially valuable therapeutic target for endometriosis-associated pain.
Collapse
Affiliation(s)
- Yanchun Liang
- grid.412615.5Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province China
| | - Hongyu Xie
- 0000 0001 2360 039Xgrid.12981.33Grade 2012 in 8-year Medical Education Program of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510089 China
| | - Jinjie Wu
- 0000 0001 2360 039Xgrid.12981.33Grade 2012 in 8-year Medical Education Program of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510089 China
| | - Duo Liu
- grid.412615.5Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province China
| | - Shuzhong Yao
- grid.412615.5Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province China
| |
Collapse
|
34
|
Wu PL, Zeng C, Zhou YF, Yin L, Yu XL, Xue Q. Farnesoid X Receptor Agonist GW4064 Inhibits Aromatase and ERβ Expression in Human Endometriotic Stromal Cells. Reprod Sci 2018; 26:1111-1120. [PMID: 30428773 DOI: 10.1177/1933719118808912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endometriosis is an estrogen-dependent disease. Farnesoid X receptor (FXR) activation has been shown to inhibit estrogen signaling in breast cancer and testicular tumors. However, the role of FXR in endometriosis is still poorly understood. Here, we aimed to investigate whether FXR activation by its synthetic agonist GW4064 has a therapeutic effect on endometriosis and the underlying molecular mechanisms. We found that the expression of FXR (encoded by the NR1H4 gene) in endometriotic tissues and stromal cells (ESCs) was higher than that in eutopic endometrial tissues and stromal cells. The GW4064 treatment led to a dose-dependent decrease in aromatase and estrogen receptor β (ERβ) expression and induced ERK1/2, p38, AMPK, and Stat3 activation in ESCs. In contrast, ERK1/2 inhibitor reversed the GW4064-induced reduction in aromatase expression. In addition, treatment with p38, AMPK, and Stat3 inhibitors or small interfering RNAs could also reverse the GW4064-induced reduction of ERβ expression in ESCs. The GW4064 treatment markedly increased Stat3 phosphorylation, enhancing the binding of Stat3 to the ESR2 promoter, which resulted in the downregulation of ERβ. Coimmunoprecipitation assay and chromatin immunoprecipitation analysis revealed that FXR was able to compete with cyclic AMP response element-binding (CREB) protein for binding to a common sequence on the aromatase promoter region after GW4064 treatment in ESCs. Moreover, treatment of endometriosis xenografts with GW4064 suppressed aromatase and ERβ expression in nude mice. Our results suggest that FXR may represent a potential therapeutic target for future therapy.
Collapse
Affiliation(s)
- Pei-Li Wu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ying-Fang Zhou
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ling Yin
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xiao-Lan Yu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
35
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
36
|
Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol 2018; 7:24. [PMID: 30250760 PMCID: PMC6148803 DOI: 10.1186/s40164-018-0116-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen is a steroid hormone that has critical roles in reproductive development, bone homeostasis, cardiovascular remodeling and brain functions. However, estrogen also promotes mammary, ovarian and endometrial tumorigenesis. Estrogen antagonists and drugs that reduce estrogen biosynthesis have become highly successful therapeutic agents for breast cancer patients. The effects of estrogen are largely mediated by estrogen receptor (ER) α and ERβ, which are members of the nuclear receptor superfamily of transcription factors. The mechanisms underlying the aberrant expression of ER in breast cancer and other types of human tumors are complex, involving considerable alternative splicing of ERα and ERβ, transcription factors, epigenetic and post-transcriptional regulation of ER expression. Elucidation of mechanisms for ER expression may not only help understand cancer progression and evolution, but also shed light on overcoming endocrine therapy resistance. Herein, we review the complex mechanisms for regulating ER expression in human cancer.
Collapse
Affiliation(s)
- Hui Hua
- 1Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Yin B, Liu X, Guo SW. Caloric Restriction Dramatically Stalls Lesion Growth in Mice With Induced Endometriosis. Reprod Sci 2018; 25:1024-1036. [PMID: 29439622 DOI: 10.1177/1933719118756755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR) has been demonstrated to have many health-beneficial effects in many species, but whether CR can impede the development of endometriosis is unknown. To test the hypothesis that CR can impede the growth of endometriotic lesions and fibrogenesis, we conducted 2 experiments. In experiment 1, 20 female Balb/C mice were randomly assigned to either ad libitum (AL) group that was fed AL or to CR group that was fed 30% less calories than that of AL mice. Two weeks after the implementation of the dietary intervention, endometriosis was induced by intraperitoneal injection of endometrial fragments. Two weeks after the induction, all mice were sacrificed and their lesion samples were evaluated. In experiment 2, another 20 mice were used and CR was implemented 2 weeks after induction of endometriosis and lasted for 4 weeks. Caloric restriction instituted before the induction of endometriosis reduced the lesion weight by 88.5%, whereas CR implemented well after lesions were established reduced the lesion weight by 93.0%. In both cases, CR significantly increased staining levels of markers of autophagy but reduced proliferation, angiogenesis, steroidogenesis, and fibrosis in lesions as compared with the AL group. Consequently, CR, instituted either before or after the induction of endometriosis, dramatically curbs the growth of endometriotic lesions and fibrogenesis through multiple mechanisms. Caloric restriction and CR mimetics, a family of compounds mimicking the beneficial effect of CR, even when instituted well after lesions are established, may stall the development of endometriosis. Given the scarcity in research on how lifestyle can impact on the development of endometriosis, our study should hopefully stimulate more research in this area.
Collapse
Affiliation(s)
- Bo Yin
- 1 Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- 1 Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Sun-Wei Guo
- 1 Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
38
|
Li J, Li S, Wang X, Wang H. Esculetin induces apoptosis of SMMC-7721 cells through IGF-1/PI3K/Akt-mediated mitochondrial pathways. Can J Physiol Pharmacol 2017; 95:787-794. [PMID: 28177662 DOI: 10.1139/cjpp-2016-0548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Esculetin (6,7-dihydroxycoumarin) is a coumarin derivative extracted from natural plants and has been reported to have anticancer activity. However, the mechanism by which esculetin prevents human hepatic cancer cell growth is still largely unknown. In this study, we investigated the effect of esculetin on human hepatocellular carcinoma (HCC) SMMC-7721 cells and explored the cell signal mechanism. Our data indicated that esculetin induced apoptosis in SMMC-7721 cells, which were supported by DAPI staining and Annexin V/PI staining. Meanwhile, esculetin increased the activities of caspase-3 and caspase-9, promoted bax expression, decreased bcl-2 expression, and triggered collapse of mitochondrial membrane potential, and increased cytochrome c release from mitochondria. In addition, the inactivation of IGF-1, PI3K, and Akt was observed after esculetin administration. Furthermore, pretreatment with IGF-1 before esculetin administration abrogated the pro-apoptotic effects of esculetin, while PI3K inhibitor increased the pro-apoptotic effects of esculetin. These results indicated that esculetin induced the apoptosis of SMMC-7721 cells through IGF-1/PI3K/Akt-regulated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Disease, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Shuang Li
- Department of Anesthesiology, Taihe District Hospital of Jinzhou City, Jinzhou 121001, China
| | - Xiuli Wang
- Department of Infectious Disease, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|