1
|
Deng Z, Li Y, Chi W, Zhang W, Li F, Ling L. tRF Ala-AGC-3-M8 attenuates neuroinflammation and neuronal damage in Alzheimer's disease via the EphA7-ERK 1/2-p70S6K signaling pathway. Alzheimers Res Ther 2025; 17:104. [PMID: 40375351 PMCID: PMC12079980 DOI: 10.1186/s13195-025-01734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/06/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder clinically characterized by memory decline, cognitive dysfunction, language impairment, deterioration of visuospatial skills, and personality changes. Pathologically, AD is marked by the deposition of β-amyloid (Aβ) plaques in the brain, the formation of neurofibrillary tangles, and progressive neuronal loss. Recent research has highlighted transfer RNA (tRNA)-derived small RNAs (tsRNAs) as crucial regulators in various biological processes; however, their roles in the pathophysiology of AD remain largely unexplored. The erythropoietin-producing hepatocellular (Eph) receptor family has recently drawn attention in the study of neurodegenerative diseases due to their role in regulating critical processes, including cell migration, neural development, angiogenesis, and tumor formation. This study aimed to investigate specific tsRNAs associated with AD by performing RNA sequencing on the cortex of APP/PS1 transgenic mice and to explore the relationship between tsRNAs and their target genes within the Eph receptor family, thereby elucidating insights into the specific regulatory functions of these molecules. METHODS Eight-month-old male C57BL/6 and APP/PS1 transgenic mice were used in the study. BV-2 and HT22 cells were cultured and treated with Aβ25-35 at concentrations ranging from 0 µM to 40 µM. RNA was extracted from cortical tissues, and tRNA-derived fragments were analyzed after pre-treatment to remove RNA modifications. Differential expression of tRFs and tiRNAs was identified through sequencing, followed by bioinformatics analysis of target genes using TargetScan and miRanda. Transfection of BV-2 and HT22 cells with EphA7-siRNA and tRFAla-AGC-3-M8-mimic was conducted, and their interaction was validated using dual-luciferase reporter assays. Protein expression levels were assessed by western blotting and immunofluorescence. Statistical analyses were performed using R and GraphPad Prism, with significance set at p < 0.05. RESULTS We identified for the first time that EphA7 expression is upregulated in aggregated microglia and neuronal cells in the dentate gyrus region of the hippocampus, with increased phosphorylation of ERK1/2 and p70S6K in AD. This upregulation occurred following the downregulation of tRFAla-AGC-3-M8 due to Aβ stimulation and was confirmed via in vitro experiments. By inhibiting EphA7 expression and increasing tRFAla-AGC-3-M8 expression, we suppressed the ERK1/2-p70S6K signaling pathway in BV-2 and HT22 cells. This intervention alleviated neuronal damage and tau hyperphosphorylation in HT22 cells and reduced the M1-type polarization state of BV-2 cells induced by Aβ25-35 (see Graphical Abstract). CONCLUSIONS This study clarifies the specific role of tRFAla-AGC-3-M8 in AD pathology and offers a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Zihao Deng
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Wenjun Chi
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Wanzhou Zhang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Fangming Li
- Department of Neurology, Clinical Medical Academy, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518000, China.
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Shenzhen Clinical Medical School, Southern Medical University, 518000, Shenzhen, China.
| |
Collapse
|
2
|
Liu M, Zhuang X, Zhang H, Ji W, Yuan G. tRNA-derived small RNAs in digestive tract diseases: Progress and perspectives. Genes Dis 2025; 12:101326. [PMID: 40083327 PMCID: PMC11904584 DOI: 10.1016/j.gendis.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/16/2025] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are non-coding small RNAs that are produced through the precise cleavage of tRNA molecules under specific conditions. tsRNA has multiple functions, including inhibiting translation, acting in association with classical small RNA effector mechanisms, or acting in conjunction with Argonaute proteins that affect cell proliferation, migration, cycle, and apoptosis. Recent studies have revealed the clinical potential of tsRNAs in numerous diseases. This article aims to provide a comprehensive and up-to-date review of the classification and biological function of tsRNAs in gastrointestinal diseases. Furthermore, this review explores the underlying mechanisms by which tsRNAs are believed to exert their effects in both tumor and non-tumor digestive tract diseases. Therefore, specific tsRNAs prove promising for disease diagnosis, prognosis prediction, and therapeutic interventions as novel biomarkers for digestive tract diseases.
Collapse
Affiliation(s)
- Mingrui Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong 510080, China
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- International Medical Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
3
|
He Y, Wang J, Chen C, Wang R, Ma X, Ma R, Sun Y, Wang L, Ding H. Comprehensive profiling of tsRNAs in acute coronary syndrome: expression patterns, clinical correlations, and functional insights. Hum Genet 2025; 144:575-590. [PMID: 40232417 PMCID: PMC12033100 DOI: 10.1007/s00439-025-02742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) have emerged as potential biomarkers of various human diseases. However, the clinical utility and biological functions of tsRNA in acute coronary syndrome (ACS) remain poorly understood. To investigate this, we performed high-throughput small RNA sequencing on peripheral blood monocyte cells (PBMCs) from 24 ACS patients and 12 healthy controls. Our analysis revealed distinct and characteristic expression patterns of tsRNAs in response to ACS, highlighting their potential as disease signatures in human PBMCs. Differentially expressed tsRNAs were validated using RT-qPCR in two independent case-control sets. Among these, tRF-Gly-GCC-06 was significantly upregulated in volunteers with unstable angina (UA) and acute myocardial infarction (AMI) (p < 0.05) and showed a statistically significant positive correlation with the Gensini score (r = 0.353, p < 0.001). Moreover, this tsRNA was independently associated with an increased risk of ACS after adjusting for conventional cardiovascular risk factors (odds ratio (OR) = 1.58, 95% confidence interval (CI): 1.37-1.83, p < 0.001). A series of functional studies showed that tRF-Gly-GCC-06 significantly facilitated macrophage proliferation and migration and modulated inflammation-related gene expression in vitro. This study identified a novel functional gene associated with ACS, tRF-Gly-GCC-06, as a potential clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China
| | - Rongli Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China
| | - Ruiying Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China
| | - Yang Sun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China.
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China.
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, P.R. China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, P.R. China.
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China.
- Key Laboratory of Vascular Aging, Tongji Hospital of Tongji Medical College, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China.
| |
Collapse
|
4
|
Ding R, Li Y, Zhang Y, Li X, Song Y, Gu X, Shen X, Ju S. Comprehensive assessment of serum 3'-tRF Arg as a novel diagnostic biomarker for gastric cancer. Transl Oncol 2025; 54:102338. [PMID: 40058233 PMCID: PMC11929888 DOI: 10.1016/j.tranon.2025.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Gastric cancer is one of the malignant tumors with the highest morbidity and mortality rates worldwide. Yet, there is a lack of diagnostic markers with high sensitivity in the clinic. tRNA-derived small RNAs are a novel type of non-coding small RNAs, which are abundant in tumor cells and body fluids. In this study, we explored the potential of 3'-tRFArg as a tumor marker for the diagnosis of GC. Differential expression of 3'-tRFArg was screened by high-throughput sequencing, and Quantitative real-time PCR confirmed its low expression in GC serum with good stability. Differential expression of serum 3'-tRFArg could distinguish between GC patients, gastritis patients, and healthy donors and was significantly correlated with clinical pathological features such as tumor differentiation, lymph node metastasis, and TNM staging. The receiver operating characteristic curve showed that 3'-tRFArg had a higher diagnostic value compared with conventional biomarkers, especially in the diagnosis of early gastric cancer. In conclusion, our results suggest that 3'-tRFArg can serve as a highly sensitive biomarker with a certain value for monitoring tumor development and prognosis.
Collapse
Affiliation(s)
- Rui Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xun Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunjian Song
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xinliang Gu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Rui T, Zhu K, Mao Z, Wu J, Pan Y, Ye Q, Chen C, Xiang A, Guo J, Tang N, Zhang J, Zheng S, Liu J, Xu X. A Novel tRF, HCETSR, Derived From tRNA-Glu/TTC, Inhibits HCC Malignancy by Regulating the SPBTN1-catenin Complex Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415229. [PMID: 39921434 PMCID: PMC11967833 DOI: 10.1002/advs.202415229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Indexed: 02/10/2025]
Abstract
tRNA-derived fragments (tRFs), a novel class of small non-coding RNAs cleaved from transfer RNAs, have been implicated in tumor regulation. In this study, the role of a specific tRF, HCETSR is investigated, which is significantly downregulated in hepatocellular carcinoma (HCC) and correlates with advanced tumor burden and higher HCC mortality. Functional analyses revealed that HCETSR inhibits HCC malignancy and serves as an independent predictor of poor prognosis. Mechanistically, a novel SPTBN1/catenin complex axis regulated by HCETSR is identified. HCETSR binds to a critical domain of SPTBN1, disrupting its interaction with the catenin complex (comprising β-catenin, α-catenin, and P120-catenin), and facilitates the transfer of the catenin complex from the cell membrane to the nucleus. Specifically, HCETSR decreases the proteasomal degradation of β-catenin and inhibits the synthesis of nascent β-catenin. Furthermore, HCETSR suppresses the transcriptional activity of LEF1 through P120-catenin rather than α-catenin, thereby reducing β-catenin's influence on LEF1 activity. It is demonstrated that HCETSR is spliced from tRNA-Glu/TTC. The biogenesis of HCETSR and tRNA-Glu/TTC is regulated by the spliceosome and Dicer1. In conclusion, These findings suggest that HCETSR, derived from tRNA-Glu/TTC, inhibits HCC malignancy via modulation of the SPTBN1/catenin axis and may represent a promising prognostic marker and therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Tao Rui
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Kangbei Zhu
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Zonglei Mao
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Jiaping Wu
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Yi Pan
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Qianwei Ye
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Cong Chen
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
- The Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310003China
| | - Aizhai Xiang
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Jufeng Guo
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Ning Tang
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Jing Zhang
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Shusen Zheng
- Department of SurgeryCollaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseasesthe First Affiliated HospitalZhejiang University School of MedicineZhejiang University HangzhouHangzhou310003China
| | - Jian Liu
- Department of SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhou310003China
| | - Xiao Xu
- School of Clinical MedicineHangzhou Medical CollegeHangzhou310059China
- Institute of Translational MedicineZhejiang UniversityHangzhou310000China
- NHC Key Laboratory of Combined Multi‐Organ TransplantationInstitute of Organ TransplantationZhejiang UniversityHangzhou310003China
| |
Collapse
|
6
|
Wei D, Zhai B, Zeng H, Liu L, Gao H, Xiang S, Liu X, Ma J, Lin Y, Yao Y, Wang P. TRMT10A regulates tRNA-ArgCCT m 1G9 modification to generate tRNA-derived fragments influencing vasculogenic mimicry formation in glioblastoma. Cell Death Dis 2025; 16:209. [PMID: 40140670 PMCID: PMC11947273 DOI: 10.1038/s41419-025-07548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system tumor. The formation of vasculogenic mimicry (VM) in GBM is closely related to poor patient prognosis. Therefore, it is urgently necessary to explore the mechanisms that promote VM formation in GBM and identify therapeutic targets. CGGA data analysis revealed that TRMT10A expression is significantly downregulated in WHO grade IV primary glioma samples compared to grade II samples, consistent with the protein expression levels. Additionally, GBM patients with low TRMT10A expression have poorer prognoses. In human glioma cells, TRMT10A expression is significantly lower than in human astrocytes. Knockdown of TRMT10A reduces m1G9 modification of tRNA-ArgCCT, upregulates tRF-22 expression, and promotes glioma cell proliferation, migration, invasion, and tube formation. Overexpression of tRF-22 in glioma cells significantly downregulates MXD1 expression. tRF-22 negatively regulates MXD1 expression by binding to its 3'UTR, reducing MXD1's transcriptional inhibition of HIF1A, thereby promoting glioma cell proliferation, migration, invasion, and tube formation. Overexpression of TRMT10A combined with tRF-22 inhibition significantly reduces the number of VM channels and inhibits tumor growth in xenograft models in nude mice. This study elucidates the mechanism by which TRMT10A affects VM formation in glioma and provides a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Deng Wei
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Bei Zhai
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Zeng
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Long Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Han Gao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Shiqi Xiang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Huang J, Wang J, Wang S, Xiong X, Jiang R, Xiong C, Wang L, Huang L, Zhao Y, Fang Z, Ai X, Lin J. tRF-5028c disrupts trophoblast function in recurrent spontaneous abortion by inhibiting CRKL-mediated Rap1 signaling pathway. Cell Mol Biol Lett 2025; 30:28. [PMID: 40045194 PMCID: PMC11881442 DOI: 10.1186/s11658-025-00706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) affects approximately 1-5% of childbearing women and poses a significant threat to global reproductive health. Transfer RNA-derived small RNAs (tsRNAs) are a novel class of noncoding RNAs implicated in various human diseases. However, the role and mechanism of tsRNAs in regulating trophoblast function during RSA development remain unknown. METHODS High-throughput sequencing was performed to analyze the differential tsRNAs in the villous tissues of patients with RSA and controls. CCK-8, transwell assay, and flow cytometry were performed to detect the effects of tRF-5028c on proliferation, migration, invasion, and apoptosis of human extravillous trophoblast cell line HTR-8/SVneo. The target genes of tRF-5028c were predicted via bioinformatic analysis and verified by dual luciferase reporter gene assay. Moreover, pregnant mice were injected with tRF-5028c mimics to confirm the findings in vivo. RESULTS A total of 1907 tsRNAs were detected, of which 298 were differentially expressed in the villous tissues. tRF-5028c was significantly upregulated in the RSA group compared with control. Functionally, tRF-5028c overexpression inhibited HTR-8/SVneo cell proliferation, migration, and invasion and promoted apoptosis, whereas tRF-5028c knockdown showed opposite effects. Mechanically, tRF-5028c suppressed CRKL expression by directly binding to its 3'-untranslated region, thus inactivating the downstream C3G/Rap1 signaling pathway. Finally, tRF-5028c mimics injection increased embryo absorption rate in mice. CONCLUSIONS tRF-5028c upregulation impaired trophoblast function to facilitate RSA development by directly targeting CRKL-mediated Rap1 pathway. The findings provide the first evidence of tsRNA dysregulation in RSA pathogenesis and lay a foundation for potential targeted therapies.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuang Wang
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Xiangpeng Xiong
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Ruiyin Jiang
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Lu Wang
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Lingling Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Yan Zhao
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an 710038, China.
| | - Xiaoyan Ai
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China.
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
8
|
Wang F, Li P, Yan X, Yue A, Xu J, Shao Y, Zhang K, Zhang Q, Li Y, Sun K. Novel therapeutic insights into pathological cardiac hypertrophy: tRF-16-R29P4PE regulates PACE4 and metabolic pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119920. [PMID: 39947523 DOI: 10.1016/j.bbamcr.2025.119920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Pathological cardiac hypertrophy (PCH) is a complex condition with an incompletely understood pathogenesis. Emerging evidence suggests that transfer RNA-derived small RNAs (tsRNAs) may play a significant role in various cellular processes, yet their impact on PCH remains unexplored. In this study, we performed tsRNA sequencing on plasma samples from PCH patients and identified a marked decrease in the expression of tRNA-related fragment 16-R29P4PE (tRF-16-R29P4PE), a specific tsRNA fragment, with a diagnostic area under the curve value of 0.7750. Using Angiotensin II (Ang II)-stimulated H9c2 cardiomyocytes as an in vitro model and Sprague-Dawley rats as an in vivo model, we investigated the effects of tRF-16-R29P4PE minic/inhibitors and silencing of the paired basic amino acid cleaving system 4 (PACE4) gene. Our results demonstrated that modulating tRF-16-R29P4PE expression significantly reduced brain natriuretic peptide (BNP) and free fatty acid levels while enhancing ATP production, glucose levels, and mitochondrial membrane potential. These effects were accompanied by the downregulation of PACE4, hypoxia-inducible factor-1α (HIF-1α), glucose transporter-4 (GLUT-4), and medium-chain acyl-CoA dehydrogenase (MCAD), as well as the upregulation of peroxisome proliferator-activated receptor α (PPARα). Animal experiments revealed that tRF-16-R29P4PE minic improved cardiac function, reduced myocardial fibrosis, and mitigated metabolic disorders and mitochondrial damage. Furthermore, co-immunoprecipitation (Co-IP) and molecular docking assays confirmed a direct interaction between PACE4 and HIF-1α, and luciferase reporter assays identified PACE4 as a direct target of tRF-16-R29P4PE. By regulating the PACE4 and HIF-1α/PPARα signaling pathways, tRF-16-R29P4PE alleviates PCH, providing a promising molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Ping Li
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Xinxin Yan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Anna Yue
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Jingyi Xu
- Department of Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yaqing Shao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Kaiyu Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
9
|
Xu S, Hu D, Ye Y, Mu Y, Xiong Y, Zhang Y. Identification of serum small non-coding RNA as biomarkers for endometrial receptivity. Genomics 2025; 117:111002. [PMID: 39848478 DOI: 10.1016/j.ygeno.2025.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Current endometrial receptivity analysis is invasive, preventing embryo transfer during the biopsy cycle. This study aims to screen serum sncRNAs as non-invasive biomarkers for ERA tests. METHODS The study included 12 infertile patients undergoing IVF-ET and ERA, whose serum samples were collected for high-energy sequencing technology to detect sncRNA expression profiles. We overexpressed and knocked down tsRNA-35:73-Asp-GTC-1 in the decidualized Immortalized Human Eutopic Endometrial Stromal Cells (HESC) model cultured in vitro to further investigate the its effect on decidualization. The predicted tsRNA-35:73-Asp-GTC-1 target gene was verified by PCR analysis. RESULTS We screened 286 differentially expressed tsRNAs, 46 miRNAs, and 106 piRNAs. KEGG analysis indicated that differentially expressed tsRNAs were associated with pathways such as 'Calcium signaling pathway,' 'Sphingolipid signaling pathway,' etc. The results of RT-qPCR validation showed that the trends of four significantly differentially expressed tsRNAs in serum and endometrium were consistent with sequencing results. ROC curves demonstrated that these four tsRNAs have good predictive value for endometrial receptivity. Overexpression of tsRNA-35:73-Asp-GTC-1 affected the morphology of decidualized cells, and the decidualization indicators also showed a decreasing trend. While knocking down tsRNA-35:73-Asp-GTC-1 had the opposite effect. The RT-qPCR results showed that tsRNA-35:73-Asp-GTC-1 was associated with the Wnt3 target gene. CONCLUSION Serum sncRNA analysis shows potential for studying the molecular mechanisms of endometrial receptivity. Four serum tsRNAs can serve as novel biomarkers for non-invasive endometrial receptivity detection. TsRNA-35:73-Asp-GTC-1 may further regulate endometrial receptivity by targeting Wnt3.
Collapse
Affiliation(s)
- Shaoyuan Xu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Dongling Hu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Yanqin Ye
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Yanli Mu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China.
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China.
| |
Collapse
|
10
|
Gao Y, Huang Y, Guo K, Cheng J, Luo Y, Deng Y, Lei M. Advances in research on the mechanism of tsRNA action in tumours. J Med Genet 2025; 62:152-159. [PMID: 39740801 DOI: 10.1136/jmg-2024-110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025]
Abstract
tsRNA is a class of non-coding RNAs derived from mature or precursor tRNAs. In recent years, more and more studies have explored the correlation between tsRNAs and tumours. tsRNAs can affect the biological behaviours of tumour cells such as proliferation, apoptosis and metastasis by regulating gene expression, protein translation or post-transcriptional regulation. In this paper, we systematically review the production, biological function and research progress of tsRNA in tumour and discuss its prospects as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yan Gao
- The First People's Hospital of Changde City, Changde, Hunan, China
| | | | - Kaiyun Guo
- The First People's Hospital of Changde City, Changde, Hunan, China
| | - Jun Cheng
- The First People's Hospital of Changde City, Changde, Hunan, China
| | - Yuting Luo
- Hunan University of Arts and Science, Changde, Hunan, China
| | - Yi Deng
- The First People's Hospital of Changde City, Changde, Hunan, China
| | - Ming Lei
- The First People's Hospital of Changde City, Changde, Hunan, China
| |
Collapse
|
11
|
Ma L, Zhao F, Zhao Z, Zhang L, Yao J, Ma Q, Deng X, Wang J, Gu Y, Zhang J, Darwish HYA. Differential expression of tRNA-derived small RNAs in Juvenile and adult sheep skin: implications for developmental and immune regulation. BMC Genomics 2025; 26:144. [PMID: 39953408 PMCID: PMC11829391 DOI: 10.1186/s12864-025-11345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND tRNA fragments (tRFs) are small non-coding RNAs generated from cleaved tRNA molecules, playing key roles in gene regulation and cellular processes. Produced by ribonucleases like angiogenin and Dicer, tRFs vary in length and function in gene silencing and stress responses. They interact with Argonaute proteins and affect mRNA levels, and are emerging as potential diagnostic and therapeutic targets for diseases such as cancer and neurodegenerative disorders. Given that the skin is the largest organ in mammals, it serves as an ideal model for studying development and various diseases. Therefore, this study investigates tRF expression in sheep skin tissues to understand their regulatory roles during growth and development. RESULTS This study analyzed skin tissue from five 1-month-old lambs and five 24-month-old adult Tan sheep using small RNA sequencing and proteomics. Raw sequencing data were filtered and aligned to identify various tsRNAs, while proteomic data were assessed for differential expression. Principal Component Analysis (PCA) revealed distinct separation between juvenile and adult samples based on tsRNA expression patterns, indicating intra-group similarity and inter-group differences. Differentially expressed tsRNAs were identified, with 19 highly expressed tsRNAs at 1 month of age. Proteomic screening identified 932 highly expressed and 835 lowly expressed proteins in the 1-month-old group, with functional enrichment highlighting immunity and inflammation pathways. Predictive analysis of tsRNA target genes intersected with 20 differentially expressed proteins involved in mitochondrial metabolism and stress response. CONCLUSION This study reveals that tsRNAs significantly influence developmental and immune processes in sheep, with distinct expression patterns between juveniles and adults. Future research should validate these findings and further elucidate the functional mechanisms of tsRNA regulation.
Collapse
Affiliation(s)
- Lina Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Fengru Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Letian Zhang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiajie Yao
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Hesham Y A Darwish
- Department of Applied Biotechnology, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
12
|
Glogovitis I, D’Ambrosi S, Antunes-Ferreira M, Chiogna M, Yahubyan G, Baev V, Wurdinger T, Koppers-Lalic D. Combinatorial Analysis of miRNAs and tRNA Fragments as Potential Biomarkers for Cancer Patients in Liquid Biopsies. Noncoding RNA 2025; 11:17. [PMID: 39997617 PMCID: PMC11858735 DOI: 10.3390/ncrna11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Liquid biopsy has gained significant attention as a non-invasive method for cancer detection and monitoring. IsomiRs and tRNA-derived fragments (tRFs) are small non-coding RNAs that arise from non-canonical microRNA (miRNAs) processing and the cleavage of tRNAs, respectively. These small non-coding RNAs have emerged as pro-mising cancer biomarkers, and their distinct expression patterns highlight the need for further exploration of their roles in cancer research. Methods: In this study, we investigated the differential expression profiles of miRNAs, isomiRs, and tRFs in plasma extracellular vesicles (EVs) from colorectal and prostate cancer patients compared to healthy controls. Subsequently, a combinatorial analysis using the CombiROC package was performed to identify a panel of biomarkers with optimal diagnostic accuracy. Results: Our results demonstrate that a combination of miRNAs, isomiRs, and tRFs can effectively di- stinguish cancer patients from healthy controls, achieving accuracy and an area under the curve (AUC) of approximately 80%. Conclusions: These findings highlight the potential of a combinatorial approach to small RNA analysis in liquid biopsies for improved cancer diagnosis and management.
Collapse
Affiliation(s)
- Ilias Glogovitis
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Silvia D’Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Monica Chiogna
- Department of Statistical Sciences “Paolo Fortunati”, University of Bologna, 40126 Bologna, Italy;
| | - Galina Yahubyan
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Vesselin Baev
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Danijela Koppers-Lalic
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
- Leiden University Medical Center, Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| |
Collapse
|
13
|
Chen Y, Shao Z, Wu S. Research progress on the tsRNA biogenesis, function, and application in lung cancer. Noncoding RNA Res 2025; 10:63-69. [PMID: 39309197 PMCID: PMC11414277 DOI: 10.1016/j.ncrna.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In recent years, there has been a mounting occurrence of lung cancer, which stands as one of the most prevalent malignancies globally. This rise in incidence poses a significant hazard to human health, making lung cancer a matter of grave concern. It has been shown that tRNA-derived small non-coding RNA (tsRNA) is involved in the development of tumors, especially lung cancer, through mechanisms such as regulating mRNA stability, influencing protein translation, and acting as epigenetic regulators. Recent studies have shown that tsRNA is abnormally expressed in the plasma and tissues of lung cancer patients, and its expression level is closely related to the malignancy degree and postoperative recurrence of lung cancer. Therefore, for lung cancer patients, tsRNA represents a promising non-invasive biomarker, exhibiting significant potential for facilitating early diagnosis and prognostic evaluation, and for achieving precision treatment of lung cancer by regulating its expression. This article focuses on the biogenesis of tsRNA and its ability to promote lung cancer cell proliferation and invasion. In addition, the specific clinical significance of tsRNA in lung cancer was discussed. Finally, we discuss the need for further improvement of small RNA sequencing technology, and the future research directions and strategies of tsRNA in lung cancer and tumor diseases were summarized.
Collapse
Affiliation(s)
- Yu Chen
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhuowei Shao
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shibo Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
14
|
wu Z, Xu Y, Zhou C, Zhang Y, Chen J. tsRNA in head and neck tumors: Opportunities and challenges in the field. Noncoding RNA Res 2025; 10:223-230. [PMID: 39468996 PMCID: PMC11513501 DOI: 10.1016/j.ncrna.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly recognized class of small non-coding RNAs that are implicated in a variety of cancers, including head and neck tumors. Studies have identified tsRNAs with differential expression profiles in head and neck malignancies, highlighting their potential as biomarkers for diagnosis and prognosis. Functional analyses show that tsRNAs are involved in regulating critical cellular pathways, including those related to cell proliferation, migration, and metabolic processes. Despite these encouraging insights, there are myriad challenges that must be tackled. In summary, tsRNAs present considerable potential as therapeutic targets and biomarkers in the realm of head and neck tumors, meriting further investigation and clinical application to optimize outcomes in the management of these complex diseases. This literature review synthesizes current research on tsRNAs, tsRNAs hold significant promise as biomarkers and therapeutic targets, with the potential to transform diagnostic and treatment strategies for head and neck tumors, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhuo wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yufeng Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| | - Changzeng Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yongbo Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| |
Collapse
|
15
|
Yu M, Liu P, Lu Y. Protocol for detection of tRNA-derived fragments in cells, tissues, and plasma. STAR Protoc 2024; 5:103435. [PMID: 39514391 PMCID: PMC11574804 DOI: 10.1016/j.xpro.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
tRNA-derived fragments (tRFs) are frequently dysregulated in cancers, and approaches for the detection of tRFs within biological samples are vital for their expression analysis and functional exploration. Here, we present a protocol for detecting tRFs using a modified TaqMan quantitative real-time PCR (qRT-PCR)-based technique, Dumbbell-PCR (Db-PCR). We describe steps for primer and adapter design, adapter-RNA ligation, and RNA detection. This protocol streamlines and enhances the precision of tRF quantification in cells, tissues, and plasma, facilitating a time-efficient and reliable assessment of their presence. For complete details on the use and execution of this protocol, please refer to Yu et al.1 and Sun et al.2.
Collapse
Affiliation(s)
- Mengqian Yu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
16
|
Miyano T, Hirouchi M, Yoshimura N, Hattori K, Mikkaichi T, Kiyosawa N. Plasma microRNAs Associate Positive, Negative, and Cognitive Symptoms with Inflammation in Schizophrenia. Int J Mol Sci 2024; 25:13522. [PMID: 39769285 PMCID: PMC11676741 DOI: 10.3390/ijms252413522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Schizophrenia is a complex and heterogenous psychiatric disorder characterized by positive, negative, and cognitive symptoms. Our previous study identified three subgroups of schizophrenia patients based on plasma microRNA (miRNA) profiles. The present study aims to (1) verify the reproducibility of the miRNA-based patient stratification and (2) explore the pathophysiological pathways linked to the symptoms using plasma miRNAs. We measured levels of 376 miRNAs in plasma samples of schizophrenia patients and obtained their Positive and Negative Syndrome Scale (PANSS) scores and the Brief Assessment of Cognition in Schizophrenia (BACS) scores. The plasma miRNA profiles identified similar subgroups of patients as in the previous study, suggesting miRNA-based patient stratification is potentially reproducible. Our multivariate analysis identified optimal combinations of miRNAs to estimate the PANSS positive and negative subscales and BACS composite scores. Those miRNAs consistently enriched 'inflammation' and 'NFκB1' according to miRNA set enrichment analysis. Our literature-based text mining and survey confirmed that those miRNAs were associated with IL-1β, IL-6, and TNFα, suggesting that exacerbated positive, negative, and cognitive symptoms are associated with high inflammation. In conclusion, miRNAs are a potential biomarker to identify patient subgroups reflecting pathophysiological conditions and to investigate symptom-related molecular mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Takuya Miyano
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Masakazu Hirouchi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Naoki Yoshimura
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Kotaro Hattori
- Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Tsuyoshi Mikkaichi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (M.H.); (T.M.); (N.K.)
| |
Collapse
|
17
|
Jia Q, Zhao Y. Expression profile of tsRNAs in white adipose tissue of vitamin D deficiency young male mice with or without obesity. Sci Rep 2024; 14:27486. [PMID: 39523373 PMCID: PMC11551137 DOI: 10.1038/s41598-024-77910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of tsRNA in white adipose tissue (WAT) of VD deficiency male mice with obesity has not been reported. The healthy male C57BL/6J mice aged 4-6 weeks were divided into 4 groups according to the VD3 and fat energy supplement in daily diets. The qPCR verification further demonstrated that tRF5-20-HisGTG-3 were significantly up-regulated and mt-tRF3a-ProTGG was significantly down-regulated not only in HFVDD vs HFVDS, but aslo in HFVDD vs ConVDS. tRF5-22-CysGCA-27 were significantly up-regulated and mt-5'tiRNA-32-SerTGA, mt-5'tiRNA-33-SerTGA and mt-5'tiRNA-33-AlaTGC was significantly down-regulated only in HFVDD vs ConVDS. Enrichment analysis of the qPCR verified DE tsRNAs showed that the 3 up-regulated tsRNAs seemed to be associated with FoxO signaling pathway, GnRH secretion, 2-Oxocarboxylic acid metabolism, Autophagy-animal, Glucagon and insulin signaling pathway, while 4 down-regulated tsRNA seemed to be associated with cell communication, primary metabolic process, metabolic process, response to stimulus, multicellular organismal process, cellular metabolic process, cellular process and biological regulation. The tsRNAs were differentially expressed in VD deficiency with obesity, especially tRF5-20-HisGTG-3, tRF5-22-CysGCA-27, tRF3a-GlyGCC-1, mt-5'tiRNA-33-AlaTGC, mt-5'tiRNA-33-SerTGA, mt-5'tiRNA-32-SerTGA and mt-tRF3a-ProTGG. These tsRNAs seemed to be associated with FoxO signaling pathway, GnRH secretion, 2-oxocarboxylic acid metabolism, autophagy, glucagon and insulin signaling pathway, metabolic process and biological regulation.
Collapse
Affiliation(s)
- Qiaowei Jia
- Department of Cardiovascular Medicine, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yan Zhao
- Department of Clinical Nutrition, Jiangsu Province Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
18
|
Nopp S, Königsbrügge O, Schmaldienst S, Säemann M, Pabinger I, Nossent AY, Ay C. Transfer RNAs are Linked to Ischemic Stroke and Major Bleeding in Patients with End-Stage Kidney Disease. Thromb Haemost 2024. [PMID: 39260398 DOI: 10.1055/a-2413-2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
BACKGROUND Patients with end-stage kidney disease (ESKD) are at very high risk for thromboembolism and bleeding. This study aimed to identify small noncoding RNAs (sncRNAs), specifically microRNAs and transfer-RNA (tRNA)-derived fragments (tRFs), as potential novel biomarkers for predicting thromboembolism and bleeding in this high-risk population. METHODS In this sncRNA discovery research, we leveraged the VIVALDI cohort, consisting of 625 ESKD patients on hemodialysis, to conduct two nested case-control studies, each comprising 18 participants. The primary outcomes were ischemic stroke in the first study and major bleeding in the second. Plasma samples were processed using the miND pipeline for RNA-seq analysis to investigate differential expression of microRNAs and tRNA/tRFs between cases and their respective matched controls, with results stringently adjusted for the false discovery rate (FDR). RESULTS No significant differential expression of microRNAs for either ischemic stroke or major bleeding outcomes was observed in the two nested case-control studies. However, we identified four tRNAs significantly differentially expressed in ischemic stroke cases and seven in major bleeding cases, compared with controls (FDR < 0.1). Coverage plots indicated that specific tRNA fragments (tRFs), rather than full-length tRNAs, were detected, however. Alternative mapping approaches revealed challenges and technical limitations that precluded in-depth differential expression analyses on these specific tRFs. Yet, they also underscored the potential of tRNAs and tRFs as markers for thromboembolism and bleeding. CONCLUSION While microRNAs did not show significant differential expression, our study identifies specific tRNAs/tRFs as potential novel biomarkers for ischemic stroke and major bleeding in ESKD patients.
Collapse
Affiliation(s)
- Stephan Nopp
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Oliver Königsbrügge
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Marcus Säemann
- Department of Medicine VI, Clinic Ottakring, Vienna, Austria
| | - Ingrid Pabinger
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anne Yaël Nossent
- Department for Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Cihan Ay
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Li R, Ji Y, Ye R, Tang G, Wang W, Chen C, Yang Q. Potential therapies for non-coding RNAs in breast cancer. Front Oncol 2024; 14:1452666. [PMID: 39372872 PMCID: PMC11449682 DOI: 10.3389/fonc.2024.1452666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Breast cancer (BC) is one of the frequent tumors that seriously endanger the physical and mental well-being in women with strong heterogeneity, and its pathogenesis involves multiple risk factors. Depending on the type of BC, hormonal therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Despite significant progress in understanding BC pathogenesis and therapeutic options, there is still a need to identify new therapeutic targets and develop more effective treatments. According to recent sequencing and profiling studies, non-coding (nc) RNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation, and similarly, the expression of many ncRNAs is altered in breast cancer cell lines and tissues. The ability of single ncRNAs to regulate the expression of multiple downstream gene targets and related pathways provides a theoretical basis for studying them for cancer therapeutic drug development and targeted delivery. Therefore, it is far-reaching to explore the role of ncRNAs in tumor development and their potential as therapeutic targets. Here, our review outlines the potential of two major ncRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) as diagnostic and prognostic biomarkers as well as targets for new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruyin Ye
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Wenrui Wang
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Changjie Chen
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Qingling Yang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
20
|
Kazimierczyk M, Fedoruk-Wyszomirska A, Gurda-Woźna D, Wyszko E, Swiatkowska A, Wrzesinski J. The expression profiles of piRNAs and their interacting Piwi proteins in cellular model of renal development: Focus on Piwil1 in mitosis. Eur J Cell Biol 2024; 103:151444. [PMID: 39024988 DOI: 10.1016/j.ejcb.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Piwi proteins and Piwi interacting RNAs, piRNAs, presented in germline cells play a role in transposon silencing during germline development. In contrast, the role of somatic Piwi proteins and piRNAs still remains obscure. Here, we characterize the expression pattern and distribution of piRNAs in human renal cells in terms of their potential role in kidney development. Further, we show that all PIWI genes are expressed at the RNA level, however, only PIWIL1 gene is detected at the protein level by western blotting in healthy and cancerous renal cells. So far, the expression of human Piwil1 protein has only been shown in testes and cancer cells, but not in healthy somatic cell lines. Since we observe only Piwil1 protein, the regulation of other PIWI genes is probably more intricated, and depends on environmental conditions. Next, we demonstrate that downregulation of Piwil1 protein results in a decrease in the rate of cell proliferation, while no change in the level of apoptotic cells is observed. Confocal microscopy analysis reveals that Piwil1 protein is located in both cellular compartments, cytoplasm and nucleus in renal cells. Interestingly, in nucleus region Piwil1 is observed close to the spindle during all phases of mitosis in all tested cell lines. It strongly indicates that Piwil1 protein plays an essential role in proliferation of somatic cells. Moreover, involvement of Piwil1 in cell division could, at least partly, explain invasion and metastasis of many types of cancer cells with upregulation of PIWIL1 gene expression. It also makes Piwil1 protein as a potential target in the anticancer therapy.
Collapse
Affiliation(s)
- Marek Kazimierczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | | | - Dorota Gurda-Woźna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Eliza Wyszko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland
| | - Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan 61-704, Poland.
| |
Collapse
|
21
|
Madhry D, Kumari K, Meena V, Roy R, Verma B. Unravelling tRNA fragments in DENV pathogenesis: Insights from RNA sequencing. Sci Rep 2024; 14:18357. [PMID: 39112524 PMCID: PMC11306563 DOI: 10.1038/s41598-024-69391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Small non-coding RNAs (sncRNAs) derived from tRNAs are known as tRNA-derived small RNAs (tsRNAs). These tsRNAs are further categorized into tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), which play significant roles in the various molecular mechanisms underlying certain human diseases. However, the generation of tsRNAs and their potential roles during Dengue virus (DENV) infection is not yet known. Here, we performed small RNA sequencing to identify the generation and alterations in tsRNAs expression profiles of DENV-infected Huh7 cells. Upon DENV infection, tRNA fragmentation was found to be increased. We identified a significant number of differentially expressed tsRNAs during DENV infection. Interestingly, the 3'tRF population showed upregulation, while the i-tRF population exhibited downregulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to analyze the impact of differentially expressed tsRNAs on DENV pathogenesis. Our results suggest that differentially expressed tsRNAs are involved in transcriptional regulation via RNA polymerase II promoter and metabolic pathways. Overall, our study contributes significantly to our understanding of the roles played by tsRNAs in the complex dynamics of DENV infection.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kiran Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Varsha Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Riya Roy
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
22
|
Ding C, Wang N, Peng A, Wang Z, Li B, Zhang X, Zeng J, Zhou Y. Potential Diagnostic Biomarkers of tRNA-Derived Small RNAs in PBMCs for Nonproliferative Diabetic Retinopathy in Patients With Type 2 Diabetes Mellitus. Transl Vis Sci Technol 2024; 13:32. [PMID: 39167377 PMCID: PMC11343001 DOI: 10.1167/tvst.13.8.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose This study aimed to reveal the altered expressions of transfer RNA (tRNA)-derived small RNAs (tsRNAs) in peripheral blood mononuclear cells and identify potential diagnostic biomarkers for nonproliferative diabetic retinopathy (NPDR) from patients with type 2 diabetes mellitus. Methods Fifty-three patients diagnosed with type 2 diabetes mellitus were enrolled, including 25 patients with NPDR and 28 patients without diabetic retinopathy (DR) as the control group. A small RNA microarray was performed to screen the differentially expressed tsRNAs. Reverse transcriptase quantitative polymerase chain reaction was used to validate the significantly altered tsRNAs in a screening cohort and a verification cohort. The target genes, their enriched functions, and signaling pathways were predicted by bioinformatics analyses. Results In total, 668 upregulated and 485 downregulated tsRNAs were found in the NPDR group by microarray. Eight tsRNAs were validated preliminarily to be altered significantly by reverse transcriptase quantitative polymerase chain reaction, and their target genes were enriched in cellular macromolecule metabolic process and ubiquitin-mediated proteolysis. The verification experiments confirmed the increased levels of 5'tiRNA-35-PheGAA-8, tRF3-28-PheGAA-1, and tRF3b-PheGAA-6, and the decreased levels of mt-tRF3-19-ArgTCG, mt-tRF3-20-ArgTCG, and mt-tRF3-21-ArgTCG in patients with NPDR, which may serve as potential biomarkers with clinical significance. Conclusions The study recognized the tsRNA expression changes in peripheral blood mononuclear cells from patients with NPDR and discovered potential diagnostic biomarkers that hold clinical significance. Translational Relevance The significantly altered tsRNAs identified in the study may serve as potential diagnostic biomarkers for patients with NPDR as well as possible molecular targets of the occurrence and development of DR.
Collapse
Affiliation(s)
- Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Nan Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Aohua Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
23
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
24
|
Wang Q, Huang Q, Ying X, Zhou Y, Duan S. Exploring the regulatory role of tsRNAs in the TNF signaling pathway: Implications for cancer and non-cancer diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:1-10. [PMID: 38971324 DOI: 10.1016/j.pbiomolbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs), a recently identified subclass of small non-coding RNAs (sncRNAs), emerge through the cleavage of mature transfer RNA (tRNA) or tRNA precursors mediated by specific enzymes. The tumor necrosis factor (TNF) protein, a signaling molecule produced by activated macrophages, plays a pivotal role in systemic inflammation. Its multifaceted functions include the capacity to eliminate or hinder tumor cells, enhance the phagocytic capabilities of neutrophils, confer resistance against infections, induce fever, and prompt the production of acute phase proteins. Notably, four TNF-related tsRNAs have been conclusively linked to distinct diseases. Examples include 5'tiRNA-Gly in skeletal muscle injury, tsRNA-21109 in systemic lupus erythematosus (SLE), tRF-Leu-AAG-001 in endometriosis (EMs), and tsRNA-04002 in intervertebral disk degeneration (IDD). These tsRNAs exhibit the ability to suppress the expression of TNF-α. Additionally, KEGG analysis has identified seven tsRNAs potentially involved in modulating the TNF pathway, exerting their influence across a spectrum of non-cancerous diseases. Noteworthy instances include aberrant tiRNA-Ser-TGA-001 and tRF-Val-AAC-034 in intrauterine growth restriction (IUGR), irregular tRF-Ala-AGC-052 and tRF-Ala-TGC-027 in obesity, and deviant tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 in irritable bowel syndrome with diarrhea (IBS-D). This comprehensive review explores the biological functions and mechanisms of tsRNAs associated with the TNF signaling pathway in both cancer and other diseases, offering novel insights for future translational medical research.
Collapse
Affiliation(s)
- Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Qinyuan Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Xiaowei Ying
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Yang Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China; Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Mao C, Yuan W, Fang R, Wu Y, Zhang Z, Cong H. Transfer RNA‑derived small RNAs: A class of potential biomarkers in multiple cancers (Review). Oncol Lett 2024; 28:293. [PMID: 38737976 PMCID: PMC11082847 DOI: 10.3892/ol.2024.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Transfer (t)RNA-derived small RNAs (tsRNAs) are a class of novel non-coding small RNAs that are created via precise cleavage of tRNAs or tRNA precursors by different enzymes. tsRNAs are specific biological molecules that serve essential roles in cell proliferation, apoptosis, transcriptional regulation, post-transcriptional modification and translational regulation. Additionally, tsRNAs participate in the pathogenesis of several diseases, particularly in the development of malignant tumors. At present, the process of discovering and understanding the functions of tsRNAs is still in its early stages. The present review introduces the known biological functions and mechanisms of tsRNAs, and discusses the tsRNAs progression in several types of cancers as well as the possibility of tsRNAs becoming novel tumor biomarkers. Furthermore, tsRNAs may promote and hinder tumor formation according to different mechanisms and act as oncogenic or oncostatic molecules. Therefore, tsRNAs may be future potential tumor biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wentao Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ronghua Fang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
26
|
Tian H, Gao S, Xu M, Yang M, Shen M, Liu J, Li G, Zhuang D, Hu Z, Wang C. tiRNA-Gly-GCC-001 in major depressive disorder: Promising diagnostic and therapeutic biomarker. Br J Pharmacol 2024; 181:1952-1972. [PMID: 38439581 DOI: 10.1111/bph.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND AND PURPOSE In major depressive disorder (MDD), exploration of biomarkers will be helpful in diagnosing the disorder as well as in choosing a treatment and predicting the treatment response. Currently, tRNA-derived small ribonucleic acids (tsRNAs) have been established as promising non-invasive biomarker candidates that may enable a more reliable diagnosis or monitoring of various diseases. Herein, we aimed to explore tsRNA expression together with functional activities in MDD development. EXPERIMENTAL APPROACH Serum samples were obtained from patients with MDD and healthy controls, and small RNA sequencing (RNA-Seq) was used to profile tsRNA expression. Dysregulated tsRNAs in MDD were validated by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic utility of specific tsRNAs and the expression of these tsRNAs after antidepressant treatment were analysed. KEY RESULTS In total, 38 tsRNAs were significantly differentially expressed in MDD samples relative to healthy individuals (34 up-regulated and 4 down-regulated). qRT-PCR was used to validate the expression of six tsRNAs that were up-regulated in MDD (tiRNA-1:20-chrM.Ser-GCT, tiRNA-1:33-Gly-GCC-1, tRF-1:22-chrM.Ser-GCT, tRF-1:31-Ala-AGC-4-M6, tRF-1:31-Pro-TGG-2 and tRF-1:32-chrM.Gln-TTG). Interestingly, serum tiRNA-Gly-GCC-001 levels exhibited an area under the ROC curve of 0.844. Moreover, tiRNA-Gly-GCC-001 is predicted to suppress brain-derived neurotrophic factor (BDNF) expression. Furthermore, significant tiRNA-Gly-GCC-001 down-regulation was evident following an 8-week treatment course and served as a promising baseline predictor of patient response to antidepressant therapy. CONCLUSION AND IMPLICATIONS Our current work reports for the first time that tiRNA-Gly-GCC-001 is a promising MDD biomarker candidate that can predict patient responses to antidepressant therapy.
Collapse
Affiliation(s)
- Haihua Tian
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shugui Gao
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Miaomiao Xu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mei Yang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Mengyuan Shen
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jimeng Liu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guangxue Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zhenyu Hu
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
27
|
Wu Y, Ni MT, Wang YH, Wang C, Hou H, Zhang X, Zhou J. Structural basis of translation inhibition by a valine tRNA-derived fragment. Life Sci Alliance 2024; 7:e202302488. [PMID: 38599770 PMCID: PMC11009984 DOI: 10.26508/lsa.202302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.
Collapse
Affiliation(s)
- Yun Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meng-Ting Ni
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ying-Hui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, China
| | - Xing Zhang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology of Sir Run Run Shaw Hospital and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Kaul S, Nair V, Gcanga L, Lakshmanan V, Kalamuddin M, Anang V, Rathore S, Dhawan S, Alam T, Khanna V, Lohiya S, Ali S, Mannan S, Rade K, Parihar SP, Khanna A, Malhotra P, Brombacher F, Dasaradhi PV, Guler R, Mohmmed A. Identifying quantitative sncRNAs signature using global sequencing as a potential biomarker for tuberculosis diagnosis and their role in regulating host response. Int J Biol Macromol 2024; 271:132714. [PMID: 38815937 DOI: 10.1016/j.ijbiomac.2024.132714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES The study aimed to identify a quantitative signature of circulating small non-coding RNAs (sncRNAs) as a biomarker for pulmonary tuberculosis disease (active-TB/ATB) and explore their regulatory roles in host-pathogen interactions and disease progression. METHODS We conducted a cross-sectional study recruiting subjects diagnosed with active-TB (drug-sensitive and drug-resistant) and healthy controls. Sera samples were collected and utilized for preparing small RNA libraries. Quantitative patterns of circulating sncRNAs (miRNAs, piRNAs and tRFs) were identified via high-throughput sequencing and DeSeq2 analysis and validated in independent active-TB cohorts. Functional knockdown for two selected miRNAs were also performed. RESULTS A diagnostic signature of four sncRNAs for both drug-sensitive and drug-resistant active-TB cases was validated, exhibiting an AUC of 0.96 (95% CI: 0.937-0.996, p < 0.001) with 86.7% sensitivity (95% CI: 0.775-0.932) and 91.7% specificity (95% CI: 0.730-0.990) in ROC analysis. Functional knockdown demonstrated regulatory roles of hsa-miR-223-5p and hsa-miR-10b-5p in Mycobacterium tuberculosis (Mtb) growth and pro-inflammatory cytokine expression (IL-6 and IL-8). CONCLUSION The study identified a diagnostic tool utilizing a signature of four sncRNAs with high specificity and sensitivity, enhancing our understanding of sncRNAs as ATB diagnostic biomarker. Additionally, hsa-miR-223-5p and hsa-miR-10b-5p demonstrated potential roles in Mtb pathogenesis and host-response to infection.
Collapse
Affiliation(s)
- Sheetal Kaul
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Vivek Nair
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - M Kalamuddin
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vandana Anang
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sumit Rathore
- All India Institute of Medical Sciences, New Delhi, India
| | - Shikha Dhawan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Vishal Khanna
- Chest Clinic (Tuberculosis), Lok Nayak Hospital, New Delhi, India
| | - Sheelu Lohiya
- Chest Clinic (Tuberculosis), Lok Nayak Hospital, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | | | | - Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ashwani Khanna
- Chest Clinic (Tuberculosis), Lok Nayak Hospital, New Delhi, India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa; Division of Immunology, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
29
|
Mao C, Zhang Z, Fang R, Yuan W, Wu Y, Cong H. A novel tRNA-derived fragment tRF-17-18VBY9M works as a potential diagnostic biomarker for gastric cancer. J Cancer Res Clin Oncol 2024; 150:263. [PMID: 38767702 PMCID: PMC11106195 DOI: 10.1007/s00432-024-05792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent malignant tumors worldwide. The low effectiveness of common biomarkers for the detection of early GC makes it essential to seek new biomarkers to improve diagnostic efficacy. tsRNAs (transfer RNA-derived small RNAs) are related to the growth of malignant tumors. In this article, we focused on whether tsRNAs may be employed as biomarkers for GC. METHODS tRF-17-18VBY9M was screened in the tsRFun database as a research object. The methodological efficacy of tRF-17-18VBY9M was evaluated using Sanger sequencing, agarose gel electrophoresis assays, and gradient dilution. The χ2 test was applied to assess the interaction between tRF-17-18VBY9M expression and clinicopathologic characteristics. The receiver operating characteristic (ROC) curve was utilized to investigate the clinical efficiency of tRF-17-18VBY9M in GC. RESULTS The Chi-square test demonstrated that high-expressed tRF-17-18VBY9M was closely associated with the T stage, tumor node metastasis stage (TNM), lymph node metastasis, and neurological/vascular invasion. ROC curve analysis revealed that the diagnostic value of tRF-17-18VBY9M in GC was superior to carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199), and carbohydrate antigen 724 (CA724). CONCLUSION tRF-17-18VBY9M is up-regulated in both GC sera and tissues. Differential tRF-17-18VBY9M expression distinguishes GC patients from healthy donors and gastritis patients, which suggests tRF-17-18VBY9M could act as a diagnostic biomarker in GC.
Collapse
Affiliation(s)
- Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Ronghua Fang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Wentao Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
30
|
Zhao Y, Wang K, Zhao C, Liu N, Wang Z, Yang W, Cheng Z, Zhou L, Wang K. The function of tRNA-derived small RNAs in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102114. [PMID: 38314096 PMCID: PMC10835008 DOI: 10.1016/j.omtn.2024.102114] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
tRNA-derived small RNAs (tsRNAs) constitute a subgroup of small noncoding RNAs (ncRNAs) originating from tRNA molecules. Their rich content, evolutionary conservatism, high stability, and widespread existence makes them significant in disease research. These characteristics have positioned tsRNAs as key players in various physiological and pathological processes. tsRNA actively participates in regulating many cellular processes, such as cell death, proliferation, and metabolism. tsRNAs could be promising diagnostic markers for cardiovascular diseases (CVDs). tsRNAs have been identified in serums, suggesting their utility as early indicators for the diagnosis of CVDs. Moreover, the regulatory roles of tsRNAs in CVDs make them promising targets for therapeutic intervention. This review provides a succinct overview of the characteristics, classification, and regulatory functions of tsRNAs in the context of CVDs. By shedding light on the intricate roles of tsRNAs, this knowledge could pave the way for the development of innovative diagnostic tools and therapeutic strategies for CVDs.
Collapse
Affiliation(s)
- Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Chun Zhao
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Ning Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zhihong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Wenting Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Zewei Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| | - Luyu Zhou
- College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, P.R. China
| |
Collapse
|
31
|
Cabrelle C, Giorgi FM, Mercatelli D. Quantitative and qualitative detection of tRNAs, tRNA halves and tRFs in human cancer samples: Molecular grounds for biomarker development and clinical perspectives. Gene 2024; 898:148097. [PMID: 38128792 DOI: 10.1016/j.gene.2023.148097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs playing a central role during protein synthesis. Besides translation, growing evidence suggests that in many contexts, precursor or mature tRNAs can also be processed into smaller fragments playing many non-canonical regulatory roles in different biological pathways with oncogenic relevance. Depending on the source, these molecules can be classified as tRNA halves (also known as tiRNAs) or tRNA-derived fragments (tRFs), and furtherly divided into 5'-tRNA and 3'-tRNA halves, or tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, respectively. Unlike DNA and mRNA, high-throughput sequencing of tRNAs is challenging, because of technical limitations of currently developed sequencing methods. In recent years, different sequencing approaches have been proposed allowing the quantification and identification of an increasing number of tRNA fragments with critical functions in distinct physiological and pathophysiological processes. In the present review, we discussed pros and cons of recent advances in different sequencing methods, also introducing the expanding repertoire of bioinformatics tool and resources specifically focused on tRNA research and discussing current issues in the study of these small RNA molecules. Furthermore, we discussed the potential value of tRNA fragments as diagnostic and prognostic biomarkers for different types of cancers.
Collapse
Affiliation(s)
- Chiara Cabrelle
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | | | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
32
|
Fan Y, Pavani KC, Smits K, Van Soom A, Peelman L. tRNA Glu-derived fragments from embryonic extracellular vesicles modulate bovine embryo hatching. J Anim Sci Biotechnol 2024; 15:23. [PMID: 38424649 PMCID: PMC10905895 DOI: 10.1186/s40104-024-00997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells. However, it is unknown whether tsRNAs also regulate embryo hatching. In this study, we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA (miRNA) cargo of preimplantation embryonic extracellular vesicles (EVs) influences embryo development. We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts. The majority of tsRNAs was identified as tRNA halves originating from the 5´ ends of tRNAs. Among the 148 differentially expressed tsRNAs, the 19 nt tRNA fragment (tRF) tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts. RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group (P < 0.05). Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching (P < 0.05). Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation. In summary, tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions, and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching, while influencing embryo implantation-related genes and pathways. These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| |
Collapse
|
33
|
Li D, Xie X, Yin N, Wu X, Yi B, Zhang H, Zhang W. tRNA-Derived Small RNAs: A Novel Regulatory Small Noncoding RNA in Renal Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:1-11. [PMID: 38322624 PMCID: PMC10843216 DOI: 10.1159/000533811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/23/2023] [Indexed: 02/08/2024]
Abstract
Background tRNA-derived small RNAs (tsRNAs) are an emerging class of small noncoding RNAs derived from tRNA cleavage. Summary With the development of high-throughput sequencing, various biological roles of tsRNAs have been gradually revealed, including regulation of mRNA stability, transcription, translation, direct interaction with proteins and as epigenetic factors, etc. Recent studies have shown that tsRNAs are also closely related to renal disease. In clinical acute kidney injury (AKI) patients and preclinical AKI models, the production and differential expression of tsRNAs in renal tissue and plasma were observed. Decreased expression of tsRNAs was also found in urine exosomes from chronic kidney disease patients. Dysregulation of tsRNAs also appears in models of nephrotic syndrome and patients with lupus nephritis. And specific tsRNAs were found in high glucose model in vitro and in serum of diabetic nephropathy patients. In addition, tsRNAs were also differentially expressed in patients with kidney cancer and transplantation. Key Messages In the present review, we have summarized up-to-date works and reviewed the relationship and possible mechanisms between tsRNAs and kidney diseases.
Collapse
Affiliation(s)
- Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xian Xie
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Ni Yin
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| |
Collapse
|
34
|
Li N, Yao S, Yu G, Lu L, Wang Z. tRFtarget 2.0: expanding the targetome landscape of transfer RNA-derived fragments. Nucleic Acids Res 2024; 52:D345-D350. [PMID: 37811890 PMCID: PMC10767876 DOI: 10.1093/nar/gkad815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
tRFtarget 1.0 (http://trftarget.net/) is a platform consolidating both computationally predicted and experimentally validated binding sites between transfer RNA-derived fragments (tRFs) and target genes (or transcripts) across multiple organisms. Here, we introduce a newly released version of tRFtarget 2.0, in which we integrated 6 additional tRF sources, resulting in a comprehensive collection of 2614 high-quality tRF sequences spanning across 9 species, including 1944 Homo sapiens tRFs and one newly incorporated species Rattus norvegicus. We also expanded target genes by including ribosomal RNAs, long non-coding RNAs, and coding genes >50 kb in length. The predicted binding sites have surged up to approximately 6 billion, a 20.5-fold increase than that in tRFtarget 1.0. The manually curated publications relevant to tRF targets have increased to 400 and the gene-level experimental evidence has risen to 232. tRFtarget 2.0 introduces several new features, including a web-based tool that identifies potential binding sites of tRFs in user's own datasets, integration of standardized tRF IDs, and inclusion of external links to contents within the database. Additionally, we enhanced website framework and user interface. With these improvements, tRFtarget 2.0 is more user-friendly, providing researchers a streamlined and comprehensive platform to accelerate their research progress.
Collapse
Affiliation(s)
- Ningshan Li
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Siqiong Yao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangjun Yu
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| |
Collapse
|
35
|
Singh A, Zahra S, Arora S, Hamid F, Kumar S. In Silico Identification of tRNA Fragments, Novel Candidates for Cancer Biomarkers, and Therapeutic Targets. Methods Mol Biol 2024; 2812:379-392. [PMID: 39068374 DOI: 10.1007/978-1-0716-3886-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The identification of a wide variety of RNA molecules using high-throughput sequencing techniques in the transcriptome pool of living organisms has revealed hidden regulatory insights in the cell. The class of non-coding RNA fragments produced from transfer RNA, or tRFs, is one such example. They are heterogeneously sized molecules with lengths ranging between 15 and 50 nt. They have a history of being dysregulated in human malignancies and other illnesses. The detection of these molecules has been made easier by a variety of bioinformatics techniques. The various types of tRFs and how they relate to cancer are covered in this chapter. It also provides a summary of the biological significance of tRFs reported in human cancer. Additionally, it emphasizes the utilities of databases and computational tools that have been created by different research teams for the investigation of tRFs. This will further aid the exploration and analysis of tRFs in cancer research and will support future advancement and a better comprehension of these molecules.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Surgical Disciplines, All India Institute of Medical Science (AIIMS), New Delhi, India
| | - Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Simran Arora
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Fiza Hamid
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India.
| |
Collapse
|
36
|
Zeidler M, Tavares-Ferreira D, Brougher J, Price TJ, Kress M. NOCICEPTRA2.0 - A comprehensive ncRNA atlas of human native and iPSC-derived sensory neurons. iScience 2023; 26:108525. [PMID: 38162030 PMCID: PMC10755718 DOI: 10.1016/j.isci.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are pivotal in gene regulation during development and disease. MicroRNAs have been extensively studied in neurogenesis. However, limited knowledge exists about the developmental signatures of other ncRNA species in sensory neuron differentiation, and human dorsal root ganglia (DRG) ncRNA expression remains undocumented. To address this gap, we generated a comprehensive atlas of small ncRNA species during iPSC-derived sensory neuron differentiation. Utilizing iPSC-derived sensory neurons and human DRG RNA sequencing, we unveiled signatures describing developmental processes. Our analysis identified ncRNAs associated with various sensory neuron stages. Striking similarities in ncRNA expression signatures between human DRG and iPSC-derived neurons support the latter as a model to bridge the translational gap between preclinical findings and human disorders. In summary, our research sheds light on the role of ncRNA species in human nociceptors, and NOCICEPTRA2.0 offers a comprehensive ncRNA database for sensory neurons that researchers can use to explore ncRNA regulators in nociceptors thoroughly.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Omiqa Bioinformatics, Berlin, Germany
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Nakano Y, Gamper H, McGuigan H, Maharjan S, Sun Z, Krishnan K, Yigit E, Li NS, Piccirilli JA, Kleiner R, Nichols N, Hou YM. Genome-Wide Profiling of tRNA Using an Unexplored Reverse Transcriptase with High Processivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.09.569604. [PMID: 38106225 PMCID: PMC10723452 DOI: 10.1101/2023.12.09.569604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Monitoring the dynamic changes of cellular tRNA pools is challenging, due to the extensive post-transcriptional modifications of individual species. The most critical component in tRNAseq is a processive reverse transcriptase (RT) that can read through each modification with high efficiency. Here we show that the recently developed group-II intron RT Induro has the processivity and efficiency necessary to profile tRNA dynamics. Using our Induro-tRNAseq, simpler and more comprehensive than the best methods to date, we show that Induro progressively increases readthrough of tRNA over time and that the mechanism of increase is selective removal of RT stops, without altering the misincorporation frequency. We provide a parallel dataset of the misincorporation profile of Induro relative to the related TGIRT RT to facilitate the prediction of non-annotated modifications. We report an unexpected modification profile among human proline isoacceptors, absent from mouse and lower eukaryotes, that indicates new biology of decoding proline codons.
Collapse
|
38
|
Yu M, Yi J, Qiu Q, Yao D, Li J, Yang J, Mi C, Zhou L, Lu B, Lu W, Ying K, Chen W, Chen E, Zhang H, Lu Z, Lu Y, Liu P. Pan-cancer tRNA-derived fragment CAT1 coordinates RBPMS to stabilize NOTCH2 mRNA to promote tumorigenesis. Cell Rep 2023; 42:113408. [PMID: 37943661 DOI: 10.1016/j.celrep.2023.113408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) are a class of small non-coding regulatory RNAs that are involved in the pathophysiology of many diseases. However, the role of tRFs in cancer progression remains largely elusive. Here, we demonstrate that a pan-cancer 3'-tRF, CAT1 (cancer associated tRF 1), is ubiquitously upregulated in tumors and associated with poor prognosis of a variety of cancers, including lung cancer. The upregulated CAT1 in cancer cells binds to RNA-binding protein with multiple splicing (RBPMS) and displaces NOTCH2 association from RBPMS, thereby inhibiting the subsequent CCR4-NOT deadenylation-complex-mediated NOTCH2 mRNA decay. The CAT1-enhanced NOTCH2 expression promotes lung cancer cell proliferation and metastasis in vitro and in vivo. In addition, plasma CAT1 levels are substantially increased in patients with lung cancer compared to non-cancer control subjects. Our findings reveal an intrinsic connection between cancer-specific upregulation of CAT1 and cancer progression, show the regulation of NOTCH signaling in cancer by a 3'-tRF, and highlight its great clinical potential.
Collapse
Affiliation(s)
- Mengqian Yu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jiani Yi
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Qiongzi Qiu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Dongxia Yao
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Jia Li
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Juze Yang
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Chunyi Mi
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Liyuan Zhou
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Bingjian Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Weiguo Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Kejing Ying
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Wantao Chen
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China.
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310013, China; Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
39
|
Karousi P, Samiotaki M, Makridakis M, Zoidakis J, Sideris DC, Scorilas A, Carell T, Kontos CK. 3'-tRF-Cys GCA overexpression in HEK-293 cells alters the global expression profile and modulates cellular processes and pathways. Funct Integr Genomics 2023; 23:341. [PMID: 37987851 PMCID: PMC10663186 DOI: 10.1007/s10142-023-01272-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
tRNA fragments (tRFs) are small non-coding RNAs generated through specific cleavage of tRNAs and involved in various biological processes. Among the different types of tRFs, the 3'-tRFs have attracted scientific interest due to their regulatory role in gene expression. In this study, we investigated the role of 3'-tRF-CysGCA, a tRF deriving from cleavage in the T-loop of tRNACysGCA, in the regulation of gene expression in HEK-293 cells. Previous studies have shown that 3'-tRF-CysGCA is incorporated into the RISC complex and interacts with Argonaute proteins, suggesting its involvement in the regulation of gene expression. However, the general role and effect of the deregulation of 3'-tRF-CysGCA levels in human cells have not been investigated so far. To fill this gap, we stably overexpressed 3'-tRF-CysGCA in HEK-293 cells and performed transcriptomic and proteomic analyses. Moreover, we validated the interaction of this tRF with putative targets, the levels of which were found to be affected by 3'-tRF-CysGCA overexpression. Lastly, we investigated the implication of 3'-tRF-CysGCA in various pathways using extensive bioinformatics analysis. Our results indicate that 3'-tRF-CysGCA overexpression led to changes in the global gene expression profile of HEK-293 cells and that multiple cellular pathways were affected by the deregulation of the levels of this tRF. Additionally, we demonstrated that 3'-tRF-CysGCA directly interacts with thymopoietin (TMPO) transcript variant 1 (also known as LAP2α), leading to modulation of its levels. In conclusion, our findings suggest that 3'-tRF-CysGCA plays a significant role in gene expression regulation and highlight the importance of this tRF in cellular processes.
Collapse
Affiliation(s)
- Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center, "Alexander Fleming", Vari, Greece
| | - Manousos Makridakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece.
| |
Collapse
|
40
|
Nguyen J, Le Q, Win PW, Hill KA, Singh SM, Castellani CA. Decoding mitochondrial-nuclear (epi)genome interactions: the emerging role of ncRNAs. Epigenomics 2023; 15:1121-1136. [PMID: 38031736 DOI: 10.2217/epi-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bidirectional communication between the mitochondria and the nucleus is required for several physiological processes, and the nuclear epigenome is a key mediator of this relationship. ncRNAs are an emerging area of discussion for their roles in cellular function and regulation. In this review, we highlight the role of mitochondrial-encoded ncRNAs as mediators of communication between the mitochondria and the nuclear genome. We focus primarily on retrograde signaling, a process in which the mitochondrion relays ncRNAs to translate environmental stress signals to changes in nuclear gene expression, with implications on stress responses that may include disease(s). Other biological roles of mitochondrial-encoded ncRNAs, such as mitochondrial import of proteins and regulation of cell signaling, will also be discussed.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Phyo W Win
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Li E, Yin H, Su M, Li Q, Zhao Y, Zhang L, Guo J, Lai X, Xue X, Tang C. Inhibition of ferroptosis alleviates chronic unpredictable mild stress-induced depression in mice via tsRNA-3029b. Brain Res Bull 2023; 204:110773. [PMID: 37793597 DOI: 10.1016/j.brainresbull.2023.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
Depression is a common mental illness. Ferroptosis is a form of cell death that may be responsible for neurological disease, but the role of ferroptosis in depression remains unclear. tRNA-derived small RNA (tsRNA) is an emerging non-coding small RNA, making it an important medium for studying neurological diseases. Chronic unpredictable mild stress (CUMS) was used to construct the depression model in mice, which was treated with ferrostatin-1 (Fer-1). Classical behavioral test, immunofluorescence and small RNA sequencing were used to detect depression-like behaviors, neuronal proliferation and the expression profile of tsRNAs in mice, respectively. The primary neuronal cell damage model was constructed by corticosterone (CORT), and the function of key tsRNA was investigated by quantitative real-time PCR, western blot and CCK-8 assays. Here, Fer-1 reduced the depression-like behavior of CUMS-induced mice and promoted neuronal growth. In addition, CUMS caused the disorder of tsRNA expression profile in hippocampal tissues of mice, and Fer-1 alleviated the abnormal tsRNA expression, among which tsRNA-3029b was an effective target. In vitro experiments manifested that ROS accumulation and decreased expression of SLC7A11 and GPX4 were found in CORT-induced depression-like cell model, suggesting that ferroptosis was involved in neuronal injury. However, inhibition of tsRNA-3029b suppressed neuronal cell ferroptosis and facilitated neuronal regeneration. In conclusion, Fer-1 showed an antidepressant effect in CUMS-induced mice and alleviated the abnormal expression profile of tsRNA. tsRNA-3029b was a key target in depression, and silencing of tsRNA-3029b reduced the occurrence of ferroptosis and protected neurons from injury, which may provide novel target for the treatment of depression.
Collapse
Affiliation(s)
- Enze Li
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Honglei Yin
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Meilei Su
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qianqin Li
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuhan Zhao
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lili Zhang
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Junlong Guo
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoling Lai
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Xue
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Chong Tang
- Department of Psychiatry, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
42
|
Gao X, Qiao Y, Li S, Shi H, Qu G, Ji J, Gan W, Zhang A. tRF-003634 alleviates adriamycin-induced podocyte injury by reducing the stability of TLR4 mRNA. PLoS One 2023; 18:e0293043. [PMID: 37856510 PMCID: PMC10586663 DOI: 10.1371/journal.pone.0293043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Podocyte injury plays a key role in the production of proteinuria and is closely related to the progression of chronic kidney disease (CKD). Alleviating podocyte injury is beneficial to prevent the occurrence and development of CKD. tRNA-derived RNA fragments (tRFs) are associated with podocytes injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton. Our previous data showed that tRF-003634 tightly correlated with podocyte injury, while its effect remains unclear. This study aimed to investigate the role of tRF-003634 in podocyte injury and the potential mechanisms. The expression level of tRF-003634, nephrin, podocin and tRF-003634 targeted toll-like receptor 4 (TLR4) in podocytes and kidney tissues were examined by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry. The biochemical indices were monitored and renal pathological changes were assessed by hematoxylin and eosin PAS staining. Furthermore, potential target genes of tRF-003634 were screened using high-throughput mRNA sequencing, and then confirmed by RNA pulse-chase analysis. The results showed that tRF-003634 was downregulated in adriamycin (Adr)-induced podocyte injury. Overexpression of tRF-003634 increased the expression of nephrin and podocin in vivo and in vitro and alleviated podocyte injury. Meanwhile, overexpression of tRF-003634 alleviated proteinuria and renal pathological damage. In addition, high-throughput sequencing after overexpression of tRF-003634 showed that TLR4 might be a downstream target gene. tRF-003634 can alleviate podocyte injury by reducing the stability of TLR4 mRNA, possibly by competing with TLR4 mRNA to bind to YTH domain-containing protein 1 (YTHDC1). In conclusion, tRF-003634 was underexpressed in Adr-induced podocyte injury, and its overexpression alleviated podocyte injury in vitro and in vivo by reducing the stability of TLR4 mRNA.
Collapse
Affiliation(s)
- Xiaoqing Gao
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunyang Qiao
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanwen Li
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huimin Shi
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gaoting Qu
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jialing Ji
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aiqing Zhang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Cao W, Dai S, Ruan W, Long T, Zeng Z, Lei S. Pancreatic stellate cell-derived exosomal tRF-19-PNR8YPJZ promotes proliferation and mobility of pancreatic cancer through AXIN2. J Cell Mol Med 2023; 27:2533-2546. [PMID: 37488774 PMCID: PMC10468654 DOI: 10.1111/jcmm.17852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023] Open
Abstract
The pancreatic stellate cells (PSCs) play an important role in the development of pancreatic cancer (PC) through mechanisms that remain unclear. Exosomes secreted from PSCs act as mediators for communication in PC. This study aimed to explore the role of PSC-derived exosomal small RNAs derived from tRNAs (tDRs) in PC cells. Exosomes from PSCs were extracted and used to detect their effects on PC cell proliferation, migration and invasion. Exosomal tDRs profiling was performed to identify PSC-derived exosomal tDRs. ISH and qRT-PCR were used to examine the tRF-19-PNR8YPJZ levels and clinical value in clinical samples. The biological function of exosomal tRF-19-PNR8YPJZ was determined using the CCK-8, clone formation, wound healing and transwell assays, subcutaneous tumour formation and lung metastatic models. The relationship between the selected exosomal tRF-19-PNR8YPJZ and AXIN2 was determined by RNA sequencing, luciferase reporter assay. PSC-derived exosomes promoted the proliferation, migration, and invasion of PC cells. Novel and abundant tDRs are found to be differentially expressed in PANC-1 cells after treatment with PSC-derived exosomes, such as tRF-19-PNR8YPJZ. PC tissue samples showed markedly higher levels of tRF-19-PNR8YPJZ than normal controls. Patients with PC exhibiting high tRF-19-PNR8YPJZ expression had a highly lymph node invasion, metastasis, perineural invasion, advanced clinical stage and poor overall survival. Exosomal tRF-19-PNR8YPJZ from PSCs targeted AXIN2 in PC cells and decreased its expression, thus activating the Wnt pathway and promoting proliferation and metastasis. Exosomal tRF-19-PNR8YPJZ from PSCs promoted proliferation and metastasis in PC cells via AXIN2.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Shisi Dai
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
- Department of Anatomy, School of Basic MedicineGuizhou Nursing Vocational collegeGuiyangChina
| | - Wanyuan Ruan
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Tingting Long
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Zhirui Zeng
- Department of Physiology, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Shan Lei
- Department of Physiology, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
44
|
Huang D, Chu Y, Qiu J, Chen X, Zhao J, Zhang Y, Li S, Cheng Y, Shi H, Han L, Wang J. A novel diagnostic signature of circulating tsRNAs and miRNAs in esophageal squamous cell carcinoma detected with a microfluidic platform. Anal Chim Acta 2023; 1272:341520. [PMID: 37355337 DOI: 10.1016/j.aca.2023.341520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Small non-coding RNAs (sncRNAs) consisting of tRNA-derived small RNAs (tsRNAs) and miRNAs can be released by cancer cells and detected in blood, offering great potential for diagnosis of malignant tumors such as squamous cell carcinoma of the esophagus (ESCC). One of the major challenges for the clinical application of blood-based sncRNAs biomarkers is the difficulty of detection because of their small sncRNA size and low abundance. The deferentially expressed tsRNAs and miRNAs in plasma were studied with high-throughput sequencing and polymerase chain reaction in ESCC cohorts. A novel signature containing tRF-55:74-chrM.Phe-GAA, tRF-56:75-Ala-CGC-1-M4 and miR-4488 was identified with diagnostic potential. The signature was further confirmed by an attomolar-level ultrasensitive and rapid microfluidic biochip, which can achieve a multiplex, simple and low-cost detection. Our results indicated that a combination of tsRNAs and miRNAs has high diagnostic efficiency and tremendous potential to act as specific biomarkers through a reliable, highly sensitive, fast, and economic microfluidic biochip for ESCC diagnosis.
Collapse
Affiliation(s)
- Di Huang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Yujin Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoshuang Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, China Medical University, Shenyang, 110001, China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Shunjia Li
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China
| | - Han Shi
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors of Ministry of Education, China Medical University, Shenyang, 110001, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, China.
| |
Collapse
|
45
|
van Zonneveld AJ, Zhao Q, Rotmans JI, Bijkerk R. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 2023; 19:573-586. [PMID: 37286733 DOI: 10.1038/s41581-023-00725-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiao Zhao
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
46
|
Cross T, Haug KBF, Brusletto BS, Ommundsen SK, Trøseid AMS, Aspelin T, Olstad OK, Aass HCD, Galtung HK, Utheim TP, Jensen JL, Øvstebø R. Non-Coding RNA in Salivary Extracellular Vesicles: A New Frontier in Sjögren's Syndrome Diagnostics? Int J Mol Sci 2023; 24:13409. [PMID: 37686214 PMCID: PMC10488010 DOI: 10.3390/ijms241713409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Sjögren's syndrome is an autoimmune rheumatic disease characterized by inflammation of the salivary and lacrimal glands, often manifesting as dry mouth and dry eyes. To simplify diagnostics of primary Sjögren's syndrome (pSS), a non-invasive marker is needed. The aim of the study was to compare the RNA content of salivary extracellular vesicles (EVs) between patients with pSS and healthy controls using microarray technology. Stimulated whole saliva was collected from 11 pSS patients and 11 age-matched controls. EV-RNA was isolated from the saliva samples using a Qiagen exoRNeasy Midi Kit and analyzed using Affymetrix Clariom D™ microarrays. A one-way ANOVA test was used to compare the mean signal values of each transcript between the two groups. A total of 9307 transcripts, coding and non-coding RNA, were detected in all samples. Of these transcripts, 1475 showed statistically significant differential abundance between the pSS and the control groups, generating two distinct EV-RNA patterns. In particular, tRNAs were downregulated in pSS patients, with the transcript tRNA-Ile-AAT-2-1 showing a 2-fold difference, and a promise as a potential biomarker candidate. This study therein demonstrates the potential for using salivary EV-RNA in pSS diagnostics.
Collapse
Affiliation(s)
- Tanya Cross
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Kari Bente Foss Haug
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Berit Sletbakk Brusletto
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Stine Kamilla Ommundsen
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Anne-Marie Siebke Trøseid
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Trude Aspelin
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | - Ole Kristoffer Olstad
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | | | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Tor Paaske Utheim
- The Regenerative Medicine Unit, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4838 Arendal, Norway
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- The Norwegian Dry Eye Clinic, 0369 Oslo, Norway
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Reidun Øvstebø
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| |
Collapse
|
47
|
Shavkunov KS, Markelova NY, Glazunova OA, Kolzhetsov NP, Panyukov VV, Ozoline ON. The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia coli. Int J Mol Sci 2023; 24:12960. [PMID: 37629141 PMCID: PMC10455298 DOI: 10.3390/ijms241612960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved in the interspecies interaction of bacteria. This work aimed at identifying such RNAs and characterizing their maturation during transport. We applied an approach that allowed us to detect oligoribonucleotides secreted by Prevotella copri (Segatella copri) or Rhodospirillum rubrum inside Escherichia coli cells. Four tRFs imported by E. coli cells co-cultured with these bacteria were obtained via chemical synthesis, and all of them affected the growth of E. coli. Their successive modifications in the culture medium and recipient cells were studied by high-throughput cDNA sequencing. Instead of the expected accidental exonucleolysis, in the milieu, we observed nonrandom cleavage by endonucleases continued in recipient cells. We also found intramolecular rearrangements of synthetic oligonucleotides, which may be considered traces of intermediate RNA circular isomerization. Using custom software, we estimated the frequency of such events in transcriptomes and secretomes of E. coli and observed surprising reproducibility in positions of such rare events, assuming the functionality of ring isoforms or their permuted derivatives in bacteria.
Collapse
Affiliation(s)
- Konstantin S. Shavkunov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Yu. Markelova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga A. Glazunova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nikolay P. Kolzhetsov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valery V. Panyukov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
48
|
Mao M, Chen W, Huang X, Ye D. Role of tRNA-derived small RNAs(tsRNAs) in the diagnosis and treatment of malignant tumours. Cell Commun Signal 2023; 21:178. [PMID: 37480078 PMCID: PMC10362710 DOI: 10.1186/s12964-023-01199-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023] Open
Abstract
Malignant tumours area leading cause of death globally, accounting for approximately 13% of all deaths. A detailed understanding of the mechanism(s) of the occurrence and development of malignant tumours and identification of relevant therapeutic targets are therefore key to tumour treatment. tsRNAs(tRNA-derived small RNAs)-also known as TRFs (tRNA-derived fragments), tiRNAs (tRNA-derived stress-induced RNAs), tRNA halves, etc.-are a recently identified class of small noncoding RNAs that are generated from mature tRNA or tRNA precursors through cleavage by enzymes such as angiogenin, Dicer, RNase Z, and RNase P. Several studies have confirmed that dysregulation of tsRNAs is closely related to the tumorigenesis of breast cancer, nasopharyngeal cancer, lung cancer, and so on. Furthermore, research indicates that tsRNAs can be used as clinical diagnostic markers and therapeutic targets for cancer. In our review, we summarized the recent research progress on the role and clinical application of tsRNAs in tumorigenesis and progression. Video Abstract.
Collapse
Affiliation(s)
- Mingwen Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo No.6 Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Weina Chen
- Department of Clinical Pharmacology, Yinzhou Integrated TCM & Western Medicine Hospital, Ningbo, 315040, Zhejiang, China
| | - Xingbiao Huang
- Department of General Surgery, Ningbo No.6, Hospital Affiliated Medical School of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
49
|
Zhou Y, Wang Z, Zhou H, Tan W, Liu J, Cai Y, Huang Q, Li B, He Y, Yoshida S, Li Y. Identification and clinical significance of tsRNAs and miRNAs in PBMCs of treatment-requiring retinopathy of prematurity. Exp Eye Res 2023; 232:109518. [PMID: 37257714 DOI: 10.1016/j.exer.2023.109518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
The aim of the study is to reveal the expression profiling and clinical significance of peripheral blood mononuclear cell (PBMC) tRNA-derived small RNAs (tsRNAs) and microRNAs (miRNAs) of premature infants with treatment-requiring retinopathy of prematurity (ROP). Significantly altered tsRNAs and miRNAs were screened using small RNA sequencing. RT-qPCR was used to verify the altered RNAs identified by small RNA transcriptomics. The target genes, their enriched functions, and possibly involved signaling pathways were identified by bioinformatics analyses. According to the small RNA sequencing, 125 tsRNAs and 205 miRNAs were significantly altered in PBMCs obtained from infants with treatment-requiring ROP compared with the premature controls without retinopathy. We preliminarily validated the significant alterations of 6 tsRNAs and 9 miRNAs. The target genes for those tsRNAs were enriched for cellular macromolecule metabolic process, intracellular anatomical structure, transcription regulatory region nucleic acid binding, and Th17 cell differentiation; those of the altered miRNAs were enriched for the developmental process, cell junction, DNA-binding transcription activator activity, and FoxO signaling pathway. By verification with the extended sample size, we identified tsRNAs and miRNAs that could be potential biomarkers with clinical values. The study recognized the alterations and clinical significance of changed tsRNA/miRNA profiles in PBMCs from premature infants with ROP. These significantly altered tsRNAs and miRNAs might be useful as potential diagnostic biomarkers and molecular targets for treatment-requiring ROP.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Jie Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
50
|
Mo F, Lv B, Zhao D, Xi Z, Qian Y, Ge D, Yang N, Zhang D, Jiang G, Gao S. Small RNA Sequencing Analysis of STZ-Injured Pancreas Reveals Novel MicroRNA and Transfer RNA-Derived RNA with Biomarker Potential for Diabetes Mellitus. Int J Mol Sci 2023; 24:10323. [PMID: 37373469 DOI: 10.3390/ijms241210323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) play critical roles in the regulation of different biological processes, but their underlying mechanisms in diabetes mellitus (DM) are still largely unknown. This study aimed to gain a better understanding of the functions of miRNAs and tsRNAs in the pathogenesis of DM. A high-fat diet (HFD) and streptozocin (STZ)-induced DM rat model was established. Pancreatic tissues were obtained for subsequent studies. The miRNA and tsRNA expression profiles in the DM and control groups were obtained by RNA sequencing and validated with quantitative reverse transcription-PCR (qRT-PCR). Subsequently, bioinformatics methods were used to predict target genes and the biological functions of differentially expressed miRNAs and tsRNAs. We identified 17 miRNAs and 28 tsRNAs that were significantly differentiated between the DM and control group. Subsequently, target genes were predicted for these altered miRNAs and tsRNAs, including Nalcn, Lpin2 and E2f3. These target genes were significantly enriched in localization as well as intracellular and protein binding. In addition, the results of KEGG analysis showed that the target genes were significantly enriched in the Wnt signaling pathway, insulin pathway, MAPK signaling pathway and Hippo signaling pathway. This study revealed the expression profiles of miRNAs and tsRNAs in the pancreas of a DM rat model using small RNA-Seq and predicted the target genes and associated pathways using bioinformatics analysis. Our findings provide a novel aspect in understanding the mechanisms of DM and identify potential targets for the diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Fangfang Mo
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan Zhao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziye Xi
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yining Qian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongyu Ge
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nan Yang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Dongwei Zhang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|