1
|
Tan W, Wang Y, Cheng S, Liu Z, Xie M, Song L, Qiu Q, Wang X, Li Z, Liu T, Guo F, Wang J, Zhou X. AdipoRon ameliorates the progression of heart failure with preserved ejection fraction via mitigating lipid accumulation and fibrosis. J Adv Res 2025; 68:299-315. [PMID: 38382593 PMCID: PMC11785573 DOI: 10.1016/j.jare.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Obesity and imbalance in lipid homeostasis contribute greatly to heart failure with preserved ejection fraction (HFpEF), the dominant form of heart failure. Few effective therapies exist to control metabolic alterations and lipid homeostasis. OBJECTIVES We aimed to investigate the cardioprotective roles of AdipoRon, the adiponectin receptor agonist, in regulating lipid accumulation in the two-hit HFpEF model. METHODS HFpEF mouse model was induced using 60 % high-fat diet plus L-NAME drinking water. Then, AdipoRon (50 mg/kg) or vehicle were administered by gavage to the two-hit HFpEF mouse model once daily for 4 weeks. Cardiac function was evaluated using echocardiography, and Postmortem analysis included RNA-sequencing, untargeted metabolomics, transmission electron microscopy and molecular biology methods. RESULTS Our study presents the pioneering evidence that AdipoR was downregulated and impaired fatty acid oxidation in the myocardia of HFpEF mice, which was associated with lipid metabolism as indicated by untargeted metabolomics. AdipoRon, orally active synthetic adiponectin receptor agonist, could upregulate AdipoR1/2 (independently of adiponectin) and reduce lipid droplet accumulation, and alleviate fibrosis to restore HFpEF phenotypes. Finally, AdipoRon primarily exerted its effects through restoring the balance of myocardial fatty acid intake, transport, and oxidation via the downstream AMPKα or PPARα signaling pathways. The protective effects of AdipoRon in HFpEF mice were reversed by compound C and GW6471, inhibitors of AMPKα and PPARα, respectively. CONCLUSIONS AdipoRon ameliorated the HFpEF phenotype by promoting myocardial fatty acid oxidation, decreasing fatty acid transport, and inhibiting fibrosis via the upregulation of AdipoR and the activation of AdipoR1/AMPKα and AdipoR2/PPARα-related downstream pathways. These findings underscore the therapeutic potential of AdipoRon in HFpEF. Importantly, all these parameters get restored in the context of continued mechanical and metabolic stressors associated with HFpEF.
Collapse
Affiliation(s)
- Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yijun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Siyi Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zhihao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Lingpeng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Qinfang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Zeyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Tianyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| | - Jun Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, China; Hubei Key Laboratory of Autonomic Nervous System Modulation, China; Taikang Center for Life and Medical Sciences, Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Hubei Key Laboratory of Cardiology, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Fornari Laurindo L, Minniti G, Rodrigues VD, Fornari Laurindo L, Strozze Catharin VMC, Baisi Chagas EF, Dos Anjos VD, de Castro MVM, Baldi Júnior E, Ferraroni Sanches RC, Mendez-Sanchez N, Maria Barbalho S. Exploring the Logic and Conducting a Comprehensive Evaluation of the Adiponectin Receptor Agonists AdipoRon and AdipoAI's Impacts on Bone Metabolism and Repair-A Systematic Review. Curr Med Chem 2025; 32:1168-1194. [PMID: 39206478 DOI: 10.2174/0109298673308301240821052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Adiponectin replacement therapy shows promising outcomes in various diseases, especially for bone-related disorders. Challenges in using the complete protein have led to alternative approaches, with AdipoRon and AdipoAI emerging as extensively researched drug candidates. Their influence on models of bone-related disorders has progressed considerably but there has been no review of their effectiveness in modulating bone metabolism and repair. METHODS This systematic review seeks to address this knowledge gap. Based on preclinical evidence from PubMed, EMBASE, and COCHRANE, ten studies were included following PRISMA guidelines. The JBI Checklist Critical Appraisal Tool assessed the quality of this systematic review. The studies encompassed various animal models, addressing bone defects, osseointegration, diabetes-associated periodontitis, fracture repair, growth retardation, and diabetes-associated peri-implantitis. RESULTS AdipoRon and AdipoAI demonstrated effectiveness in modulating bone metabolism and repair through diverse pathways, including the activation of AdipoR1/APPL1, inhibition of F-actin ring formation, suppression of IκB-α phosphorylation, p65 nuclear translocation and Wnt5a-Ror2 signaling pathway, reduction of CCL2 secretion and expression, regulation of autophagy via LC3A/B expression, modulation of SDF-1 production, activation of the ERK1/2 signaling pathway, modulation of bone integration-related markers and osteokines such as RANKL, BMP-2, OPG, OPN, and Runx2, inhibition of RANKL in osteoblasts, and inhibition of podosome formation via the activation of AMPK. CONCLUSION While preclinical studies show promise, human trials are crucial to confirm the clinical safety and effectiveness of AdipoRon and AdipoAI. Caution is necessary due to potential off-target effects, especially in bone therapy with multi-target approaches. Structural biology and computational methods can help predict and understand these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Victoria Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Medical Department, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vinicius Dias Dos Anjos
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Edgar Baldi Júnior
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Raquel Cristina Ferraroni Sanches
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Nahum Mendez-Sanchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| |
Collapse
|
3
|
Dudakovic A, Limberg AK, Bothun CE, Dilger OB, Bayram B, Bettencourt JW, Salmons HI, Thaler R, Karczewski DC, Owen AR, Iyer VG, Payne AN, Carstens MF, van Wijnen AJ, Berry DJ, Sanchez-Sotelo J, Morrey ME, Abdel MP. AdipoRon reduces TGFβ1-mediated collagen deposition in vitro and alleviates knee stiffness in vivo. J Cell Physiol 2024; 239:e31168. [PMID: 38149794 PMCID: PMC10922972 DOI: 10.1002/jcp.31168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Arthrofibrosis, which causes joint motion restrictions, is a common complication following total knee arthroplasty (TKA). Key features associated with arthrofibrosis include myofibroblast activation, knee stiffness, and excessive scar tissue formation. We previously demonstrated that adiponectin levels are suppressed within the knee tissues of patients affected by arthrofibrosis and showed that AdipoRon, an adiponectin receptor agonist, exhibited anti-fibrotic properties in human mesenchymal stem cells. In this study, the therapeutic potential of AdipoRon was evaluated on TGFβ1-mediated myofibroblast differentiation of primary human knee fibroblasts and in a mouse model of knee stiffness. Picrosirius red staining revealed that AdipoRon reduced TGFβ1-induced collagen deposition in primary knee fibroblasts derived from patients undergoing primary TKA and revision TKA for arthrofibrosis. AdipoRon also reduced mRNA and protein levels of ACTA2, a key myofibroblast marker. RNA-seq analysis corroborated the anti-myofibrogenic effects of AdipoRon. In our knee stiffness mouse model, 6 weeks of knee immobilization, to induce a knee contracture, in conjunction with daily vehicle (DMSO) or AdipoRon (1, 5, and 25 mg/kg) via intraperitoneal injections were well tolerated based on animal behavior and weight measurements. Biomechanical testing demonstrated that passive extension angles (PEAs) of experimental knees were similar between vehicle and AdipoRon treatment groups in mice evaluated immediately following immobilization. Interestingly, relative to vehicle-treated mice, 5 mg/kg AdipoRon therapy improved the PEA of the experimental knees in mice that underwent 4 weeks of knee remobilization following the immobilization and therapy. Together, these studies revealed that AdipoRon may be an effective therapeutic modality for arthrofibrosis.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Cole E. Bothun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Oliver B. Dilger
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Varun G. Iyer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ashley N. Payne
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Cho S, Dadson K, Sung HK, Ayansola O, Mirzaesmaeili A, Noskovicova N, Zhao Y, Cheung K, Radisic M, Hinz B, Sater AAA, Hsu HH, Lopaschuk GD, Sweeney G. Cardioprotection by the adiponectin receptor agonist ALY688 in a preclinical mouse model of heart failure with reduced ejection fraction (HFrEF). Biomed Pharmacother 2024; 171:116119. [PMID: 38181714 DOI: 10.1016/j.biopha.2023.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
AIMS Adiponectin has been shown to mediate cardioprotective effects and levels are typically reduced in patients with cardiometabolic disease. Hence, there has been intense interest in developing adiponectin-based therapeutics. The aim of this translational research study was to examine the functional significance of targeting adiponectin signaling with the adiponectin receptor agonist ALY688 in a mouse model of heart failure with reduced ejection fraction (HFrEF), and the mechanisms of cardiac remodeling leading to cardioprotection. METHODS AND RESULTS Wild-type mice were subjected to transverse aortic constriction (TAC) to induce left ventricular pressure overload (PO), or sham surgery, with or without daily subcutaneous ALY688-SR administration. Temporal analysis of cardiac function was conducted via weekly echocardiography for 5 weeks and we observed that ALY688 attenuated the PO-induced dysfunction. ALY688 also reduced cardiac hypertrophic remodeling, assessed via LV mass, heart weight to body weight ratio, cardiomyocyte cross sectional area, ANP and BNP levels. ALY688 also attenuated PO-induced changes in myosin light and heavy chain expression. Collagen content and myofibroblast profile indicated that fibrosis was attenuated by ALY688 with TIMP1 and scleraxis/periostin identified as potential mechanistic contributors. ALY688 reduced PO-induced elevation in circulating cytokines including IL-5, IL-13 and IL-17, and the chemoattractants MCP-1, MIP-1β, MIP-1alpha and MIP-3α. Assessment of myocardial transcript levels indicated that ALY688 suppressed PO-induced elevations in IL-6, TLR-4 and IL-1β, collectively indicating anti-inflammatory effects. Targeted metabolomic profiling indicated that ALY688 increased fatty acid mobilization and oxidation, increased betaine and putrescine plus decreased sphingomyelin and lysophospholipids, a profile indicative of improved insulin sensitivity. CONCLUSION These results indicate that the adiponectin mimetic peptide ALY688 reduced PO-induced fibrosis, hypertrophy, inflammation and metabolic dysfunction and represents a promising therapeutic approach for treating HFrEF in a clinical setting.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, ON, Canada
| | - Keith Dadson
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | - Ali Mirzaesmaeili
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nina Noskovicova
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada
| | - Yimu Zhao
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Krisco Cheung
- Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Milica Radisic
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry; University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5S3E2, Canada; Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Ali A Abdul Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Henry H Hsu
- Allysta Pharmaceuticals Inc. Bellevue, WA, USA
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
5
|
Ragusa R, Di Molfetta A, Mercatanti A, Pitto L, Amodeo A, Trivella MG, Rizzo M, Caselli C. Changes in adiponectin system after ventricular assist device in pediatric heart failure. JHLT OPEN 2024; 3:None. [PMID: 38357297 PMCID: PMC10865272 DOI: 10.1016/j.jhlto.2023.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Background Ventricular assist device (VAD) implant represents a therapeutic option for pediatric patients with end-stage heart failure (HF). Heart unloading by VAD can modify several molecular pathways underlying cardiac function in HF. Among them, the potential role of microRNA (miRNAs) in response to VAD implant is emerging. This study was aimed at investigating in HF pediatric patients the effect of VAD-modified miRNAs on the adiponectin (ADPN) system, known to exert cardioprotective actions. Methods ADPN was measured in plasma samples obtained from HF children, before and 1 month after VAD implant, and from healthy control children. miRNA profile and molecules belonging to ADPN system were determined in cardiac biopsies collected at the time of VAD implantation (pre-VAD) and at the moment of heart transplant (post-VAD). An in vitro study using HL-1 cell line was performed to verify the regulatory role of the VAD-modified miRNA on the ADPN system. Results VAD implant did not affect circulating and cardiac levels of ADPN, but increased the cardiac mRNA expression of ADPN receptors, including AdipoR1, AdipoR2, and T-cad. AdipoR2 and T-cad were inversely related to the VAD-modified miRNA levels. The in vitro study confirmed the regulatory role of miR-1246 and miR-199b-5p on AdipoR2, and of miR-199b-5p on T-cad. Conclusions These data suggest that VAD treatment could regulate the expression of the cardioprotective ADPN system by epigenetic mediators, suggesting that miRNAs have a potential role as therapeutic targets to improve cardiac function in HF pediatric patients.
Collapse
Affiliation(s)
| | - Arianna Di Molfetta
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | - Antonio Amodeo
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Milena Rizzo
- Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa Italy
| |
Collapse
|
6
|
Siraj AK, Parvathareddy SK, Al-Rasheed M, Annaiyappanaidu P, Siraj N, Lennartz M, Al-Sobhi SS, Al-Dayel F, Sauter G, Al-Kuraya KS. Loss of CDH16 expression is a strong independent predictor for lymph node metastasis in Middle Eastern papillary thyroid cancer. Sci Rep 2023; 13:18559. [PMID: 37899424 PMCID: PMC10613612 DOI: 10.1038/s41598-023-45882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
Papillary Thyroid Cancer (PTC) is the most common type of thyroid cancer. The membrane-associated glycoprotein cadherin-16 (CDH16) plays a significant role in the embryonal development of thyroid follicles and cell adhesion. Previous studies have indicated a substantial downregulation of CDH16 in PTC. However, its role in Middle Eastern PTC has not been elucidated. We analyzed a tissue microarray comprising 1606 PTC and 240 normal thyroid tissues using immunohistochemistry to assess CDH16 expression and determine its clinico-pathological associations. We also conducted BRAF and TERT mutations analyses through Sanger sequencing. Disease-free survival (DFS) was assessed using Kaplan-Meier curves. CDH16 immunostaining was seen in 100% of normal thyroid tissues but only in 9.4% of PTC tissues (p < 0.0001). The loss of CDH16 expression was associated with aggressive PTC characteristics including bilaterality, multifocality, extrathyroidal extension, tall cell variant, lymph node metastasis (LNM) and distant metastasis. Additionally a correlation between loss of CDH16 expression and BRAF and TERT mutations was identified. Intriguingly, upon conducting multivariate logistic regression analysis, CDH16 was determined to be an independent predictor for LNM (Odds ratio = 2.46; 95% confidence interval = 1.60-3.79; p < 0.0001). Furthermore, CDH16 loss was associated with a shorter DFS (p = 0.0015). However, when we further subdivided CDH16 negative patients based on the co-existence of TERT and/or BRAF mutations, we found that patients with both CDH16 negative expression and TERT mutation exhibited the shortest DFS (p < 0.0001). In conclusion, our results suggest that CDH16 protein expression could serve as a valuable diagnostic tool for PTC. Furthermore, these findings demonstrate that the loss of CDH16 expression is an independent predictor of LNM and may contribute to the aggressiveness of PTC. Therefore, downregulation of CDH16 in PTC might be a potential target for designing novel therapeutic strategies to treat PTC.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saif S Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Turkmen E, Sogutlu F, Erdogan M, Biray Avci C. Evaluation of the anticancer effect of telomerase inhibitor BIBR1532 in anaplastic thyroid cancer in terms of apoptosis, migration and cell cycle. Med Oncol 2023; 40:196. [PMID: 37284891 DOI: 10.1007/s12032-023-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Anaplastic thyroid cancer (ATC) represents the type with the worst prognosis among thyroid cancers. In ATC with a highly invasive phenotype, selective targeting of TERT with BIBR1532 may be a goal-driven approach to preserving healthy tissues. In present study, it was aimed to investigate the effects of treatment of SW1736 cells with BIBR1532 on apoptosis, cell cycle progression, and migration. The apoptotic effect of BIBR1532 on SW1736 cells was examined using the Annexin V method, the cytostatic effect using cell cycle test, migration properties using wound healing assay. Gene expression differences were determined by real-time qRT-PCR and differences in protein level by ELISA test. BIBR1532-treated SW1736 cells had 3.1-fold increase in apoptosis compared to their untreated counterpart. There was 58.1% arrest in the G0/G1 phase and 27.6% arrest in the S phase of the cell cycle in untreated group, treatment with BIBR1532 increased cell population in G0/G1 phase to 80.9% and decreased in S phase to 7.1%. Treatment with the TERT inhibitor resulted in a 50.8% decrease in cell migration compared to the untreated group. After BIBR1532 treatment of SW1736 cells, upregulation of BAD, BAX, CASP8, CYCS, TNFSF10, CDKN2A genes, and downregulation of BCL2L11, XIAP, CCND2 genes were detected. BIBR1532 treatment resulted in an increase in BAX and p16 proteins, and a decrease in concentration of BCL-2 protein compared to untreated group. Targeting TERT with BIBR1532 as a mono drug or using of BIBR1532 at "priming stage" prior to chemotherapy treatment in ATC may present a novel and promising treatment strategy.
Collapse
Affiliation(s)
- Ecem Turkmen
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Mehmet Erdogan
- Department of Endocrinology and Metabolism, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
8
|
Chen J, Liu F, Wu J, Yang Y, He J, Wu F, Yang K, Li J, Jiang Z, Jiang Z. Effect of STK3 on proliferation and apoptosis of pancreatic cancer cells via PI3K/AKT/mTOR pathway. Cell Signal 2023; 106:110642. [PMID: 36871796 DOI: 10.1016/j.cellsig.2023.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Pancreatic cancer, as a malignant tumor with a very poor prognosis, has a high mortality. It is imperative to clarify the mechanism of pancreatic cancer development and find suitable targets for diagnosis and treatment. Serine/threonine kinase 3 (STK3) is one of the core kinases of the Hippo pathway and has the ability to inhibit tumor growth. But the biological function of STK3 in pancreatic cancer remains unknown. Here, we confirmed that STK3 has an impact on the growth, apoptosis, and metastasis of pancreatic cancer cells and investigated the related molecular mechanisms. In our research, we found that STK3 is reduced in pancreatic cancer by RT-qPCR, IHC and IF, its expression level is correlated with the clinicopathological features. CCK-8 assay, colony formation assay and flow cytometry were used to detect the effect of STK3 on the proliferation and apoptosis of pancreatic cancer cells. In addition, the Transwell assay was used to detect the ability of cell migration and invasion. The results showed that STK3 promoted apoptosis and inhibited cell migration, invasion and proliferation in pancreatic cancer. Gene set enrichment analysis (GSEA) and western blotting are used to predict and verify the pathways related to STK3. Subsequently, we found that the effect of STK3 on proliferation and apoptosis is closely related to the PI3K/AKT/mTOR pathway. Moreover, the assistance of RASSF1 plays a significant role in the regulation of PI3K/AKT/mTOR pathway by STK3. The nude mouse xenograft experiment demonstrated the tumor suppressive ability of STK3 in vivo. Collectively, this study found that STK3 regulates pancreatic cancer cell proliferation and apoptosis by suppressing the PI3K/AKT/mTOR pathway with the assistance of RASSF1.
Collapse
Affiliation(s)
- Jun Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fuqiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yichun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junfeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhongxiang Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Hussain T, Chai L, Wang Y, Zhang Q, Wang J, Shi W, Wang Q, Li M, Xie X. Activation of PPAR-γ prevents TERT-mediated pulmonary vascular remodeling in MCT-induced pulmonary hypertension. Heliyon 2023; 9:e14173. [PMID: 36938425 PMCID: PMC10015197 DOI: 10.1016/j.heliyon.2023.e14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Background It has been demonstrated that elevated telomerase reverse transcriptase (TERT) expression or activity is implicated in pulmonary hypertension (PH). In addition, activation of peroxisome-proliferator-activated receptor γ (PPAR-γ) has been found to prevent PH progression. However, the molecular mechanism responsible for the protective effect of PPAR-γ activation on TERT expression in the pathogenesis of PH remains unknown. This study was performed to address these issues. Methods Intraperitoneal injection of monocrotaline (MCT) was used to establish PH. BIBR1532 was applied to inhibit the activity of telomerase. The right ventricular systolic pressure (RVSP) and histological analysis were used to detect the development of PH. The protein levels of p-Akt, t-Akt, c-Myc and TERT were determined by western blotting. Pharmacological inhibition of TERT by BIBR1532 effectively suppressed RVSP, RVHI and the WT% in MCT-induced PH rats. Results Pharmacological inhibition of Akt/c-Myc pathway by LY294002 diminished TERT upregulation, RVSP, RVHI and WT% in MCT-PH rats. Activation of PPAR-γ by pioglitazone inhibited p-Akt and c-Myc expressions and further downregulated TERT, thus to reduced RVSP, RVHI and WT% in MCT-treated PH rats. Conclusions In conclusion, TERT upregulation contributes to PH development in MCT-treated rats. Activation of PPAR-γ prevents pulmonary arterial remodeling through Akt/c-Myc/TERT axis suppression.
Collapse
Affiliation(s)
- Tafseel Hussain
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Corresponding author. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
10
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Li C, Cao Y, Ren Y, Zhao Y, Wu X, Si S, Li J, Li Q, Zhang N, Li D, Li G, Liu X, Kang X, Jiang R, Tian Y. The adiponectin receptor agonist, AdipoRon, promotes reproductive hormone secretion and gonadal development via the hypothalamic-pituitary-gonadal axis in chickens. Poult Sci 2022; 102:102319. [PMID: 36512870 PMCID: PMC9763694 DOI: 10.1016/j.psj.2022.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Adiponectin is a key hormone secreted by fat tissues that has multiple biological functions, including regulating the energy balance and reproductive system by binding to its receptors AdipoR1 and AdipoR2. This study investigated the correlation between the levels of adiponectin and reproductive hormones in the hypothalamic-pituitary-ovarian (HPO) axis of laying hens at 4 different developmental stages (15, 20, 30, and 68 wk) and explored the effects of AdipoRon (an activator of adiponectin receptors) on the hypothalamic-pituitary-gonadal (HPG) axis and follicle and testicular Leydig cells in vitro and in vivo. The results demonstrated that the adiponectin level was significantly correlated with that of reproductive hormones in the HPO axis (e.g., GnRH, FSH, LH, and E2) in laying hens at 4 different ages. Moreover, AdipoRon could promote the expression of AdipoR1 and AdipoR2 and the secretion of reproductive hormones in the HPG axis, including GnRH, FSH, LH, P4, and T. AdipoRon could also upregulate the expression of genes related to follicular steroidogenesis (STAR, CYP19A1, CYP17A1, and CYP11A1), hepatic lipid synthesis (OVR, MTP), follicular lipid uptake (PPAR-g), and follicular angiogenesis (VEGFA1, VEGFA2, VEGFR1, ANGPT1, ANGPT2, TEK) in the oviposition period, and all of these findings were consistent with the results obtained from in vitro experiments after the transfection of small white follicles (SWFs) with AdipoRon. Furthermore, the results suggest that AdipoRon increases the diameter of testicular seminiferous tubules, the number of spermatogenic cells and sperm production in vivo and enhances the expression of AdipoR1, AdipoR2 and steroid hormones in vitro. Collectively, the findings suggest that AdipoRon could facilitate the expression and secretion of reproductive hormones in the HPG axis by activating its receptors and then improve the growth and development of follicles and testes in chickens.
Collapse
Affiliation(s)
- Chong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanfang Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Sujin Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Qi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Na Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,Corresponding author:
| |
Collapse
|
12
|
Elia E, Ministrini S, Carbone F, Montecucco F. Diabetic cardiomyopathy and inflammation: development of hostile microenvironment resulting in cardiac damage. Minerva Cardiol Angiol 2022; 70:357-369. [PMID: 33427423 DOI: 10.23736/s2724-5683.20.05454-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes mellitus is emerging as a major risk factor for heart failure. Diabetic cardiomyopathy is defined as a myocardial dysfunction that is not caused by underlying hypertension or coronary artery disease. Studies about clinical features, natural history and outcomes of the disease are few and often conflicting, because a universally accepted operative definition of diabetic cardiomyopathy is still lacking. Hyperglycemia and related metabolic and endocrine disorders are the triggering factors of myocardial damage in diabetic cardiomyopathy through multiple mechanisms. Among these mechanisms, inflammation has a relevant role, similar to other chronic myocardial disease, such as hypertensive or ischemic heart disease. A balance between inflammatory damage and healing processes is fundamental for homeostasis of myocardial tissue, whereas diabetes mellitus produces an imbalance, promoting inflammation and delaying healing. Therefore, diabetes-related chronic inflammatory state can produce a progressive qualitative deterioration of myocardial tissue, which reflects on progressive left ventricular functional impairment, which can be either diastolic, with prevalent myocardial hypertrophy, or systolic, with prevalent myocardial fibrosis. The aim of this narrative review is to summarize the existing evidence about the role of inflammation in diabetic cardiomyopathy onset and development. Ultimately, potential pharmacological strategies targeting inflammatory response will be reviewed and discussed.
Collapse
Affiliation(s)
- Edoardo Elia
- Division of Cardiology, Department of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy -
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
13
|
Aiyasiding X, Liao HH, Feng H, Zhang N, Lin Z, Ding W, Yan H, Zhou ZY, Tang QZ. Liquiritin Attenuates Pathological Cardiac Hypertrophy by Activating the PKA/LKB1/AMPK Pathway. Front Pharmacol 2022; 13:870699. [PMID: 35592411 PMCID: PMC9110825 DOI: 10.3389/fphar.2022.870699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Liquiritin (LQ) is one of the main flavonoids extracted from the roots of Glycyrrhiza spp., which are widely used in traditional Chinese medicine. Studies in both cellular and animal disease models have shown that LQ attenuates or prevents oxidative stress, inflammation, and apoptosis. However, the potential therapeutic effects of LQ on pressure overload-induced cardiac hypertrophy have not been so far explored. Therefore, we investigated the cardioprotective role of LQ and its underlying mechanisms in the aortic banding (AB)-induced cardiac hypertrophy mouse model. Methods and Results: Starting 3 days after AB surgery, LQ (80 mg/kg/day) was administered daily over 4 weeks. Echocardiography and pressure-volume loop analysis indicated that LQ treatment markedly improved hypertrophy-related cardiac dysfunction. Moreover, hematoxylin and eosin, picrosirius red, and TUNEL staining showed that LQ significantly inhibited cardiomyocyte hypertrophy, interstitial fibrosis, and apoptosis. Western blot assays further showed that LQ activated LKB1/AMPKα2/ACC signaling and inhibited mTORC1 phosphorylation in cardiomyocytes. Notably, LQ treatment failed to prevent cardiac dysfunction, hypertrophy, and fibrosis in AMPKα2 knockout (AMPKα2−/−) mice. However, LQ still induced LKB1 phosphorylation in AMPKα2−/− mouse hearts. In vitro experiments further demonstrated that LQ inhibited Ang II-induced hypertrophy in neonatal rat cardiomyocytes (NRCMs) by increasing cAMP levels and PKA activity. Supporting the central involvement of the cAMP/PKA/LKB1/AMPKα2 signaling pathway in the cardioprotective effects of LQ, inhibition of Ang II-induced hypertrophy and induction of LKB1 and AMPKα phosphorylation were no longer observed after inhibiting PKA activity. Conclusion: This study revealed that LQ alleviates pressure overload-induced cardiac hypertrophy in vivo and inhibits Ang II-induced cardiomyocyte hypertrophy in vitro via activating cAMP/PKA/LKB1/AMPKα2 signaling. These findings suggest that LQ might be a valuable adjunct to therapeutic approaches for treating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
14
|
Tarkhnishvili A, Koentges C, Pfeil K, Gollmer J, Byrne NJ, Vosko I, Lueg J, Vogelbacher L, Birkle S, Tang S, Bon-Nawul Mwinyella T, Hoffmann MM, Odening KE, Michel NA, Wolf D, Stachon P, Hilgendorf I, Wallner M, Ljubojevic-Holzer S, von Lewinski D, Rainer P, Sedej S, Sourij H, Bode C, Zirlik A, Bugger H. Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic db/db Mice. J Lipid Atheroscler 2022; 11:161-177. [PMID: 35656151 PMCID: PMC9133777 DOI: 10.12997/jla.2022.11.2.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Impaired cardiac efficiency is a hallmark of diabetic cardiomyopathy in models of type 2 diabetes. Adiponectin receptor 1 (AdipoR1) deficiency impairs cardiac efficiency in non-diabetic mice, suggesting that hypoadiponectinemia in type 2 diabetes may contribute to impaired cardiac efficiency due to compromised AdipoR1 signaling. Thus, we investigated whether targeting cardiac adiponectin receptors may improve cardiac function and energetics, and attenuate diabetic cardiomyopathy in type 2 diabetic mice. Methods A non-selective adiponectin receptor agonist, AdipoRon, and vehicle were injected intraperitoneally into Eight-week-old db/db or C57BLKS/J mice for 10 days. Cardiac morphology and function were evaluated by echocardiography and working heart perfusions. Results Based on echocardiography, AdipoRon treatment did not alter ejection fraction, left ventricular diameters or left ventricular wall thickness in db/db mice compared to vehicle-treated mice. In isolated working hearts, an impairment in cardiac output and efficiency in db/db mice was not improved by AdipoRon. Mitochondrial respiratory capacity, respiration in the presence of oligomycin, and 4-hydroxynonenal levels were similar among all groups. However, AdipoRon induced a marked shift in the substrate oxidation pattern in db/db mice towards increased reliance on glucose utilization. In parallel, the diabetes-associated increase in serum triglyceride levels in vehicle-treated db/db mice was blunted by AdipoRon treatment, while an increase in myocardial triglycerides in vehicle-treated db/db mice was not altered by AdipoRon treatment. Conclusion AdipoRon treatment shifts myocardial substrate preference towards increased glucose utilization, likely by decreasing fatty acid delivery to the heart, but was not sufficient to improve cardiac output and efficiency in db/db mice.
Collapse
Affiliation(s)
| | - Christoph Koentges
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Katharina Pfeil
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Johannes Gollmer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Nikole J Byrne
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ivan Vosko
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Lueg
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Laura Vogelbacher
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Stephan Birkle
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Sibai Tang
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
| | | | - Michael M Hoffmann
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center – University of Freiburg, Germany
| | - Katja E Odening
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Nathaly Anto Michel
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Dennis Wolf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Wallner
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Christoph Bode
- Heart Center Freiburg University, Department of Cardiology and Angiology I, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Zhang N, Liao HH, Feng H, Mou SQ, Li WJ, Aiyasiding X, Lin Z, Ding W, Zhou ZY, Yan H, Chen S, Tang QZ. Knockout of AMPKα2 Blocked the Protection of Sestrin2 Overexpression Against Cardiac Hypertrophy Induced by Pressure Overload. Front Pharmacol 2021; 12:716884. [PMID: 34867324 PMCID: PMC8635785 DOI: 10.3389/fphar.2021.716884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: Sestrin2 (Sesn2) has been demonstrated to be a cysteine sulfinyl reductase and protects cells from multiple stress insults, including hypoxia, endoplasmic reticulum stress, and oxidative stress. However, the roles and mechanisms of Sesn2 in pressure overload-induced mouse cardiac hypertrophy have not been clearly clarified. This study intended to investigate whether sestrin2 (Sesn2) overexpression could prevent pressure overload-induced cardiac hypertrophy via an AMPKα2 dependent pathway through conditional knockout of AMPKα2. Methods and results: Sesn2 expression was significantly increased in mice hearts at 2 and 4 weeks after aortic banding (AB) surgery, but decreased to 60–70% of the baseline at 8 weeks. Sesn2 overexpression (at 3, 6, and 9 folds) showed little cardiac genetic toxicity in transgenic mice. Cardiac dysfunctions induced by pressure overload were attenuated by cardiomyocyte-specific Sesn2 overexpression when measured by echocardiography and hemodynamic analysis. Results of HE and PSR staining showed that Sesn2 overexpression significantly alleviated cardiac hypertrophy and fibrosis in mice hearts induced by pressure overload. Meanwhile, adenovirus-mediated-Sesn2 overexpression markedly suppressed angiotensin II-induced neonatal rat cardiomyocyte hypertrophy in vitro. Mechanistically, Sesn2 overexpression increased AMPKα2 phosphorylation but inhibited mTORC1 phosphorylation. The cardiac protections of Sesn2 overexpression were also via regulating oxidative stress by enhancing Nrf2/HO-1 signaling, restoring SOD activity, and suppressing NADPH activity. Particularly, we first proved the vital role of AMPKα2 in the regulation of Sesn2 with AMPKα2 knockout (AMPKα2-/-) mice and Sesn2 transgenic mice crossed with AMPKα2-/-, since Sesn2 overexpression failed to improve cardiac function, inhibit cardiac hypertrophy and fibrosis, and attenuate oxidative stress after AMPKα2 knockout. Conclusion: This study uniquely revealed that Sesn2 overexpression showed little genetic toxicity in mice hearts and inhibited mTORC1 activation and oxidative stress to protect against pressure overload-induced cardiac hypertrophy in an AMPKα2 dependent pathway. Thus, interventions through promoting Sesn2 expression might be a potential strategy for treating pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan-Qi Mou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han Yan
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
16
|
Sharma A, Mah M, Ritchie RH, De Blasio MJ. The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes? Pharmacol Ther 2021; 232:108008. [PMID: 34610378 DOI: 10.1016/j.pharmthera.2021.108008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetes is associated with an increased risk of heart failure (HF). This is commonly termed diabetic cardiomyopathy and is often characterised by increased cardiac fibrosis, pathological hypertrophy, increased oxidative and endoplasmic reticulum stress as well as diastolic dysfunction. Adiponectin is a cardioprotective adipokine that is downregulated in settings of type 2 diabetes (T2D) and obesity. Furthermore, both adiponectin receptors (AdipoR1 and R2) are also downregulated in these settings which further results in impaired cardiac adiponectin signalling and reduced cardioprotection. In many cardiac pathologies, adiponectin signalling has been shown to protect against cardiac remodelling and lipotoxicity, however its cardioprotective actions in T2D-induced cardiomyopathy remain unresolved. Diabetic cardiomyopathy has historically lacked effective treatment options. In this review, we summarise the current evidence for links between the suppressed adiponectin signalling pathway and cardiac dysfunction, in diabetes. We describe adiponectin receptor-mediated signalling pathways that are normally associated with cardioprotection, as well as current and potential future therapeutic approaches that could target this pathway as possible interventions for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abhipree Sharma
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Michael Mah
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; Department of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
17
|
Puchałowicz K, Kłoda K, Dziedziejko V, Rać M, Wojtarowicz A, Chlubek D, Safranow K. Association of Adiponectin, Leptin and Resistin Plasma Concentrations with Echocardiographic Parameters in Patients with Coronary Artery Disease. Diagnostics (Basel) 2021; 11:diagnostics11101774. [PMID: 34679472 PMCID: PMC8534895 DOI: 10.3390/diagnostics11101774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/01/2023] Open
Abstract
The imbalanced network of adipokines may contribute to the development of systemic low-grade inflammation, metabolic diseases and coronary artery disease (CAD). In the last decade, three classic adipokines—adiponectin, leptin and resistin—have been of particular interest in studies of patients with CAD due to their numerous properties in relation to the cardiovascular system. This has directed our attention to the association of adipokines with cardiac structure and function and the development of heart failure (HF), a common end effect of CAD. Thus, the purpose of this study was to analyse the associations of plasma concentrations of adiponectin, leptin and resistin with parameters assessed in the echocardiographic examinations of CAD patients. The presented study enrolled 167 Caucasian patients (133 male; 34 female) with CAD. Anthropometric, echocardiographic and basic biochemical measurements, together with plasma concentrations of adiponectin, leptin and resistin assays, were performed in each patient. Adiponectin concentrations were negatively associated with left ventricular ejection fraction (LVEF) and shortening fraction (LVSF), and positively associated with mitral valve E/A ratio (E/A), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter LVESD, and left atrium diameter (LAD). Resistin concentrations were negatively associated with E/A. Leptin concentrations, although correlated with HF severity assessed by the New York Heart Association (NYHA) Functional Classification, were not independently associated with the echocardiographic parameters of cardiac structure or function. In conclusion, adiponectin and resistin, but not leptin, are associated with the echocardiographic parameters of cardiac remodelling and dysfunction. These associations suggest that adiponectin and resistin might be involved in mechanisms of cardiac remodelling or compensative response. We also suggest the possible benefits of adiponectin and resistin level measurements in the monitoring of patients with CAD.
Collapse
Affiliation(s)
- Kamila Puchałowicz
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
- Correspondence: ; Tel.: +48-91-4661515; Fax: +48-91-4661516
| | | | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| | - Monika Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| | - Andrzej Wojtarowicz
- Department of Cardiology, Pomeranian Medical University, 70111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70111 Szczecin, Poland; (V.D.); (M.R.); (D.C.); (K.S.)
| |
Collapse
|
18
|
PEGylated AdipoRon derivatives improve glucose and lipid metabolism under insulinopenic and high-fat diet conditions. J Lipid Res 2021; 62:100095. [PMID: 34214600 PMCID: PMC8327158 DOI: 10.1016/j.jlr.2021.100095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic actions of adiponectin in improving cell survival and metabolism have motivated the development of small-molecule therapeutic agents for treating diabetes and lipotoxicity. AdipoRon is a synthetic agonist of the adiponectin receptors, yet is limited by its poor solubility and bioavailability. In this work, we expand on the protective effects of AdipoRon in pancreatic β-cells and examine how structural modifications could affect the activity, pharmacokinetics, and bioavailability of this small molecule. We describe a series of AdipoRon analogs containing amphiphilic ethylene glycol (PEG) chains. Among these, AdipoRonPEG5 induced pleiotropic effects in mice under insulinopenic and high-fat diet (HFD) conditions. While both AdipoRon and AdipoRonPEG5 substantially attenuate palmitate-induced lipotoxicity in INS-1 cells, only AdipoRonPEG5 treatment is accompanied by a significant reduction in cytotoxic ceramides. In vivo, AdipoRonPEG5 can substantially reduce pancreatic, hepatic, and serum ceramide species, with a concomitant increase in the corresponding sphingoid bases and improves insulin sensitivity of mice under HFD feeding conditions. Furthermore, hyperglycemia in streptozotocin (STZ)-induced insulinopenic adiponectin-null mice is also attenuated upon AdipoRonPEG5 treatment. Our results suggest that AdipoRonPEG5 is more effective in reducing ceramides and dihydroceramides in the liver of HFD-fed mice than AdipoRon, consistent with its potent activity in activating ceramidase in vitro in INS-1 cells. Additionally, these results indicate that the beneficial effects of AdipoRonPEG5 can be partially attributed to improved pharmacokinetics as compared with AdipoRon, thus suggesting that further derivatization may improve affinity and tissue-specific targeting.
Collapse
|
19
|
MicroRNA-9 inhibits proliferation and progression in retinoblastoma cells by targeting PTEN. Genes Genomics 2021; 43:1023-1033. [PMID: 34129195 DOI: 10.1007/s13258-021-01043-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 01/05/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Retinoblastoma (RB) is the most prevalent primary intraocular malignancy, which commonly occurs during infant and childhood. OBJECTIVE Our study aimed to investigate whether microRNA-9 (miR-9) could regulate RB cells and its mechanism. METHODS qRT-PCR analysis was used to detect the expression of miR-9. In addition, to detect the migration of RB cells, wound healing assay was conducted. Xenograft tumor models in nude mice were also established, in order to assess the effects of miR-9 on tumor growth. qRT-PCR, luciferase reporter assay and western blot analysis were used to detect the target of miR-9. RESULTS Initially, the expression level of miR-9 was significantly decreased in the RB tissues and blood samples from patients with RB. qRT-PCR, luciferase reporter assay and western blot analysis were used to confirm that PTEN was the target genes of miR-9 and it was negatively regulated by miR-9. When the expression of miR-9 was up-regulated, the cell viability, proliferation, migration and tumor formation were significantly suppressed. Furthermore, the expression level of PTEN was decreased after transfection of miR-9 mimic. Taken together, these results indicated that miR-9 might suppress the cell viability, proliferation, migration and tumor formation in RB by inhibiting PTEN. CONCLUSION The in vitro and in vivo experiments demonstrated that miR-9 acts as a tumor suppressor function in RB cells and might serve as novel therapeutic targets for the treatment of RB.
Collapse
|
20
|
Bhat IA, Kabeer SW, Reza MI, Mir RH, Dar MO. AdipoRon: A Novel Insulin Sensitizer in Various Complications and the Underlying Mechanisms: A Review. Curr Mol Pharmacol 2021; 13:94-107. [PMID: 31642417 DOI: 10.2174/1874467212666191022102800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AdipoRon is the first synthetic analog of endogenous adiponectin, an adipose tissue-derived hormone. AdipoRon possesses pharmacological properties similar to adiponectin and its ability to bind and activate the adipoR1 and adipoR2 receptors makes it a suitable candidate for the treatment of a multitude of disorders. OBJECTIVE In the present review, an attempt was made to compile and discuss the efficacy of adipoRon against various disorders. RESULTS AdipoRon is a drug that acts not only in metabolic diseases but in other conditions unrelated to energy metabolism. It is well- reported that adipoRon exhibits strong anti-obesity, anti-diabetic, anticancer, anti-depressant, anti-ischemic, anti-hypertrophic properties and also improves conditions like post-traumatic stress disorder, anxiety, and systemic sclerosis. CONCLUSION A lot is known about its effects in experimental systems, but the translation of this knowledge to the clinic requires studies which, for many of the potential target conditions, have yet to be carried out. The beneficial effects of AdipoRon in novel clinical conditions will suggest an underlying pathophysiological role of adiponectin and its receptors in previously unsuspected settings.
Collapse
Affiliation(s)
- Ishfaq Ahmad Bhat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Muhammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
21
|
Li Y, Song B, Ruan C, Xue W, Zhao J. AdipoRon Attenuates Hypertension-Induced Epithelial-Mesenchymal Transition and Renal Fibrosis via Promoting Epithelial Autophagy. J Cardiovasc Transl Res 2021; 14:538-545. [PMID: 33025271 DOI: 10.1007/s12265-020-10075-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Hypertension-induced epithelial-mesenchymal transition (EMT) is a major mechanism of renal fibrosis. Adiponectin protects against hypertension-induced target organ damage. AdipoRon is an orally active synthetic adiponectin receptor agonist. However, it is unclear whether AdipoRon could attenuate EMT and renal fibrosis in hypertensive mice. C57BJ/6J mice were utilized to induce DOCA-salt-sensitive hypertensive model. Hypertension results in an altered adiponectin expression and promotes EMT in the kidney. In vitro, AdipoRon inhibits aldosterone (Aldo)-induced EMT and promotes autophagic flux in HK-2 epithelial cells. Mechanically, AdipoRon activates AMPK/ULK1 pathway in epithelial cells. Blockade of AMPK activation, as well as inhibition of autophagy, blocks the effects of AdipoRon on Aldo-induced EMT. Moreover, AdipoRon treatment promotes autophagy and improves renal fibrosis in DOCA-salt-hypertensive mice. Our data suggest that AdipoRon could be a potential therapeutic option to prevent renal fibrosis in hypertensive patients. Graphical abstract.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, RuiJin Hospital/LuWan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bei Song
- Department of General Practice, RuiJin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chengchao Ruan
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - WenJie Xue
- Huangpu District Bansongyuan Road Health Service Center, Shanghai, China.
| | - Jianrong Zhao
- Department of Cardiology, RuiJin Hospital/LuWan Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
22
|
Zatorski H, Salaga M, Zielińska M, Majchrzak K, Binienda A, Kordek R, Małecka-Panas E, Fichna J. AdipoRon, an Orally Active, Synthetic Agonist of AdipoR1 and AdipoR2 Receptors Has Gastroprotective Effect in Experimentally Induced Gastric Ulcers in Mice. Molecules 2021; 26:molecules26102946. [PMID: 34063466 PMCID: PMC8156685 DOI: 10.3390/molecules26102946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction: Adiponectin is a hormone secreted by adipocytes, which exhibits insulin-sensitizing and anti-inflammatory properties and acts through adiponectin receptors: AdipoR1 and AdipoR2. The aim of the study was to evaluate whether activation of adiponectin receptors AdipoR1 and AdipoR2 with an orally active agonist AdipoRon has gastroprotective effect and to investigate the possible underlying mechanism. Methods: We used two well-established mouse models of gastric ulcer (GU) induced by oral administration of EtOH (80% solution in water) or diclofenac (30 mg/kg, p.o.). Gastroprotective effect of AdipoRon (dose 5 and 50 mg/kg p.o.) was compared to omeprazole (20 mg/kg p.o.) or 5% DMSO solution (control). Clinical parameters of gastroprotection were assessed using macroscopic (gastric lesion area) and microscopic (evaluation of the gastric mucosa damage) scoring. To establish the molecular mechanism, we measured: myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities; glutathione (GSH) level; and IL-1β, adenosine monophosphate-activated protein kinase (AMPK), and phosphorylated AMPK expression in gastric tissue. Results: AdipoRon produced a gastroprotective effect in both GU mouse models as evidenced by significantly lower macroscopic and microscopic damage scores. AdipoRon exhibited anti-inflammatory effect by reduction in MPO activity and IL-1β expression in the gastric tissue. Moreover, AdipoRon induced antioxidative action, as demonstrated with higher GSH levels, and increased SOD and GPX activity. Conclusions: Activation of AdipoR1 and AdipoR2 using AdipoRon reduced gastric lesions and enhanced cell response to oxidative stress. Our data suggest that AdipoR1 and AdipoR2 activation may be an attractive therapeutic strategy to inhibit development of gastric ulcers.
Collapse
Affiliation(s)
- Hubert Zatorski
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
- Department of Digestive Tract Diseases, Medical University of Lodz, 93-281 Lodz, Poland;
| | - Maciej Salaga
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Marta Zielińska
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Kinga Majchrzak
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Agata Binienda
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, 93-281 Lodz, Poland;
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (H.Z.); (M.S.); (M.Z.); (K.M.); (A.B.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-57-07
| |
Collapse
|
23
|
Mou SQ, Zhou ZY, Feng H, Zhang N, Lin Z, Aiyasiding X, Li WJ, Ding W, Liao HH, Bian ZY, Tang QZ. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol 2021; 12:648688. [PMID: 34054527 PMCID: PMC8162655 DOI: 10.3389/fphar.2021.648688] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Liquiritin (LIQ) is a traditional Chinese medicine that has been reported to regulate inflammation, oxidative stress and cell apoptosis. However, the beneficial effects of LIQ in lipopolysaccharides (LPS)-induced septic cardiomyopathy (SCM) has not been reported. The primary goal of this study was to investigate the effects of LIQ in LPS-induced SCM model. Methods: Mice were pre-treated with LIQ for 7 days before they were injected with LPS (10 mg/kg) for inducing SCM model. Echocardiographic analysis was used to evaluate cardiac function after 12 h of LPS injection. Thereafter, mice were sacrificed to collect hearts for molecular and histopathologic assays by RT-PCR, western-blots, immunohistochemical and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining analysis respectively. AMPKα2 knockout (AMPKα2−/−) mice were used to elucidate the mechanism of LIQ Neonatal rat cardiomyocytes (NRCMs) treated with or without LPS were used to further investigate the roles and mechanisms of LIQ in vitro experiments. Results: LIQ administration attenuated LPS-induced mouse cardiac dysfunction and reduced mortality, based upon the restoration of EF, FS, LVEDs, heart rate, dp/dt max and dp/dt min deteriorated by LPS treatment. LIQ treatment also reduced mRNA expression of TNFα, IL-6 and IL-1β, inhibited inflammatory cell migration, suppressed cardiac oxidative stress and apoptosis, and improved metabolism. Mechanistically, LIQ enhanced the phosphorylation of AMP-activated protein kinase α2 (AMPKα2) and decreased the phosphorylation of mTORC1, IκBα and NFκB/p65. Importantly, the beneficial roles of LIQ were not observed in AMPKα2 knockout model, nor were they observed in vitro model after inhibiting AMPK activity with an AMPK inhibitor. Conclusion: We have demonstrated that LIQ exerts its protective effects in an SCM model induced by LPS administration. LIQ reduced inflammation, oxidative stress, apoptosis and metabolic alterations via regulating AMPKα2 dependent signaling pathway. Thus, LIQ might be a potential treatment or adjuvant for SCM treatment.
Collapse
Affiliation(s)
- Shan-Qi Mou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
24
|
Li J, Ma XJ, Wu X, Si SJ, Li C, Yang PK, Li GX, Liu XJ, Tian YD, Kang XT. Adiponectin modulates steroid hormone secretion, granulosa cell proliferation and apoptosis via binding its receptors during hens' high laying period. Poult Sci 2021; 100:101197. [PMID: 34089930 PMCID: PMC8182267 DOI: 10.1016/j.psj.2021.101197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 01/23/2023] Open
Abstract
Adiponectin is an important adipocytokine and plays the roles in multiple metabolic processes via binding its receptors - AdipoR1 and AdipoR2, which has also been found to participate in the regulation of the reproductive system of animals, in particular by influencing the secretion of ovarian steroid hormones. To further investigate the expression of adiponectin and its receptors in follicles after in vitro incubation, and their role in the steroid synthesis of laying hens’ ovaries, we performed qRT-PCR and ELISA to detect the expressions of AdipoQ, AdipoR1, and AidpoR2, and determined the key genes involved in steroidogenesis and the secretion of estradiol (E2) and progesterone (P4) through the in vitro activation of adiponectin (AipoRon) and overexpression or knockdown of AdipoR1 and AdipoR2. Our results revealed that adiponectin and its receptors wildly exist in follicles and granulosa cells, and AdipoRon (5 and 10 µg/mL) had no effect on granulosa cell proliferation and apoptosis but significantly stimulated the secretion of adiponectin and its receptors in granulosa cells after incubation for 24 h. Furthermore, AdipoRon could significantly stimulate the secretion of P4 and inhibit E2 level compared to those of the control group through modulating the key genes expression of steroidogenesis (CYP19A1, StAR, CYP11A1, FSHR, and LHR). The secretion of E2 was also decreased in granulosa cells by the treatments of overexpression and knockdown of AdipoR1/2, however, there was no difference in terms of the level of P4 and StAR expression between them if there was overexpression or knockdown of AdipoR1/2. In addition, it was shown that the secretion of E2 only exhibits a marked drop if co-processing 10 µg/mL AdipoRon and pGMLV AdipoR2 compared to single treatments. Taken together, the study highlighted the role of adiponectin and its receptors in the regulation of steroid synthesis and secretion in ovarian granulosa cells in laying hens.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xue-Jie Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Su-Jin Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Chong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Peng-Kun Yang
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Guo-Xi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Xiao-Jun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| | - Ya-Dong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China.
| | - Xiang-Tao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China; Henan Key laboratory for innovation and utilization of chicken germplasm resources, Zhengzhou, 450046, China
| |
Collapse
|
25
|
Jenke A, Yazdanyar M, Miyahara S, Chekhoeva A, Immohr MB, Kistner J, Boeken U, Lichtenberg A, Akhyari P. AdipoRon Attenuates Inflammation and Impairment of Cardiac Function Associated With Cardiopulmonary Bypass-Induced Systemic Inflammatory Response Syndrome. J Am Heart Assoc 2021; 10:e018097. [PMID: 33666100 PMCID: PMC8174216 DOI: 10.1161/jaha.120.018097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Cardiac surgery using cardiopulmonary bypass (CPB) frequently provokes a systemic inflammatory response syndrome, which is triggered by TLR4 (Toll‐like receptor 4) and TNF‐α (tumor necrosis factor α) signaling. Here, we investigated whether the adiponectin receptor 1 and 2 agonist AdipoRon modulates CPB‐induced inflammation and cardiac dysfunction. Methods and Results Rats underwent CPB with deep hypothermic circulatory arrest and were finally weaned from the heart‐lung machine. Compared with vehicle, AdipoRon application attenuated the CPB‐induced impairment of mean arterial pressure following deep hypothermic circulatory arrest. During the weaning and postweaning phases, heart rate and mean arterial pressure in all AdipoRon animals (7 of 7) remained stable, while cardiac rhythm was irretrievably lost in 2 of 7 of the vehicle‐treated animals. The AdipoRon‐mediated improvements of cardiocirculatory parameters were accompanied by increased plasma levels of IL (interleukin) 10 and diminished concentrations of lactate and K+. In myocardial tissue, AdipoRon activated AMP‐activated protein kinase (AMPK) while attenuating CPB‐induced degradation of nuclear factor κB inhibitor α (IκBα), upregulation of TNF‐α, IL‐1β, CCL2 (C‐C chemokine ligand 2), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inducible nitric oxide synthase. Correspondingly, in cultured cardiac myocytes, cardiac fibroblasts, and vascular endothelial cells, AdipoRon activated AMPK, upregulated IL‐10, and attenuated activation of nuclear factor κB, as well as upregulation of TNF‐α, IL‐1β, CCL2, NADPH oxidase, and inducible nitric oxide synthase induced by lipopolysaccharide or TNF‐α. In addition, the treatment of cardiac myocytes with the AMPK activator 5‐aminoimidazole‐4‐carboxamide 1‐β‐D‐ribofuranoside resulted in a similar inhibition of lipopolysaccharide‐ and TNF‐α–induced inflammatory cell phenotypes as for AdipoRon. Conclusions Our observations indicate that AdipoRon attenuates CPB‐induced inflammation and impairment of cardiac function through AMPK‐mediated inhibition of proinflammatory TLR4 and TNF‐α signaling in cardiac cells and upregulation of immunosuppressive IL‐10.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Mariam Yazdanyar
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Shunsuke Miyahara
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Agunda Chekhoeva
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Moritz Benjamin Immohr
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Julia Kistner
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Udo Boeken
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Payam Akhyari
- Department of Cardiac Surgery Düsseldorf University Hospital Düsseldorf Germany.,Research Group Experimental Surgery Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
26
|
Song H, Chen X, Jiao Q, Qiu Z, Shen C, Zhang G, Sun Z, Zhang H, Luo QY. HIF-1α-Mediated Telomerase Reverse Transcriptase Activation Inducing Autophagy Through Mammalian Target of Rapamycin Promotes Papillary Thyroid Carcinoma Progression During Hypoxia Stress. Thyroid 2021; 31:233-246. [PMID: 32772829 DOI: 10.1089/thy.2020.0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: It is important to properly understand the molecular mechanisms of aggressive tumors among papillary thyroid carcinomas (PTCs) that are often the most indolent. Hypoxia inducible factor-1α (HIF-1α), induced by hypoxia, plays pivotal roles in the development and metastasis of the many tumors, including PTCs. Upregulation of telomerase reverse transcriptase (TERT) activity is found in highly invasive PTCs. Further, previous studies have reported that autophagy serves as a protective mechanism to facilitate PTC cell survival. We, therefore, hypothesized that there was a link between HIF-1α, TERT, and autophagy in promoting PTC progression. Methods: Immunohistochemistry staining was conducted to evaluate the expressions of HIF-1α, TERT, and autophagy marker, LC3-II, in matched PTC tumors and corresponding nontumor tissues. Two PTC cell lines (TPC-1 and BCPAP) were used in subsequent cytological function studies. Cell viability, proliferation, apoptosis, migration, and invasion were assessed during hypoxia, genetic enhancement and inhibition of TERT, and chemical and genetic inhibition of autophagy. The protein expression levels of the corresponding biomarkers were determined by Western blotting, and autophagy flow was detected. We characterized the molecular mechanism of PTC cell progression. Results: The protein expression levels of HIF-1α, TERT, and LC3-II were upregulated in PTCs and were significantly correlated with high tumor-node-metastasis stage. Further, an in vitro study indicated that HIF-1α induced by hypoxia functioned as a transcriptional activator by binding with sequences potentially located in the TERT promoter and was positively correlated with the malignant behavior of PTC cell lines. Overexpression of TERT inhibited the kinase activity of mammalian target of rapamycin (mTOR), resulting in the activation of autophagy. Functionally, TERT-induced autophagy provided a survival advantage to PTC cells during hypoxia stress. Conclusions: We identified a novel molecular mechanism involving the HIF-1α/TERT axis, which promoted PTC progression by inducing autophagy through mTOR during hypoxia stress. These findings may provide a basis for the new treatment of aggressive PTCs.
Collapse
Affiliation(s)
- Hongjun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyue Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiong Jiao
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenkui Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
27
|
Abstract
The landmark discoveries of leptin and adiponectin firmly established adipose tissue as a sophisticated and highly active endocrine organ, opening a new era of investigating adipose-mediated tissue crosstalk. Both obesity-associated hyperleptinemia and hypoadiponectinemia are important biomarkers to predict cardiovascular outcomes, suggesting a crucial role for adiponectin and leptin in obesity-associated cardiovascular disorders. Normal physiological levels of adiponectin and leptin are indeed essential to maintain proper cardiovascular function. Insufficient adiponectin and leptin signaling results in cardiovascular dysfunction. However, a paradox of high levels of both leptin and adiponectin is emerging in the pathogenesis of cardiovascular disorders. Here, we (1) summarize the recent progress in the field of adiponectin and leptin and its association with cardiovascular disorders, (2) further discuss the underlying mechanisms for this new paradox of leptin and adiponectin action, and (3) explore the possible application of partial leptin reduction, in addition to increasing the adiponectin/leptin ratio as a means to prevent or reverse cardiovascular disorders.
Collapse
Affiliation(s)
- Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine (S.Z., C.M.K., P.E.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine (S.Z., C.M.K., P.E.S.), The University of Texas Southwestern Medical Center, Dallas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine (S.Z., C.M.K., P.E.S.), The University of Texas Southwestern Medical Center, Dallas.,Department of Cell Biology (P.E.S.), The University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
28
|
Mayer O, Seidlerová J, Bruthans J, Gelžinský J, Rychecká M, Mateřánková M, Karnosová P, Wohlfahrt P, Cífková R, Filipovský J. Is There Really an Association of High Circulating Adiponectin Concentration and Mortality or Morbidity Risk in Stable Coronary Artery Disease? Horm Metab Res 2020; 52:861-868. [PMID: 32746485 DOI: 10.1055/a-1212-8759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Adiponectin has several beneficial properties, namely, on the level of glucose metabolism, but paradoxically, its high concentrations were associated with increased mortality. We aimed to clarify the impact of high serum adiponectin on mortality and morbidity in patients with stable coronary artery heart disease (CAD). A total of 973 patients after myocardial infarction and/or coronary revascularization were followed in a prospective cohort study. All-cause and cardiovascular (CV) death, non-fatal cardiovascular events, and hospitalizations for heart failure (HF) were registered as outcomes. High serum adiponectin levels (≥8.58 ng/ml, i. e., above median) were independently associated with increased risk of 5-year all-cause, CV mortality or HF [with HRR 1.57 (95% CI: 1.07-2.30), 1.74 (95% CI: 1.08-2.81) or 1.94 (95% CI: 1.20-3.12), respectively] when adjusted just for conventional risk factors. However, its significance disappeared if brain natriuretic peptide (BNP) was included in a regression model. In line with this, we observed strong collinearity of adiponectin and BNP. Additionally, major adverse cardiovascular event (i. e., CV death, non-fatal myocardial infarction or stroke, coronary revascularization) incidence risk was not associated with high adiponectin. In conclusion, the observed inverse association between adiponectin concentrations and mortality risk seems to be attributable to concomitantly increased BNP, rather than high adiponectin being a causal factor.
Collapse
Affiliation(s)
- Otto Mayer
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Jitka Seidlerová
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Jan Bruthans
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
- Centre for Cardiovascular Prevention of the First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Julius Gelžinský
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
| | - Martina Rychecká
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
| | - Markéta Mateřánková
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Petra Karnosová
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| | - Peter Wohlfahrt
- Centre for Cardiovascular Prevention of the First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Renata Cífková
- Centre for Cardiovascular Prevention of the First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Jan Filipovský
- 2nd Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University and University Hospital, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Czech Republic
| |
Collapse
|
29
|
A Potential Theragnostic Regulatory Axis for Arthrofibrosis Involving Adiponectin (ADIPOQ) Receptor 1 and 2 (ADIPOR1 and ADIPOR2), TGFβ1, and Smooth Muscle α-Actin (ACTA2). J Clin Med 2020; 9:jcm9113690. [PMID: 33213041 PMCID: PMC7698546 DOI: 10.3390/jcm9113690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Arthrofibrosis is a common cause of patient debility and dissatisfaction after total knee arthroplasty (TKA). The diversity of molecular pathways involved in arthrofibrosis disease progression suggest that effective treatments for arthrofibrosis may require a multimodal approach to counter the complex cellular mechanisms that direct disease pathogenesis. In this study, we leveraged RNA-seq data to define genes that are suppressed in arthrofibrosis patients and identified adiponectin (ADIPOQ) as a potential candidate. We hypothesized that signaling pathways activated by ADIPOQ and the cognate receptors ADIPOR1 and ADIPOR2 may prevent fibrosis-related events that contribute to arthrofibrosis. (2) Methods: Therefore, ADIPOR1 and ADIPOR2 were analyzed in a TGFβ1 inducible cell model for human myofibroblastogenesis by both loss- and gain-of-function experiments. (3) Results: Treatment with AdipoRon, which is a small molecule agonist of ADIPOR1 and ADIPOR2, decreased expression of collagens (COL1A1, COL3A1, and COL6A1) and the myofibroblast marker smooth muscle α-actin (ACTA2) at both mRNA and protein levels in basal and TGFβ1-induced cells. (4) Conclusions: Thus, ADIPOR1 and ADIPOR2 represent potential drug targets that may attenuate the pathogenesis of arthrofibrosis by suppressing TGFβ-dependent induction of myofibroblasts. These findings also suggest that AdipoRon therapy may reduce the development of arthrofibrosis by mediating anti-fibrotic effects in joint capsular tissues.
Collapse
|
30
|
Zhao D, Zhu X, Jiang L, Huang X, Zhang Y, Wei X, Zhao X, Du Y. Advances in understanding the role of adiponectin in renal fibrosis. Nephrology (Carlton) 2020; 26:197-203. [PMID: 33073881 DOI: 10.1111/nep.13808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 12/25/2022]
Abstract
Renal fibrosis is characterized by the proliferation of renal intrinsic cells, activation of renal interstitial fibroblasts and deposition of extracellular matrix (ECM), processes that lead to the progressive loss of renal function. Renal fibrosis is characterized by the proliferation of renal intrinsic cells, activation of renal interstitial fibroblasts, and septal fibrosis is recognized as a marker for the progression of chronic kidney disease, a condition that is associated with high morbidity and mortality and is a significant public health burden. Despite extensive studies, there are no effective treatments for renal fibrosis. Adiponectin (APN) is a protein mainly produced by adipocytes that has anti-inflammatory and anti-atherosclerotic effects, improves insulin resistance and provides other salutary effects. Recent studies found that APN can inhibit ECM deposition by inhibiting inflammation and oxidative stress, and by regulating the TGF-β, AMPK, MCP-1 and other signalling pathways. Many recent studies have examined the roles of these pathways in the pathogenesis of renal fibrosis. In this article, we review the pathogenic mechanism of APN in renal fibrosis and provide a theoretical basis for delaying and blocking renal fibrosis by alteration of APN activity.
Collapse
Affiliation(s)
- Dan Zhao
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoyu Zhu
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lili Jiang
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiu Huang
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yangyang Zhang
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xuejiao Wei
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoxia Zhao
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yujun Du
- The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
31
|
AdipoRon, an adiponectin receptor agonist, protects contrast-induced nephropathy by suppressing oxidative stress and inflammation via activation of the AMPK pathway. Clin Exp Nephrol 2020; 24:989-998. [PMID: 32734507 DOI: 10.1007/s10157-020-01944-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Contrast-induced nephropathy (CIN), a complication caused by using contrast medium during diagnostic and interventional procedures, occurs frequently and lacks effective treatment. AdipoRon, the agonist of adiponectin receptors, has been shown to benefit many organs including the kidney. This study aimed to investigate the role of AdipoRon in treating CIN. METHODS CIN model was established via infusing iopromide (1.8 g/kg) in Sprague-Dawley (SD) rats; NRK52E cells were treated with iopromide (5-50 μM). Renal function, renal histopathology, levels of lactate dehydrogenase (LDH) release, cell vitality, oxidative stress and inflammatory markers were measured to evaluate the protective effects of AdipoRon. The level of pAMPK/AMPK was determined by western blot. RESULTS AdipoRon (50 mg/kg) significantly reversed serum creatinine, blood urea nitrogen, creatinine clearance and urinary kidney injury molecule-1 levels induced by iopromide in SD rats. Besides, it decreased the renal injury score and apoptosis of renal cells. AdipoRon also reversed the changes of antioxidant markers, pro-oxidant and inflammatory markers induced by iopromide. Moreover, the in vitro studies showed that AdipoRon decreased LDH release and increased cell vitality in NRK52E cells treated with iopromide. Then, we demonstrated that the protection of AdipoRon was accompanied by augmented AMPK phosphorylation. Both in vivo and in vitro studies demonstrated that compound c, an AMPK inhibitor, reversed the AdipoRon-mediated improvement in the CIN model. CONCLUSION Our data indicate that AdipoRon protects against the CIN by suppressing oxidative stress and inflammation via activating the AMPK pathway, showing that AdipoRon might be a potential candidate for the prevention and therapy of CIN.
Collapse
|
32
|
Leffler KE, Abdel-Rahman AA. Restoration of Adiponectin-Connexin43 Signaling Mitigates Myocardial Inflammation and Dysfunction in Diabetic Female Rats. J Cardiovasc Pharmacol 2020; 75:259-267. [PMID: 31868825 PMCID: PMC7537147 DOI: 10.1097/fjc.0000000000000789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ur preclinical findings replicated women's hypersensitivity to type-2 diabetes mellitus (T2DM)-evoked cardiac dysfunction along with demonstrating estrogen (E2)-dependent disruption of the cardiac adiponectin (APN)-connexin43 (Cx43) signaling. Whether the latter molecular anomaly underlies this women's cardiovascular health problem remains unknown. We hypothesized that restoration of the disrupted APN-Cx43 signaling alleviates this sex/E2-dependent cardiac dysfunction in diabetic female rats. To test this hypothesis, we administered the adiponectin receptor 1 (AdipoR1) agonist AdipoRon (30 mg/kg/d for 10 days) to female sham operated (SO) and ovariectomized (OVX) rats, which exhibited and lacked the T2DM left ventricular (LV) dysfunction, respectively, when fed high-fat diet and received low dose streptozotocin regimen; nondiabetic control SO and OVX rats received control diet and vehicle for streptozotocin. In T2DM SO rats, LV dysfunction, AdipoRon mitigated: (1) LV hypertrophy, (2) reductions in fractional shortening, LV developed pressure, dP/dtmax, dP/dtmin, and Tau. In LV tissues of the same rats, AdipoRon reversed reduction in Cx43 and elevations in TNFα, heme-oxygenase 1 (HO-1), and circulating cardiovascular risk factor asymmetric dimethylarginine. The findings also revealed ovarian hormones independent effects of AdipoRon, which included dampening of the pro-oxidant enzyme HO-1. These novel findings yield new insight into a causal role for compromised APN-Cx43 signaling in the E2-dependent hypersensitivity to T2DM-evoked cardiac inflammation and dysfunction. Equally important, the findings identify restoration of Cx43 signaling as a viable therapeutic modality for alleviating this women's cardiovascular health-related problem.
Collapse
MESH Headings
- Adiponectin/metabolism
- Animals
- Arginine/analogs & derivatives
- Arginine/metabolism
- Connexin 43/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Estradiol/metabolism
- Estrogen Receptor alpha/metabolism
- Female
- Heme Oxygenase (Decyclizing)/metabolism
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Ovariectomy
- Piperidines/pharmacology
- Rats, Wistar
- Receptors, Adiponectin/agonists
- Receptors, Adiponectin/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Korin E Leffler
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, NC
| | | |
Collapse
|
33
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
34
|
Duan ZX, Tu C, Liu Q, Li SQ, Li YH, Xie P, Li ZH. Adiponectin receptor agonist AdipoRon attenuates calcification of osteoarthritis chondrocytes by promoting autophagy. J Cell Biochem 2020; 121:3333-3344. [PMID: 31898335 DOI: 10.1002/jcb.29605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
Cartilage calcification contributes to the development and progression of osteoarthritis (OA). It has been well-investigated adiponectin regulates vascular calcification. The purpose of this study is to investigate the therapeutic value and the molecular mechanism of AdipoRon, an adiponectin receptor agonist, on the chondrocytes calcification. Primary chondrocytes were isolated and cultured from normal cartilage and OA cartilage. The calcification in tissues was evaluated by inductively coupled plasma/atomic emission spectroscopy and alizarin red S staining. The calcification in chondrocytes was determined using the alkaline phosphatase (ALP) staining and an ALP assay kit. The cellular effects of AdipoRon were assessed by immunofluorescence staining and Western blot analysis. We found that calcification was significantly increased in OA cartilage tissues and cells. Importantly, the degree of calcification and ALP activity of the OA chondrocytes was decreased upon the treatment with AdipoRon. The AdipoRon-induced cellular effects, including the reduction of the calcification of chondrocytes and improvement of autophagy, were blocked by dorsomorphin, an 5'-adenosine monophosphate-activated protein kinase (AMPK) inhibitor. Moreover, autophagy activation by AdipoRon was mediated by the AMPK-mammalian target of rapamycin (mTOR) signaling pathway. Our results suggest that AdipoRon significantly alleviates the calcification of OA chondrocytes via activating AMPK-mTOR signaling to promote autophagy. Therefore, AdipoRon could be a potential therapeutic agent for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Zhi-Xi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang-Qing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Han Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Xie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Hong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Wang H, Duan M, Xu M, Huang S, Yang J, Yang J, Liu L, Huang R, Wan C, Ma Z, Wu Q, Tang Q. Cordycepin ameliorates cardiac hypertrophy via activating the AMPKα pathway. J Cell Mol Med 2019; 23:5715-5727. [PMID: 31225721 PMCID: PMC6653598 DOI: 10.1111/jcmm.14485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/30/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Increase of myocardial oxidative stress is closely related to the occurrence and development of cardiac hypertrophy. Cordycepin, also known as 3'-deoxyadenosine, is a natural bioactive substance extracted from Cordyceps militaris (which is widely cultivated for commercial use in functional foods and medicine). Since cordycepin suppresses oxidative stress both in vitro and in vivo, we hypothesized that cordycepin would inhibit cardiac hypertrophy by blocking oxidative stress-dependent related signalling. In our study, a mouse model of cardiac hypertrophy was induced by aortic banding (AB) surgery. Mice were intraperitoneally injected with cordycepin (20 mg/kg/d) or the same volume of vehicle 3 days after-surgery for 4 weeks. Our data demonstrated that cordycepin prevented cardiac hypertrophy induced by AB, as assessed by haemodynamic parameters analysis and echocardiographic, histological and molecular analyses. Oxidative stress was estimated by detecting superoxide generation, superoxide dismutase (SOD) activity and malondialdehyde levels, and by detecting the protein levels of gp91phox and SOD. Mechanistically, we found that cordycepin activated activated protein kinase α (AMPKα) signalling and attenuated oxidative stress both in vivo in cordycepin-treated mice and in vitro in cordycepin treated cardiomyocytes. Taken together, the results suggest that cordycepin protects against post-AB cardiac hypertrophy through activation of the AMPKα pathway, which subsequently attenuates oxidative stress.
Collapse
Affiliation(s)
- Hui‐Bo Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
- Department of Cardiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangPR China
- Institute of Cardiovascular DiseasesChina Three Gorges UniversityYichangPR China
| | - Ming‐Xia Duan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Man Xu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Si‐Hui Huang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangPR China
- Institute of Cardiovascular DiseasesChina Three Gorges UniversityYichangPR China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical ScienceChina Three Gorges UniversityYichangPR China
- Institute of Cardiovascular DiseasesChina Three Gorges UniversityYichangPR China
| | - Li‐Bo Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Rong Huang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Chun‐Xia Wan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Zhen‐Guo Ma
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Qing‐Qing Wu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| | - Qi‐Zhu Tang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanPR China
- Hubei Key Laboratory of Metabolic and Chronic DiseasesWuhanRP China
| |
Collapse
|
36
|
Revathidevi S, Munirajan AK. Akt in cancer: Mediator and more. Semin Cancer Biol 2019; 59:80-91. [PMID: 31173856 DOI: 10.1016/j.semcancer.2019.06.002] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Akt is a serine/threonine kinase and it participates in the key role of the PI3K signaling pathway. The Akt can be activated by a wide range of growth signals and the biochemical mechanisms leading to Akt activation are well defined. Once activated, Akt modulates the function of many downstream proteins involved in cellular survival, proliferation, migration, metabolism, and angiogenesis. The Akt is a central node of many signaling pathways and it is frequently deregulated in many types of human cancers. In this review, we provide an overview of Akt function and its role in the hallmarks of human cancer. We also discussed various mechanisms of Akt dysregulation in cancers, including epigenetic modifications like methylation, post-transcriptional non-coding RNAs-mediated regulation, and the overexpression and mutation.
Collapse
Affiliation(s)
- Sundaramoorthy Revathidevi
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 113, Tamil Nadu, India
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 113, Tamil Nadu, India.
| |
Collapse
|
37
|
Increasing Adiponergic System Activity as a Potential Treatment for Depressive Disorders. Mol Neurobiol 2019; 56:7966-7976. [PMID: 31140056 PMCID: PMC6834732 DOI: 10.1007/s12035-019-01644-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/22/2022]
Abstract
Depression is the most devastating mental disorder and one of the leading contributors to the global medical burden. Current antidepressant prescriptions present drawbacks, including treatment resistance, delayed onset of treatment response, and side effects. The rapid and long-lasting antidepressant effect of ketamine has brought hope to treatment-resistant major depressive disorder patients. However, ketamine has undesirable addictive properties and is a drug of abuse. There is an urgent need, therefore, to develop novel pharmacological interventions that could be as effective as ketamine, but without its side effects. Adiponectin, a pleiotropic adipocyte-secreted hormone, has insulin-sensitizing and neurotrophic properties. It can cross the blood-brain barrier and target multiple brain regions where the adiponectin receptors are detected. Emerging evidence has suggested that adiponectin and the adiponectin receptor agonist, AdipoRon, could promote adult neurogenesis, dendritic and spine remodeling, and synaptic plasticity in the hippocampus, resulting in antidepressant effects in adult mice. By summarizing the most recent clinical and animal studies, this review provides a timely insight on how modulating the adiponergic system in the hippocampus could be a potential therapeutic target for an effective and fast-acting antidepressant response.
Collapse
|
38
|
The Role of Heme Oxygenase 1 in the Protective Effect of Caloric Restriction against Diabetic Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20102427. [PMID: 31100876 PMCID: PMC6566501 DOI: 10.3390/ijms20102427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes mellitus (DM2) leads to cardiomyopathy characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and interstitial fibrosis, all of which are exacerbated by angiotensin II (AT). SIRT1 and its transcriptional coactivator target PGC-1α (peroxisome proliferator-activated receptor-γ coactivator), and heme oxygenase-1 (HO-1) modulates mitochondrial biogenesis and antioxidant protection. We have previously shown the beneficial effect of caloric restriction (CR) on diabetic cardiomyopathy through intracellular signaling pathways involving the SIRT1–PGC-1α axis. In the current study, we examined the role of HO-1 in diabetic cardiomyopathy in mice subjected to CR. Methods: Cardiomyopathy was induced in obese diabetic (db/db) mice by AT infusion. Mice were either fed ad libitum or subjected to CR. In an in vitro study, the reactive oxygen species (ROS) level was determined in cardiomyocytes exposed to different glucose levels (7.5–33 mM). We examined the effects of Sn(tin)-mesoporphyrin (SnMP), which is an inhibitor of HO activity, the HO-1 inducer cobalt protoporphyrin (CoPP), and the SIRT1 inhibitor (EX-527) on diabetic cardiomyopathy. Results: Diabetic mice had low levels of HO-1 and elevated levels of the oxidative marker malondialdehyde (MDA). CR attenuated left ventricular hypertrophy (LVH), increased HO-1 levels, and decreased MDA levels. SnMP abolished the protective effects of CR and caused pronounced LVH and cardiac metabolic dysfunction represented by suppressed levels of adiponectin, SIRT1, PPARγ, PGC-1α, and increased MDA. High glucose (33 mM) increased ROS in cultured cardiomyocytes, while SnMP reduced SIRT1, PGC-1α levels, and HO activity. Similarly, SIRT1 inhibition led to a reduction in PGC-1α and HO-1 levels. CoPP increased HO-1 protein levels and activity, SIRT1, and PGC-1α levels, and decreased ROS production, suggesting a positive feedback between SIRT1 and HO-1. Conclusion: These results establish a link between SIRT1, PGC-1α, and HO-1 signaling that leads to the attenuation of ROS production and diabetic cardiomyopathy. CoPP mimicked the beneficial effect of CR, while SnMP increased oxidative stress, aggravating cardiac hypertrophy. The data suggest that increasing HO-1 levels constitutes a novel therapeutic approach to protect the diabetic heart. Brief Summary: CR attenuates cardiomyopathy, and increases HO-1, SIRT activity, and PGC-1α protein levels in diabetic mice. High glucose reduces adiponectin, SIRT1, PGC1-1α, and HO-1 levels in cardiomyocytes, resulting in oxidative stress. The pharmacological activation of HO-1 activity mimics the effect of CR, while SnMP increased oxidative stress and cardiac hypertrophy. These data suggest the critical role of HO-1 in protecting the diabetic heart.
Collapse
|
39
|
Adiponectin in Myopathies. Int J Mol Sci 2019; 20:ijms20071544. [PMID: 30934785 PMCID: PMC6480168 DOI: 10.3390/ijms20071544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
In skeletal muscle, adiponectin has varied and pleiotropic functions, ranging from metabolic, anti-inflammatory, insulin-sensitizing to regenerative roles. Despite the important functions exerted by adiponectin, the study of the hormone in myopathies is still marginal. Myopathies include inherited and non-inherited/acquired neuromuscular pathologies characterized by muscular degeneration and weakness. This review reports current knowledge about adiponectin in myopathies, regarding in particular the role of adiponectin in some hereditary myopathies (as Duchenne muscular dystrophy) and non-inherited/acquired myopathies (such as idiopathic inflammatory myopathies and fibromyalgia). These studies show that some myopathies are characterized by decreased concentration of plasma adiponectin and that hormone replenishment induces beneficial effects in the diseased muscles. Overall, these findings suggest that adiponectin could constitute a future new therapeutic approach for the improvement of the abnormalities caused by myopathies.
Collapse
|
40
|
Otvos L. Potential Adiponectin Receptor Response Modifier Therapeutics. Front Endocrinol (Lausanne) 2019; 10:539. [PMID: 31456747 PMCID: PMC6700268 DOI: 10.3389/fendo.2019.00539] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Many human diseases may benefit from adiponectin replacement therapy, but due to pharmacological disadvantages of the intact protein, druggable options focus on peptidic, and small molecule agonists of the adiponectin receptor. Peptide-based adiponectin replacement drug leads are derived from, or resemble, the active site of globular adiponectin. ADP355, the first-in-class such peptide, exhibits low nanomolar cellular activities, and clinically acceptable efficacies in a series of fibrotic and inflammation-derived diseases. The advantage of small molecule therapies, spearheaded by AdipoRon, is oral availability and extension of utility to a series of metabolic conditions. It is exactly the difficulties in the reliability and readout of the in vitro measures and the wealth of in vivo models that make comparison of the various drug classes complicated, if not impossible. While only a fewer number of maladies could take advantage of adiponectin receptor antagonists, the limited number of these available can be very useful tools in target validation studies. Alternative approaches to direct adiponectin signaling control use upstream adiponectin production inducing therapies but currently these offer relatively limited success compared to direct receptor agonists.
Collapse
Affiliation(s)
- Laszlo Otvos
- OLPE LLC, Audubon, PA, United States
- Allysta Pharmaceuticals, San Mateo, CA, United States
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- *Correspondence: Laszlo Otvos Jr.
| |
Collapse
|