1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Farzam OR, Eslami S, Jafarizadeh A, Alamdari SG, Dabbaghipour R, Nobari SA, Baradaran B. The significance of exosomal non-coding RNAs (ncRNAs) in the metastasis of colorectal cancer and development of therapy resistance. Gene 2025; 937:149141. [PMID: 39643147 DOI: 10.1016/j.gene.2024.149141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) represents a common type of carcinoma with significant mortality rates globally. A primary factor contributing to the unfavorable treatment outcomes and reduced survival rates in CRC patients is the occurrence of metastasis. Various intricate molecular mechanisms are implicated in the metastatic process, leading to mortality among individuals with CRC. In the realm of intercellular communication, exosomes, which are a form of extracellular vesicle (EV), play an essential role. These vesicles act as conduits for information exchange between cells and originate from multiple sources. By fostering a microenvironment conducive to CRC progression, exosomes and EVs significantly influence the advancement of the disease. They contain a diverse array of molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids, and transcription factors. Notably, ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are prominently featured within exosomes. These ncRNAs have the capacity to regulate various critical molecules or signaling pathways, particularly those associated with tumor metastasis, thereby playing a crucial role in tumorigenesis. Their presence indicates a substantial potential to affect vital aspects of tumor progression, including proliferation, metastasis, and resistance to treatment. This research aims to categorize exosomal ncRNAs and examine their functions in colorectal cancer. Furthermore, it investigates the clinical applicability of novel biomarkers and therapeutic strategies in CRC. Abbreviations: ncRNAs, non-coding RNAs; CRC, Colorectal cancer; EV, extracellular vesicle; mRNAs, messenger RNAs; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; HOTTIP, HOXA transcript at the distal tip; NSCLC, non-small cell lung cancer; 5-FU, 5-fluorouracil; OX, Oxaliplatin; PDCD4, programmed cell death factor 4; Tregs, regulatory T cells; EMT, epithelial-mesenchymal transition; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; USP2, ubiquitin carboxyl-terminal hydrolase 2; TNM, tumor node metastasis; TAMs, tumor-associated macrophages; RASA1, RAS p21 protein activator 1; PDCD4, programmed cell death 4; ZBTB2, zinc finger and BTB domain containing 2; SOCS1, suppressor of cytokine signaling 1; TUBB3, β-III tubulin; MSCs, mesenchymal stem cells.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Eslami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-based Medicine, Iranian EBM Center: A Joana-affiliated Group, Tabriz University of Medicine Science, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Alizadeh Nobari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Sun Y, Kong D, Zhang Q, Xiang R, Lu S, Feng L, Zhang H. DNA methylation biomarkers for predicting lymph node metastasis in colorectal cancer. Clin Transl Oncol 2025; 27:439-448. [PMID: 39026026 DOI: 10.1007/s12094-024-03601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Colorectal cancer is one of the most common cancers worldwide. Lymph node metastasis is an important marker of colorectal cancer progression and plays a key role in the evaluation of patient prognosis. Accurate preoperative assessment of lymph node metastasis is crucial for devising appropriate treatment plans. However, current clinical imaging methods have limitations in many aspects. Therefore, the discovery of a method for accurately predicting lymph node metastasis is crucial clinical decision-making. DNA methylation is a common epigenetic modification that can regulate gene expression, which also has an important impact on the development of colorectal cancer. It is considered to be a promising biomarker with good specificity and stability and has promising application in predicting lymph node metastasis in patients with colorectal cancer. This article reviews the characteristics and limitations of currently available methods for predicting lymph node metastasis in patients with colorectal cancer and discusses the role of DNA methylation as a biomarker.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Deyang Kong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Renshen Xiang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuaibing Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haizeng Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Wang Q, Weng S, Zhong W, Lin Y, Yu Y, Huang Y, Ge L, Zhang X, Xue F, Assaraf YG, Lin Y. Modulation of DAPK1 expression by its alternative splice variant DAPK1-215 in cancer. J Transl Med 2025; 23:85. [PMID: 39833825 PMCID: PMC11744996 DOI: 10.1186/s12967-025-06127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Death-Associated Protein Kinase 1 (DAPK1) family members are calcium/calmodulin-regulated serine/threonine kinases implicated in cell death, normal development, and human diseases. However, the regulation of DAPK1 expression in cancer remains unclear. METHODS We examined the expression and functional impact of a DAPK1 splice variant, DAPK1-215, in multiple cancer cell lines. DAPK1 and DAPK1-215 expression levels were quantified by qRT-PCR and Western blotting. Cell migration, invasion, and proliferation assays were conducted in vitro, and a zebrafish model was employed to evaluate metastatic potential. RNA pull-down and CLIP-seq analyses were performed to identify potential RNA-binding proteins. Finally, clinical liver cancer specimens were analyzed to assess the prognostic relevance of DAPK1-215 and DAPK1 mRNA levels. RESULTS DAPK1-215 downregulated DAPK1 expression in liver, kidney, and gastric cancer cells by reducing DAPK1 mRNA stability. DAPK1-215 promoted migratory and invasive capabilities in liver and kidney cancer cells, but inhibited these processes in gastric cancer cells, without affecting cell proliferation. Mechanistically, DEAD-Box Helicase 3 X-Linked (DDX3X) stabilized both DAPK1-215 and DAPK1 mRNAs, suggesting that DAPK1-215 may act by competing for DDX3X binding to modulate DAPK1 mRNA stability. Importantly, high levels of DAPK1-215 correlated inversely with DAPK1 mRNA in liver cancer specimens and predicted poor prognosis, whereas high DAPK1 expression predicted improved patient outcomes. CONCLUSIONS Our findings unveil DAPK1-215 as a molecular brake on DAPK1 expression, influencing cancer cell migration and invasion in a context-dependent manner. These results highlight the potential of DAPK1-215 as an important regulator of malignant progression and as a prognostic marker in liver cancer.
Collapse
Affiliation(s)
- QingShui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
| | - ShuYun Weng
- Xiamen Ocean Vocational College, Xiamen, 361000, China
| | - WenTing Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, The Liver Center of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, 350001, China
| | - YouYu Lin
- Fujian Normal University, Fuzhou, 350001, China
| | - Yan Yu
- Collaborative Innovation Center for Rehabilitation Technology, the Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - YiMin Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - LiLin Ge
- Jiangsu Province Engineering Research Center of Chinese Medicine Health Care, Nanjing, 210000, China
| | - XiuLi Zhang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
| | - FangQin Xue
- Department of Gastrointestinal Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134 Dongjie, Fuzhou, China.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Yu X, Shao Y, Dong H, Zhang X, Ye G. Biological function and potential application of PANoptosis-related genes in colorectal carcinogenesis. Sci Rep 2024; 14:20672. [PMID: 39237645 PMCID: PMC11377449 DOI: 10.1038/s41598-024-71625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
PANoptosis induces programmed cell death (PCD) through extensive crosstalk and is associated with development of cancer. However, the functional mechanisms, clinical significance, and potential applications of PANoptosis-related genes (PRGs) in colorectal cancer (CRC) have not been fully elucidated. Functional enrichment of key PRGs was analyzed based on databases, and relationships between key PRGs and the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, signal transduction pathways, transcription factor regulation, and miRNA regulatory networks were systematically explored. This study identified 5 key PRGs associated with CRC: BCL10, CDKN2A, DAPK1, PYGM and TIMP1. Then, RT-PCR was used to verify expression of these genes in CRC cells and tissues. Clinical significance and prognostic value of key genes were further verified by multiple datasets. Analyses of the immune microenvironment, immune cell infiltration, chemotherapy drug sensitivity, tumor progression genes, single-cell cellular subgroups, and signal transduction pathways suggest a close relationship between these key genes and development of CRC. In addition, a novel prognostic nomogram model for CRC was successfully constructed by combining important clinical indicators and the key genes. In conclusion, our findings offer new insights for understanding the pathogenesis of CRC, predicting CRC prognosis, and identifying multiple therapeutic targets for future CRC therapy.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Haotian Dong
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xinjun Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, 315020, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
6
|
Yin Y, Li Y, Zhang Y, Jia Q, Tang H, Chen J, Ji R. An analysis of the role of GAB2 in pan-cancer from a multidimensional perspective. Discov Oncol 2024; 15:278. [PMID: 38995439 PMCID: PMC11245454 DOI: 10.1007/s12672-024-01135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND To explore the role of GAB2 in pan-cancer based on bioinformatics analysis. METHODS Based on TCGA and GTEx databases, we used TIMER2.0 online analysis tool and R language to analyze the expression of GAB2 in pan-cancer. We used Kaplan-Meier Plotter to analyze the relationship between GAB2 and OS and RFS in pan-cancer. We utilized the CPTAC database to examine the expression of phosphorylated GAB2 in pan-cancer. We investigated the effects of mutation features on the occurrence and development of human cancers by cBioPortal and COSMIC. Using the database, we conducted an analysis of molecular compounds that have the potential to interact with GAB2 through molecular docking. Moreover, we use the TIMER to explore the relationship between GAB2 and immune cell infiltration, and draw relevant heatmaps by R language. RESULTS GAB2 was abnormally expressed in various tumors and was associated with prognosis. There were differences in the expression of GAB2 phosphorylation in tumor tissues and corresponding normal tissues among different types of tumors. GAB2 interacts with Docetaxel and was associated with immune cell infiltration in various tumors. CONCLUSION GAB2 participates in regulating immune infiltration and affects the prognosis of patients. GAB2 may serve as a potential tumor marker.
Collapse
Affiliation(s)
- Yi Yin
- Department of Gynecology, Tumor Hospital Affiliated to Nantong University, Nantong, 226006, Jiangsu, China
| | - Yong Li
- Department of Gynecology, Tumor Hospital Affiliated to Nantong University, Nantong, 226006, Jiangsu, China
| | - Yaoyang Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Qiucheng Jia
- Department of Obstetrics and Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Huiming Tang
- Department of Obstetrics and Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Jiming Chen
- Department of Obstetrics and Gynecology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
| | - Rui Ji
- Department of Gynecology, Tumor Hospital Affiliated to Nantong University, Nantong, 226006, Jiangsu, China.
| |
Collapse
|
7
|
Li Y, Li H, Sun G, Xu S, Tang X, Zhang L, Wan L, Zhang L, Tang M. Integrative analyses of multi-omics data constructing tumor microenvironment and immune-related molecular prognosis model in human colorectal cancer. Heliyon 2024; 10:e32744. [PMID: 38975206 PMCID: PMC11226854 DOI: 10.1016/j.heliyon.2024.e32744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The increasing prevalence and incidence of colorectal cancer (CRC), particularly in young adults, underscore the imperative to comprehend its fundamental mechanisms, discover novel diagnostic and prognostic markers, and enhance therapeutic strategies. Here, we integrated multi-omics data, including gene expression, somatic mutation data and DNA methylation data, to unravel the intricacies of tumor microenvironment (TME) in CRC and search for novel prognostic markers. By calculating the immune score for each patient from the expression profile, we delineated the differential immune cell fraction, constructed an immune-related multi-omics atlas, and identified molecular characteristics. The entire colorectal dataset (n = 343) was randomly divided into training (n = 249) and testing datasets (n = 94). We screened 144 immune-related genes, 6 mutant genes, and 38 methylation probes associated with overall survival (OS). These makers were then incorporated into a 10-gene prognostic model using Lasso and Cox regression in the training dataset, and the model's performance was evaluated in an independent validation dataset. The model exhibited satisfactory results (average concordance index [C-index] = 0.77), with the average 1-year, 3-year, and 5-year AUCs being 0.79, 0.76, and 0.76 in the training dataset and 0.74, 0.80, and 0.90 in the testing dataset. Furthermore, the prognostic model demonstrated applicability in guiding chemotherapy for CRC patients and exhibited a degree of pan-cancer utility in risk stratification. In conclusion, our integrated analysis of multi-omics data revealed immune-related genetic and epigenetic characteristics of the TME. We propose an integrative prognostic model that can stratify risk and guide chemotherapy for CRC patients. The generalizability of the model in risk stratification across different cancer types was validated in Pan-Cancer cohort.
Collapse
Affiliation(s)
- Yifei Li
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hexin Li
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Gaoyuan Sun
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Siyuan Xu
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaokun Tang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lanxin Zhang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Wan
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lili Zhang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Tang
- Department of Medical Oncology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Shi L, Mao H, Ma J. Integrated analysis of tumor-associated macrophages and M2 macrophages in CRC: unraveling molecular heterogeneity and developing a novel risk signature. BMC Med Genomics 2024; 17:145. [PMID: 38802881 PMCID: PMC11129467 DOI: 10.1186/s12920-024-01881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Emerging investigations have increasingly highlighted the critical role of tumor-associated macrophages (TAMs) and M2 macrophages in cancer development, progression, and metastasis, marking them as potential targets in various cancer types. The main objective of this research is to discover new biomarkers associated with TAM-M2 macrophages in colorectal cancer (CRC) and to dissect the molecular heterogeneity of CRC by combining single-cell RNA sequencing and bulk RNA-seq data. METHODS By utilizing weighted gene co-expression network analysis (WGCNA), we acquired TAM-M2-associated genes by intersecting TAM marker genes obtained from scRNA-seq data with module genes of M2 macrophages derived from bulk RNA-seq data. We employed least absolute shrinkage and selection operator (LASSO) Cox analysis to select predictive biomarkers from these TAM-M2-related genes. Quantitative polymerase chain reaction (qPCR) was employed to validate the mRNA expression levels of the genes identified in the screening. This led to the development of the TAM-M2-related signature (TAMM2RS). We also conducted functional and immune landscape analyses of different risk groups. RESULTS The combination of scRNA-seq and bulk RNA-seq analyses yielded 377 TAM-M2-related genes. DAPK1, NAGK, and TRAF1 emerged as key prognostic genes in CRC, which were identified through LASSO Cox analysis. Utilizing these genes, we constructed and validated the TAMM2RS, demonstrating its effectiveness in predicting survival in CRC patients. CONCLUSION Our research offers a thorough investigation into the molecular mechanisms associated with TAM-M2 macrophages in CRC and unveils potential therapeutic targets, offering new insights for treatment strategies in colorectal cancer.
Collapse
Affiliation(s)
- Lujing Shi
- Department of Gastroenterology Surgery, Shengli Oilfield Central Hospital, Dgongying, Shandong, P. R. China
| | - Hongtun Mao
- Department of Gastroenterology Surgery, Shengli Oilfield Central Hospital, Dgongying, Shandong, P. R. China
| | - Jie Ma
- Department of Gastroenterology Surgery, Shengli Oilfield Central Hospital, Dgongying, Shandong, P. R. China.
| |
Collapse
|
9
|
Yang J, Liu Y, Geng Q, Wang B. Death associated protein kinase 1 predicts the prognosis and the immunotherapy response of various cancers. Mol Biol Rep 2024; 51:670. [PMID: 38787485 DOI: 10.1007/s11033-024-09240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Death Associated Protein Kinase 1 (DAPK1) is a calcium/calmodulin-dependent serine/threonine kinase, which has been reported to be a tumor suppressor with unbalanced expression in various tissues. However, its function in tumor immunotherapy is still unclear. METHODS The online GEPIA2 database was used to support TCGA results. We explored the DAPK1 pan-cancer genomic alteration analysis using the cBioPortal web tool. The Human Protein Atlas (HPA) was employed to mine DAPK1 protein information. We verified the expression of DAPK1 in lung adenocarcinoma samples using RT-qPCR. Subsequently, the relationship between the expression of DAPK1 and the clinical stage was analyzed. We used TIMER2.0 as the primary platform for studying DAPK1-related immune cell infiltration. Associations between DAPK1 and immunotherapy biomarkers were analyzed using Spearman correlation analysis. TMB and MSI expression was also examined. Finally, we used Kaplan-Meier Plots to evaluate the relationship between DAPK1 expression and the efficacy of immunotherapy. RESULTS DAPK1 is aberrantly expressed in most cancer types and has prognostic power in various cancers. Gene mutation was the most common DAPK1 alteration across pan-cancers. The DAPK1 protein was mainly localized to tumor cell centrosomes. DAPK1 was also significantly associated with immune-activated hallmarks, immune cell infiltration, and the expression of immunomodulators. Notably, DAPK1 can also significantly predict responses to anti-PD1 and anti-CTLA-4 therapy in cancer patients. CONCLUSIONS Our findings suggest that DAPK1 may not only be an effective prognostic factor in cancer patients but may also function as a promising predictive immunotherapy biomarker for cancer patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jianjian Yang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Ying Liu
- Department of Anesthesia, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
10
|
Shi Y, Li W, Jia Q, Wu J, Wu S, Wu S. Inhibition of PD-L1 expression in non-small cell lung cancer may reduce vasculogenic mimicry formation by inhibiting the epithelial mesenchymal transformation process. Exp Cell Res 2024; 437:113996. [PMID: 38508327 DOI: 10.1016/j.yexcr.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a kind of highly malignant tumor. Studies have shown that Vasculogenic mimicry (VM) may be responsible for dismal prognosis in NSCLC. Immunotherapy with programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) has significantly altered the treatment of assorted cancers, including NSCLC, but its role and mechanism in the formation of Vasculogenic mimicry (VM) in NSCLC remains unclear. This study aimed to investigate the role of the anti-PD-L1 antibody in the formation of VM in NSCLC and its possible mechanisms. The results showed that anti-PD-L1 antibody therapy could inhibit the growth of NSCLC-transplanted tumors and reduce the formation of VMs. In addition, this study found that anti-PD-L1 antibodies could increase the expression of the epithelial-mesenchymal transition (EMT) related factor E-cadherin. zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor regulating EMT. Knocking down ZEB1 could significantly inhibit tumor growth, as well as the expression of VE-cadherin and mmp2, while remarkably increase the expression of E-cadherin. During this process, the formation of VM was inhibited by knowing down ZEB1 in both in vitro and in vivo experiments of the constructed ZEB1 knockdown stable transfected cell strains. Therefore, in this study, we found that anti-PD-L1 antibodies may reduce the formation of VMs by inhibiting the EMT process.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China; Department of Pathology, School of Basic Medicine, Bengbu Medical University, Anhui, 233000, China; Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Anhui, 233000, China
| | - Wenjuan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China
| | - Qianhao Jia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China
| | - Jiatao Wu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu 233004, Anhui, China
| | - Shoufan Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China
| | - Shiwu Wu
- Department of Pathology, Anhui No. 2 Provincial People's Hospital, Anhui, 230000, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China.
| |
Collapse
|
11
|
Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Asiamah EA, Smith-Togobo C, Razak SRA. MicroRNAs and colorectal cancer: clinical potential and regulatory networks. Mol Biol Rep 2023; 50:9575-9585. [PMID: 37776413 DOI: 10.1007/s11033-023-08810-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
Colorectal cancer (CRC) is a serious global health concern, with a high incidence and mortality rate. Although there have been advancements in the early detection and treatment of CRC, therapy resistance is common. MicroRNAs (miRNAs), a type of small non-coding RNA that regulates gene expression, are key players in the initiation and progression of CRC. Recently, there has been growing attention to the complex interplay of miRNAs in cancer development. miRNAs are powerful RNA molecules that regulate gene expression and have been implicated in various physiological and pathological processes, including carcinogenesis. By identifying current challenges and limitations of treatment strategies and suggesting future research directions, this review aims to contribute to ongoing efforts to enhance CRC diagnosis and treatment. It also provides a comprehensive overview of the role miRNAs play in CRC carcinogenesis and explores the potential of miRNA-based therapies as a treatment option. Importantly, this review highlights the exciting potential of targeted modulation of miRNA function as a therapeutic approach for CRC.
Collapse
Affiliation(s)
- George Yiadom Osei
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Selina Koomson
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Solomon Beletaa
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
- Cancer and Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Cecilia Smith-Togobo
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Siti Razila Abdul Razak
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia.
| |
Collapse
|
12
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
13
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
14
|
Zhou H, Xie W, Guo A, Chen B, Hu S, Zheng M, Yu H, Tian H, Li L. Temperature sensitive nanogels for real-time imaging during transcatheter arterial embolization. Des Monomers Polym 2023; 26:31-44. [PMID: 36684709 PMCID: PMC9858417 DOI: 10.1080/15685551.2022.2164445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several vascular embolization materials are commonly used in clinical practice, however, having application defects of varying degrees, such as poor intraoperative imaging and easy recanalization of embolized blood vessels, they are challenging for application during Transcatheter arterial embolization (TAE). Thus, an intraoperative visible vascular embolization material with good embolization effect and biocompatibility can improve transcatheter arterial embolization clinical efficacy to some extent. Our study aimed to synthesize a novel vascular embolization material that can achieve complete embolization of arterial trunks and peripheral vessels, namely poly (N-isopropyl acrylamide)-co-acrylic acid nanogel (NIPAM-co-AA). Iohexol 200 mg/mL was co-assembled with 7 wt% NIPAM-co-AA nanogel to create an intelligent thermosensitive radiopaque nanogel (INCA), which achieves a good intraoperative imaging effect and is convenient for transcatheter arterial bolus injection due to its good fluidity and temperature-sensitive sol-gel phase transition. The normal rabbit kidney embolism model further confirmed that INCA could effectively use Digital subtraction angiography (DSA) to achieve intraoperative imaging, and real-time monitoring of the embolization process could avoid mis-embolization and leakage. Meanwhile, in a 42-day study, INCA demonstrated an excellent embolization effect on the right renal artery of New Zealand white rabbits, with no vascular recanalization and ischemic necrosis and calcification remaining. As a result, this radiopaque thermosensitive nanogel has the potential to be an intelligent thermosensitive medical vascular embolization material, providing dual benefits in TAE intraoperative imaging and long-term postoperative embolization while effectively addressing the shortcomings and challenges of commonly used clinical vascular embolization agents.
Collapse
Affiliation(s)
- Hongfu Zhou
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Wenjing Xie
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Anran Guo
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Bin Chen
- Department of Radiology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, P.R. China
| | - Sanming Hu
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Min Zheng
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Houqiang Yu
- Department of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, PR China
| | - Hongan Tian
- Department of Radiology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, P.R. China,CONTACT Hongan Tian Department of Radiology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, PR China
| | - Ling Li
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China,Ling Li School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| |
Collapse
|
15
|
Ding L, Yang Y, Lu Q, Qu D, Chandrakesan P, Feng H, Chen H, Chen X, Liao Z, Du J, Cao Z, Weygant N. Bufalin Inhibits Tumorigenesis, Stemness, and Epithelial-Mesenchymal Transition in Colorectal Cancer through a C-Kit/Slug Signaling Axis. Int J Mol Sci 2022; 23:13354. [PMID: 36362141 PMCID: PMC9656328 DOI: 10.3390/ijms232113354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 10/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major source of morbidity and mortality, characterized by intratumoral heterogeneity and the presence of cancer stem cells (CSCs). Bufalin has potent activity against many tumors, but studies of its effect on CRC stemness are limited. We explored bufalin's function and mechanism using CRC patient-derived organoids (PDOs) and cell lines. In CRC cells, bufalin prevented nuclear translocation of β-catenin and down-regulated CSC markers (CD44, CD133, LGR5), pluripotency factors, and epithelial-mesenchymal transition (EMT) markers (N-Cadherin, Slug, ZEB1). Functionally, bufalin inhibited CRC spheroid formation, aldehyde dehydrogenase activity, migration, and invasion. Network analysis identified a C-Kit/Slug signaling axis accounting for bufalin's anti-stemness activity. Bufalin treatment significantly downregulated C-Kit, as predicted. Furthermore, overexpression of C-Kit induced Slug expression, spheroid formation, and bufalin resistance. Similarly, overexpression of Slug resulted in increased expression of C-Kit and identical functional effects, demonstrating a pro-stemness feedback loop. For further study, we established PDOs from diagnostic colonoscopy. Bufalin differentially inhibited PDO growth and proliferation, induced apoptosis, restored E-cadherin, and downregulated CSC markers CD133 and C-Myc, dependent on C-Kit/Slug. These findings suggest that the C-Kit/Slug axis plays a pivotal role in regulating CRC stemness, and reveal that targeting this axis can inhibit CRC growth and progression.
Collapse
Affiliation(s)
- Ling Ding
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuning Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qin Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Hailan Feng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhuhui Liao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jian Du
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Key Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
16
|
Cui M, Zhang H, Han S, Huo F, Shen Z, Ding D. Screening of biomarkers associated with diagnosis and prognosis of colorectal cancer. Genes Genet Syst 2022; 97:101-110. [PMID: 36104170 DOI: 10.1266/ggs.21-00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We aimed to explore biomarkers associated with diagnosis and prognosis of colorectal cancer. Differentially expressed protein (DEP) genes were obtained and validated. Moreover, co-expressed genes were screened and their prognostic value was evaluated. In addition, miRNAs that were negatively correlated with DEP genes were identified and used to construct a competitive endogenous RNA network. Furthermore, a support vector machine model was built using DEP genes, and a receiver operating characteristic curve was implemented to confirm its prediction performance. The results showed that only one DEP gene, CCL26, was obtained. Moreover, 43 genes co-expressed with CCL26 were identified, among which six (AP3M2, DAPK1, ISYNA1, PPM1K, PRR4 and RNF122) were linked with the prognosis of colorectal cancer. Besides, the axis RP11-47122.2/RP11-527N22.1-hsa-miR-3192-5p-CCL26 was identified as an lncRNA-miRNA-target gene network. Support vector machine model analysis showed that the area under the curve of CCL26 reached 0.878 based on GEO data and 0.743 based on our protein data. In conclusion, AP3M2, DAPK1, ISYNA1, PPM1K, PRR4, RNF122, CCL26 and hsa-miR-3192-5p appear to be related to the progression of colorectal cancer.
Collapse
Affiliation(s)
- Mingfu Cui
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University
| | - Haiyan Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University
| | - Songyun Han
- Department of Emergency, Tonghua Central Hospital, Jilin University
| | - Feng Huo
- Department of Oncological Surgery, Changchun Tumor Hospital
| | - Zhaoming Shen
- Department of General Surgery, Changchun People's Hospital
| | - Dayong Ding
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University
| |
Collapse
|
17
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Multiphoton Microscopy Reveals DAPK1-Dependent Extracellular Matrix Remodeling in a Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14102364. [PMID: 35625969 PMCID: PMC9139596 DOI: 10.3390/cancers14102364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of metastasis is not only intricately orchestrated by cancer cells but is also affected by the surrounding extracellular matrix (ECM). The barrier function of the ECM represents an obstacle that cancer cells have to overcome to disseminate from the primary tumor to form metastasis in distant organs. Here, we demonstrate an approach to studying the remodeling of a collagen-rich ECM by colorectal tumor cells using multiphoton microscopy (MPM). This approach allows the analysis of the invasion front of tumors grown on the CAM in 3D. MPM is superior to conventional histology, which is limited to 2D analysis and needs extensive tissue preparation. Abstract Cancer cells facilitate tumor growth by creating favorable tumor micro-environments (TME), altering homeostasis and immune response in the extracellular matrix (ECM) of surrounding tissue. A potential factor that contributes to TME generation and ECM remodeling is the cytoskeleton-associated human death-associated protein kinase 1 (DAPK1). Increased tumor cell motility and de-adhesion (thus, promoting metastasis), as well as upregulated plasminogen-signaling, are shown when functionally analyzing the DAPK1 ko-related proteome. However, the systematic investigation of how tumor cells actively modulate the ECM at the tissue level is experimentally challenging since animal models do not allow direct experimental access while artificial in vitro scaffolds cannot simulate the entire complexity of tissue systems. Here, we used the chorioallantoic membrane (CAM) assay as a natural, collagen-rich tissue model in combination with all-optical experimental access by multiphoton microscopy (MPM) to study the ECM remodeling potential of colorectal tumor cells with and without DAPK1 in situ and even in vivo. This approach demonstrates the suitability of the CAM assay in combination with multiphoton microscopy for studying collagen remodeling during tumor growth. Our results indicate the high ECM remodeling potential of DAPK1 ko tumor cells at the tissue level and support our findings from proteomics.
Collapse
|
19
|
Chen T, Pan P, Wei W, Zhang Y, Cui G, Yu Z, Guo X. Expression of Zeb1 in the differentiation of mouse embryonic stem cell. Open Life Sci 2022; 17:455-462. [PMID: 35611144 PMCID: PMC9087876 DOI: 10.1515/biol-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Embryonic stem cells (ESCs) differentiation is a process of replication and refinement, and the directional lineage differentiation of ESCs involves the epithelial-mesenchymal transition (EMT)- mesenchymal-epithelial transition (MET) process. A previous study revealed that Zinc finger E-box-binding homeobox 1 (Zeb1) plays a vital role in EMT, which could repress E-cadherin promoter and induce an EMT in cells. To verify the expression of Zeb1 and its correlation with Lin28a in mouse ESCs differentiation, we performed qRT-PCR and western blots to detect the expression of Lin28a mRNA and protein after Zeb1 knockdown. The expression of Zeb1 decreased over time of mouse ESCs differentiation but significantly increased in mouse embryonal carcinoma cells. After knockdown of Zeb1, Lin28a and Vimentin expression were decreased, while E-cadherin expression increased both in mouse ESCs, EBs, GC1, and P19 cells. We found that Zeb1 promoted the invasive ability of mouse embryonal carcinoma cells. These results revealed that expression of Zeb1 decreased during the differentiation of ESCs, and Lin28a and EMT processes can be regulated by Zeb1, which need to be verified in the future studies.
Collapse
Affiliation(s)
- Ting Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital , 1120 Lianhua Road , Shenzhen , Guangdong 518036 , China
- Department of Pathology, Children’s Hospital of Soochow University , Jiangsu, 215300 , China
- Department of Pathology, Guangzhou Medical University , Guangzhou, 510182 , China
| | - Peng Pan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital , 1120 Lianhua Road , Shenzhen , Guangdong 518036 , China
- Department of Pathology, Guangzhou Medical University , Guangzhou, 510182 , China
| | - Wei Wei
- Department of Blood Vessel Surgical Treatment Area, Changchun Provincial People’s Hospital , 1183 Industrial and Agricultural Road , Changchun , 130021 , China
| | - Yanmin Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital , 1120 Lianhua Road , Shenzhen , Guangdong 518036 , China
| | - Guanghui Cui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital , 1120 Lianhua Road , Shenzhen , Guangdong 518036 , China
| | - Zhendong Yu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital , 1120 Lianhua Road , Shenzhen , Guangdong 518036 , China
| | - Xin Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital , 1120 Lianhua Road , Shenzhen , Guangdong 518036 , China
| |
Collapse
|
20
|
Wang S, Mi R, Cai Z, Wang Z, Zeng C, Xie Z, Li J, Ma M, Liu W, Su H, Cen S, Wu Y, Shen H. DAPK1 Interacts with the p38 isoform MAPK14, Preventing its Nuclear Translocation and Stimulation of Bone Marrow Adipogenesis. Stem Cells 2022; 40:508-522. [PMID: 35403694 DOI: 10.1093/stmcls/sxac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Bone marrow (BM) adipose tissue (BMAT), a unique adipose depot, plays an important role in diseases such as osteoporosis and bone metastasis. Precise control of mesenchymal stem cell (MSC) differentiation is critical for BMAT formation and regeneration. Here, we show that death associated protein kinase 1 (DAPK1) negatively regulates BM adipogenesis in vitro and in vivo. Prx1 creDapk1 loxp/loxp mice showed more adipocytes in the femur than Dapk1 loxp/loxp mice. Further mechanistic analyses revealed that DAPK1 inhibits p38 mitogen-activated protein kinase (MAPK) signaling in the nucleus by binding the p38 isoform MAPK14, decreasing p38 nuclear activity, which subsequently inhibits BM adipogenesis. The inhibitory effect of DAPK1 against MAPK14 was independent of its kinase activity. In addition, the decreased DAPK1 was observed in the BM-MSCs of ageing mice. Our results reveal a previously undescribed function for DAPK1 in the regulation of adipogenesis, and may also reveal the underlying mechanism of BMAT formation in ageing.
Collapse
Affiliation(s)
- Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Rujia Mi
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zhaopeng Cai
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zhongyu Xie
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Jinteng Li
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Wenjie Liu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Shuizhong Cen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
21
|
Heft Neal ME, Brenner JC, Prince MEP, Chinn SB. Advancement in Cancer Stem Cell Biology and Precision Medicine-Review Article Head and Neck Cancer Stem Cell Plasticity and the Tumor Microenvironment. Front Cell Dev Biol 2022; 9:660210. [PMID: 35047489 PMCID: PMC8762309 DOI: 10.3389/fcell.2021.660210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Head and Neck cancer survival has continued to remain around 50% despite treatment advances. It is thought that cancer stem cells play a key role in promoting tumor heterogeneity, treatment resistance, metastasis, and recurrence in solid malignancies including head and neck cancer. Initial studies identified cancer stem cell markers including CD44 and ALDH in head and neck malignancies and found that these cells show aggressive features in both in vitro and in vivo studies. Recent evidence has now revealed a key role of the tumor microenvironment in maintaining a cancer stem cell niche and promoting cancer stem cell plasticity. There is an increasing focus on identifying and targeting the crosstalk between cancer stem cells and surrounding cells within the tumor microenvironment (TME) as new therapeutic potential, however understanding how CSC maintain a stem-like state is critical to understanding how to therapeutically alter their function. Here we review the current evidence for cancer stem cell plasticity and discuss how interactions with the TME promote the cancer stem cell niche, increase tumor heterogeneity, and play a role in treatment resistance.
Collapse
Affiliation(s)
- Molly E Heft Neal
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Mark E P Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Steven B Chinn
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Disoma C, Zhou Y, Li S, Peng J, Xia Z. Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie 2022; 195:39-53. [DOI: 10.1016/j.biochi.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
23
|
Kabekkodu SP, Chakrabarty S, Varghese VK, Ghosh S, Radhakrishnan R, Mallya SP, Kudva A. Salivary DNA methylation markers for cancer of oral cavity. Cancer Biomark 2022; 35:257-268. [PMID: 36245370 DOI: 10.3233/cbm-220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Aberrant DNA methylation plays a crucial role in oral carcinogenesis. Our previous study demonstrated hypermethylation of DAPK1, LRPPRC, RAB6C, and ZNF471 promoters in patients with tongue squamous cell carcinoma compared with normal samples. Methylation profiling using salivary DNA is considered a non-invasive alternative to tissue samples. Hence, the present study tested the DNA methylation status of these four promoters as indicators of oral cancer progression. METHODS We performed the bisulfite-based targeted next-generation sequencing of four candidate genes in saliva and tissue DNA from normal, premalignant, and squamous cell carcinoma subjects. The clinicopathological association, diagnostic, and prognostic utility of aberrant DNA methylation were evaluated using the TCGA-HNSCC dataset. Using the Xgboost algorithm and logistic regression, CpG sites were prioritized, and Receiver Operating Characteristic was generated. By Log-rank test and Kaplan-Meier (KM) curves, an association between methylation and overall survival (OS), disease-free interval (DFI), and progression-free interval (PFI) were computed. RESULTS We identified all four genes as significantly hypermethylated in premalignant and malignant samples compared with normal samples. The methylation levels were comparable between saliva and tissue samples with an r-value of 0.6297 to 0.8023 and 0.7823 to 0.9419 between premalignant tissue vs. saliva and OC vs. saliva, respectively. We identified an inverse correlation between DAPK1, LRPPRC, RAB6C, and ZNF471 promoter methylation with their expression. A classifier of 8 differentially methylated CpG sites belonging to DAPK1, RAB6C, and ZNF471 promoters was constructed, showing an AUC of 0.984 to differentiate tumors from normal samples. The differential methylation status of DAPK1, LRPPRC, and ZNF71 promoters was prognostically important. Abnormal expression of all four genes was associated with immune infiltration. CONCLUSIONS Thus, methylation analysis of these candidate CpG sites from saliva can be helpful as a non-invasive tool for the clinical management of OC.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sandeep P Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
24
|
Kitz J, Lefebvre C, Carlos J, Lowes LE, Allan AL. Reduced Zeb1 Expression in Prostate Cancer Cells Leads to an Aggressive Partial-EMT Phenotype Associated with Altered Global Methylation Patterns. Int J Mol Sci 2021; 22:ijms222312840. [PMID: 34884649 PMCID: PMC8657557 DOI: 10.3390/ijms222312840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is the most common cancer in American men and the second leading cause of cancer-related death. Most of these deaths are associated with metastasis, a process involving the epithelial-to-mesenchymal (EMT) transition. Furthermore, growing evidence suggests that partial-EMT (p-EMT) may lead to more aggressive disease than complete EMT. In this study, the EMT-inducing transcription factor Zeb1 was knocked down in mesenchymal PC-3 prostate cancer cells (Zeb1KD) and resulting changes in cellular phenotype were assessed using protein and RNA analysis, invasion and migration assays, cell morphology assays, and DNA methylation chip analysis. Inducible knockdown of Zeb1 resulted in a p-EMT phenotype including co-expression of epithelial and mesenchymal markers, a mixed epithelial/mesenchymal morphology, increased invasion and migration, and enhanced expression of p-EMT markers relative to PC-3 mesenchymal controls (p ≤ 0.05). Treatment of Zeb1KD cells with the global de-methylating drug 5-azacytidine (5-aza) mitigated the observed aggressive p-EMT phenotype (p ≤ 0.05). DNA methylation chip analysis revealed 10 potential targets for identifying and/or targeting aggressive p-EMT prostate cancer in the future. These findings provide a framework to enhance prognostic and/or therapeutic options for aggressive prostate cancer in the future by identifying new p-EMT biomarkers to classify patients with aggressive disease who may benefit from 5-aza treatment.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada; (J.K.); (C.L.)
| | - Cory Lefebvre
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada; (J.K.); (C.L.)
| | - Joselia Carlos
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
| | - Lori E. Lowes
- Flow Cytometry, London Health Sciences Centre, London, ON N6A 5W9, Canada;
| | - Alison L. Allan
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada; (J.K.); (C.L.)
- Department of Oncology, Western University, London, ON N6A 5W9, Canada
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Correspondence: ; Tel.: +1-519-685-8600 (ext. 55134)
| |
Collapse
|
25
|
You MH, Lee WK, Jin M, Song DE, Cheng SY, Kim TY, Kim WB, Jeon MJ, Kim WG. Death-Associated Protein Kinase 1 Inhibits Progression of Thyroid Cancer by Regulating Stem Cell Markers. Cells 2021; 10:cells10112994. [PMID: 34831219 PMCID: PMC8616132 DOI: 10.3390/cells10112994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
The activation of metastatic reprogramming is vital for cancer metastasis, but little is known about its mechanism. This study investigated the potential role of death-associated protein kinase 1 (DAPK1) in thyroid cancer progression. We generated knockdown (KD) DAPK1 using siRNA or shRNA in 8505C and KTC-1 cell lines, which we transiently or stably overexpressed in MDA-T32 and BCPAP cell lines. DAPK1 KD in 8505C and KTC-1 cells significantly increased cell proliferation and colony formation compared with controls. We observed significant inhibition of cancer cell invasion in cells overexpressing DAPK1, but the opposite effect in KD cells. Tumorsphere formation significantly increased after inhibition of DAPK1 expression in 8505C cells and was significantly suppressed in DAPK1-overexpressing MDA-T32 and BCPAP cells. DAPK1 overexpression inhibited mRNA and protein levels of stem markers (OCT4, Sox2, KLF4, and Nanog). Furthermore, the expression of these markers increased after KD of DAPK1 in 8505C cells. Mechanistic studies suggest that DAPK1 may modulate the expression of stem cell markers through the inhibition of β-catenin pathways. These findings were consistent with the public data and our thyroid tissue analysis, which showed higher DAPK1 expression was associated with advanced-stage papillary thyroid cancer with a higher stemness index and lower disease-free survival.
Collapse
Affiliation(s)
- Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (W.K.L.); (S.-y.C.)
| | - Meihua Jin
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (W.K.L.); (S.-y.C.)
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Won Bae Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Min Ji Jeon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
- Correspondence: (M.J.J.); (W.G.K.); Tel.: +82-2-3010-1317 (M.J.J.); +82-2-3010-5883 (W.G.K.); Fax: +82-2-3010-1317 (M.J.J.); +82-2-3010-6962 (W.G.K.)
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
- Correspondence: (M.J.J.); (W.G.K.); Tel.: +82-2-3010-1317 (M.J.J.); +82-2-3010-5883 (W.G.K.); Fax: +82-2-3010-1317 (M.J.J.); +82-2-3010-6962 (W.G.K.)
| |
Collapse
|
26
|
Nong S, Wei Z, Wang Z, Ma L, Guan Y, Ni J. Reduced DAPK1 Expression Promotes Stem Cell-Like Characteristics of Prostate Cancer Cells by Activating ZEB1 via Hippo/YAP Signaling Pathway. Stem Cells Dev 2021; 30:934-945. [PMID: 34289746 DOI: 10.1089/scd.2021.0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) is a malignant tumor that originates in the male genitourinary system. Downregulation of death-associated protein kinase 1 (DAPK1) is closely related to PCa. Little is known about the functional role of DAPK1 in regulating cancer stem cell (CSC)-like characteristics of PCa cells, and we have conducted research on this topic. Compared with tumor-adjacent normal tissues, DAPK1 was severely downregulated in tumor tissues of PCa patients. DAPK1 expression was also reduced in PCa cell lines with respect to that in normal prostate cells. Moreover, we sorted PCa-CSCs (PCa-CD133+ cells) from PCa cells. PCa-CD133+ cells also exhibited a reduced DAPK1 level and elevated levels of stem cell markers (CD44, OCT4, and SOX2). DAPK1 knockdown promoted sphere formation and enhanced the proportions of PCa-CD133+/PCa-CD133- cells. Inhibition of DAPK1 also accelerated migration and invasion of PCa-CD133+ cells. In addition, DAPK1 interacted with zinc finger E-box-binding homeobox-1 (ZEB1) and repressed ZEB1 expression in PCa-CD133+ cells. DAPK1 suppressed Hippo/YAP signaling pathway by interacting with ZEB1. Finally, we generated a tumor xenograft model to verify the effect of PCa-CD133+ cells following DAPK1 overexpression on tumor growth of PCa. DAPK1 overexpression inhibited tumor growth of PCa and repressed the expression of ZEB1, YAP, and TAZ in the tumor tissues of PCa mice. In conclusion, reduced DAPK1 expression promoted stem cell-like characteristics of PCa cells through activating ZEB1 via Hippo/YAP signaling pathway. Taken together, this work sheds lights on the potential of DAPK1 as a target for PCa therapeutics from bench to clinic.
Collapse
Affiliation(s)
- Shaojun Nong
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Zhongqing Wei
- Department of Urological Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing City, Jiangsu Province, China
| | - Zhiwei Wang
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Limin Ma
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Yangbo Guan
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Jian Ni
- Department of Urological Surgery and The Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| |
Collapse
|
27
|
Liu L, Zhang J, Liu H, Shi M, Zhang J, Chen L, Huang L, Li B, Xu P. Correlation of autophagy-related genes for predicting clinical prognosis in colorectal cancer. Biomark Med 2021; 15:715-729. [PMID: 34169735 DOI: 10.2217/bmm-2020-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: Autophagy plays a controversial role in cancer. The role of autophagy-related genes (ARGs) in colorectal cancer (CRC) was evaluated based on publicly available data from The Cancer Genome Atlas and the Human Autophagy Database. Materials & methods: After collecting CRC-related transcript and clinical data and a list of ARGs from public databases, the Wilcoxon test was used to identify the differentially expressed ARGs between CRC and paired normal tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were used to identify the major biological properties and pathways associated with these genes. Univariate Cox regression was used to identify the prognosis-associated ARGs, and a forest plot was used to visualize the results. Kaplan-Meier analysis of the 5-year survival rate was performed. Univariate and multivariate Cox analyses were used to verify the impact of the prognosis-associated ARGs. Results: A total of 36 differentially expressed genes (16 upregulated and 20 downregulated in CRC) were obtained from among 206 ARGs. There were 53 enriched pathways, including the p53 signaling pathway, platinum drug resistance, apoptosis, EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway (p- and q-values <0.05). Kaplan-Meier analysis showed that the 5-year survival rate was 46.0% (95% CI: 0.335-0.631) and 76.0% (95% CI: 0.651-0.886) in the high- and low-risk groups, respectively. The high-risk patients had worse survival probability (p = 6.256 × 10-5). Independent-samples t-tests revealed that MAP1LC3C expression was higher in patients aged ≤65 than >65 (p = 0.022); RAB7A expression was higher in patients aged ≤65 than >65 (p = 7.31 × 10-4), higher in M1 than M0 (p = 0.042), higher in N1-3 than N0 (p = 0.002) and higher in stage III and IV than I and II (p = 0.042); risk score was higher in N1-3 than N0 (p = 0.001) and in stage III and IV than I and II (p = 0.002); and WIPI2 expression was higher in M1 than M0 (p = 0.002), higher in N1-3 than N0 (p = 2.059 × 10-7) and higher in stage III and IV than I and II (p = 2.299 × 10-7). There were no differences in risk score between males and females (p = 0.593), T1-2 and T3-4 (p = 0.082) or M0 and M1 (p = 0.072). Univariate and multivariate Cox analyses showed that RAB7A was a lower-risk gene, while MAP1LC3C, WIPI2, DAPK1, ULK3 and PELP1 were high-risk genes. Conclusion: Certain ARGs are potential prognostic molecular markers of poor prognosis in CRC. Additionally, the p53 signaling pathway, platinum drug resistance, apoptosis, EGFR tyrosine kinase inhibitor resistance and ErbB signaling pathway may be critical pathways regulated by ARGs in CRC.
Collapse
Affiliation(s)
- Liyan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, 519 Beijing East Road, Nanchang, 330029, PR China
- Department of Pharmacy, Affiliated Cancer Hospital of Nanchang University, 519 Beijing East Road, Nanchang, 330029, PR China
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Jilin Zhang
- Department of Traditional Chinese Medicine, Jiangxi Provincial People's Hospital, 92 Aiguo Road, Nanchang, 330006, PR China
| | - Hongdong Liu
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Min Shi
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Jie Zhang
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Li Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, 611137, PR China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medical, China Academy of Chinese Medical Sciences, 16 Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, PR China
| | - Bin Li
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| | - Peng Xu
- Laboratory Animal Science & Technology Center, Workstation of Academician, College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, PR China
| |
Collapse
|
28
|
Wang X, Xu Y, Li T, Chen B, Yang W. Development of prognosis model for colon cancer based on autophagy-related genes. World J Surg Oncol 2020; 18:285. [PMID: 33126898 PMCID: PMC7602324 DOI: 10.1186/s12957-020-02061-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autophagy is an orderly catabolic process for degrading and removing unnecessary or dysfunctional cellular components such as proteins and organelles. Although autophagy is known to play an important role in various types of cancer, the effects of autophagy-related genes (ARGs) on colon cancer have not been well studied. METHODS Expression profiles from ARGs in 457 colon cancer patients were retrieved from the TCGA database ( https://portal.gdc.cancer.gov ). Differentially expressed ARGs and ARGs related to overall patient survival were identified. Cox proportional-hazard models were used to investigate the association between ARG expression profiles and patient prognosis. RESULTS Twenty ARGs were significantly associated with the overall survival of colon cancer patients. Five of these ARGs had a mutation rate ≥ 3%. Patients were divided into high-risk and low-risk groups based on Cox regression analysis of 8 ARGs. Low-risk patients had a significantly longer survival time than high-risk patients (p < 0.001). Univariate and multivariate Cox regression analysis showed that the resulting risk score, which was associated with infiltration depth and metastasis, could be an independent predictor of patient survival. A nomogram was established to predict 1-, 3-, and 5-year survival of colon cancer patients based on 5 independent prognosis factors, including the risk score. The prognostic nomogram with online webserver was more effective and convenient to provide information for researchers and clinicians. CONCLUSION The 8 ARGs can be used to predict the prognosis of patients and provide information for their individualized treatment.
Collapse
Affiliation(s)
- Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuanmin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ting Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wenqi Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|