1
|
Hubbard IC, Thompson JS, Else KJ, Shears RK. Another decade of Trichuris muris research: An update and application of key discoveries. ADVANCES IN PARASITOLOGY 2023; 121:1-63. [PMID: 37474238 DOI: 10.1016/bs.apar.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The mouse whipworm, Trichuris muris, has been used for over 60 years as a tractable model for human trichuriasis, caused by the related whipworm species, T. trichiura. The history of T. muris research, from the discovery of the parasite in 1761 to understanding the lifecycle and outcome of infection with different doses (high versus low dose infection), as well as the immune mechanisms associated with parasite expulsion and chronic infection have been detailed in an earlier review published in 2013. Here, we review recent advances in our understanding of whipworm biology, host-parasite interactions and basic immunology brought about using the T. muris mouse model, focussing on developments from the last decade. In addition to the traditional high/low dose infection models that have formed the mainstay of T. muris research to date, novel models involving trickle (repeated low dose) infection in laboratory mice or infection in wild or semi-wild mice have led to important insights into how immunity develops in situ in a multivariate environment, while the use of novel techniques such as the development of caecal organoids (enabling the study of larval development ex vivo) promise to deliver important insights into host-parasite interactions. In addition, the genome and transcriptome analyses of T. muris and T. trichiura have proven to be invaluable tools, particularly in the context of vaccine development and identification of secreted products including proteins, extracellular vesicles and micro-RNAs, shedding further light on how these parasites communicate with their host and modulate the immune response to promote their own survival.
Collapse
Affiliation(s)
- Isabella C Hubbard
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacob S Thompson
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|
2
|
Papoutsopoulou S, Tang J, Elramli AH, Williams JM, Gupta N, Ikuomola FI, Sheibani-Tezerji R, Alam MT, Hernández-Fernaud JR, Caamaño JH, Probert CS, Muller W, Duckworth CA, Pritchard DM. Nfkb2 deficiency and its impact on plasma cells and immunoglobulin expression in murine small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2022; 323:G306-G317. [PMID: 35916405 PMCID: PMC9485003 DOI: 10.1152/ajpgi.00037.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The alternative (noncanonical) nuclear factor-κB (NF-κB) signaling pathway predominantly regulates the function of the p52/RelB heterodimer. Germline Nfkb2 deficiency in mice leads to loss of p100/p52 protein and offers protection against a variety of gastrointestinal conditions, including azoxymethane/dextran sulfate sodium (DSS)-induced colitis-associated cancer and lipopolysaccharide (LPS)-induced small intestinal epithelial apoptosis. However, the common underlying protective mechanisms have not yet been fully elucidated. We applied high-throughput RNA-Seq and proteomic analyses to characterize the transcriptional and protein signatures of the small intestinal mucosa of naïve adult Nfkb2-/- mice. Those data were validated by immunohistochemistry and quantitative ELISA using both small intestinal tissue lysates and serum. We identified a B-lymphocyte defect as a major transcriptional signature in the small intestinal mucosa and immunoglobulin A as the most downregulated protein by proteomic analysis in Nfkb2-/- mice. Small intestinal immunoglobulins were dramatically dysregulated, with undetectable levels of immunoglobulin A and greatly increased amounts of immunoglobulin M being detected. The numbers of IgA-producing, cluster of differentiation (CD)138-positive plasma cells were also reduced in the lamina propria of the small intestinal villi of Nfkb2-/- mice. This phenotype was even more striking in the small intestinal mucosa of RelB-/- mice, although these mice were equally sensitive to LPS-induced intestinal apoptosis as their RelB+/+ wild-type counterparts. NF-κB2/p52 deficiency confers resistance to LPS-induced small intestinal apoptosis and also appears to regulate the plasma cell population and immunoglobulin levels within the gut.NEW & NOTEWORTHY Novel transcriptomic analysis of murine proximal intestinal mucosa revealed an unexpected B cell signature in Nfkb2-/- mice. In-depth analysis revealed a defect in the CD38+ B cell population and a gut-specific dysregulation of immunoglobulin levels.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Joseph Tang
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Ahmed H. Elramli
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,3Department of Basic Medical Sciences, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Jonathan M. Williams
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,4Pathobiology and Population Sciences, The Royal
Veterinary College, Hatfield, United Kingdom
| | - Nitika Gupta
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Felix I. Ikuomola
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | | | - Mohammad T. Alam
- 6Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry, United Kingdom,7Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juan R. Hernández-Fernaud
- 6Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry, United Kingdom,8Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - Jorge H. Caamaño
- 9College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris S. Probert
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Werner Muller
- 10Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carrie A. Duckworth
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - D. Mark Pritchard
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Mair I, Wolfenden A, Lowe AE, Bennett A, Muir A, Smith H, Fenn J, Bradley JE, Else KJ. A lesson from the wild: The natural state of eosinophils is Ly6G hi. Immunology 2021; 164:766-776. [PMID: 34486729 PMCID: PMC8561109 DOI: 10.1111/imm.13413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
With a long history of promoting pathological inflammation, eosinophils are now emerging as important regulatory cells. Yet, findings from controlled laboratory experiments so far lack translation to animals, including humans, in their natural environment. In order to appreciate the breadth of eosinophil phenotype under non‐laboratory, uncontrolled conditions, we exploit a free‐living population of the model organism Mus musculus domesticus. Eosinophils were present at significantly higher proportions in the spleen and bone marrow of wild mice compared with laboratory mice. Strikingly, the majority of eosinophils of wild mice exhibited a unique Ly6Ghi phenotype seldom described in laboratory literature. Ly6G expression correlated with activation status in spleen and bone marrow, but not peritoneal exudate cells, and is therefore likely not an activation marker per se. Intermediate Ly6G expression was transiently induced in a small proportion of eosinophils from C57BL/6 laboratory mice during acute infection with the whipworm Trichuris muris, but not during low‐dose chronic infection, which better represents parasite exposure in the wild. We conclude that the natural state of the eosinophil is not adequately reflected in the standard laboratory mouse, which compromises our attempts to dissect their functional relevance. Our findings emphasize the importance of studying the immune system in its natural context – alongside more mechanistic laboratory experiments – in order to capture the entirety of immune phenotypes and functions.
Collapse
Affiliation(s)
- Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Wolfenden
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann E Lowe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Alex Bennett
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Muir
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Fenn
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Kathryn J Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Zaini A, Good-Jacobson KL, Zaph C. Context-dependent roles of B cells during intestinal helminth infection. PLoS Negl Trop Dis 2021; 15:e0009340. [PMID: 33983946 PMCID: PMC8118336 DOI: 10.1371/journal.pntd.0009340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The current approaches to reduce the burden of chronic helminth infections in endemic areas are adequate sanitation and periodic administration of deworming drugs. Yet, resistance against some deworming drugs and reinfection can still rapidly occur even after treatment. A vaccine against helminths would be an effective solution at preventing reinfection. However, vaccines against helminth parasites have yet to be successfully developed. While T helper cells and innate lymphoid cells have been established as important components of the protective type 2 response, the roles of B cells and antibodies remain the most controversial. Here, we review the roles of B cells during intestinal helminth infection. We discuss the potential factors that contribute to the context-specific roles for B cells in protection against diverse intestinal helminth parasite species, using evidence from well-defined murine model systems. Understanding the precise roles of B cells during resistance and susceptibility to helminth infection may offer a new perspective of type 2 protective immunity.
Collapse
Affiliation(s)
- Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kim L. Good-Jacobson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
5
|
Mair I, Else KJ, Forman R. Trichuris muris as a tool for holistic discovery research: from translational research to environmental bio-tagging. Parasitology 2021; 148:1-13. [PMID: 33952360 PMCID: PMC8660646 DOI: 10.1017/s003118202100069x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Trichuris spp. (whipworms) are intestinal nematode parasites which cause chronic infections associated with significant morbidities. Trichuris muris in a mouse is the most well studied of the whipworms and research on this species has been approached from a number of different disciplines. Research on T. muris in a laboratory mouse has provided vital insights into the host–parasite interaction through analyses of the immune responses to infection, identifying factors underpinning host susceptibility and resistance. Laboratory studies have also informed strategies for disease control through anthelmintics and vaccine research. On the contrary, research on naturally occurring infections with Trichuris spp. allows the analysis of the host–parasite co-evolutionary relationships and parasite genetic diversity. Furthermore, ecological studies utilizing Trichuris have aided our knowledge of the intricate relationships amongst parasite, host and environment. More recently, studies in wild and semi-wild settings have combined the strengths of the model organism of the house mouse with the complexities of context-dependent physiological responses to infection. This review celebrates the extraordinarily broad range of beneficiaries of whipworm research, from immunologists and parasitologists, through epidemiologists, ecologists and evolutionary biologists to the veterinary and medical communities.
Collapse
Affiliation(s)
- Iris Mair
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Kathryn J. Else
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| | - Ruth Forman
- Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, ManchesterM13 9PT, UK
| |
Collapse
|