1
|
Shirdhankar RN, Malkemper EP. Cognitive maps and the magnetic sense in vertebrates. Curr Opin Neurobiol 2024; 86:102880. [PMID: 38657284 DOI: 10.1016/j.conb.2024.102880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Navigation requires a network of neurons processing inputs from internally generated cues and external landmarks. Most studies on the neuronal basis of navigation in vertebrates have focused on rats and mice and the canonical senses vision, hearing, olfaction, and somatosensation. Some animals have evolved the ability to sense the Earth's magnetic field and use it for orientation. It can be expected that in these animals magnetic cues are integrated with other sensory cues in the cognitive map. We provide an overview of the behavioral evidence and brain regions involved in magnetic sensing in support of this idea, hoping that this will guide future experiments.
Collapse
Affiliation(s)
- Runita N Shirdhankar
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany; International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - E Pascal Malkemper
- Research Group Neurobiology of Magnetoreception, Max Planck Institute for Neurobiology of Behavior - Caesar, Ludwig-Erhard-Allee 2, Bonn 53175, Germany.
| |
Collapse
|
2
|
Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H. Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J R Soc Interface 2015; 11:20140777. [PMID: 25232052 DOI: 10.1098/rsif.2014.0777] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetoreception remains one of the few unsolved mysteries in sensory biology. The upper beak, which is innervated by the ophthalmic branch of the trigeminal nerve (V1), has been suggested to contain magnetic sensors based on ferromagnetic structures. Recently, its existence in pigeons has been seriously challenged by studies suggesting that the previously described iron-accumulations are macrophages, not magnetosensitive nerve endings. This raised the fundamental question of whether V1 is involved in magnetoreception in pigeons at all. We exposed pigeons to either a constantly changing magnetic field (CMF), to a zero magnetic field providing no magnetic information, or to CMF conditions after V1 was cut bilaterally. Using immediate early genes as a marker of neuronal responsiveness, we report that the trigeminal brainstem nuclei of pigeons, which receive V1 input, are activated under CMF conditions and that this neuronal activation disappears if the magnetic stimuli are removed or if V1 is cut. Our data suggest that the trigeminal system in pigeons is involved in processing magnetic field information and that V1 transmits this information from currently unknown, V1-associated magnetosensors to the brain.
Collapse
Affiliation(s)
- Nele Lefeldt
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Dominik Heyers
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Nils-Lasse Schneider
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Svenja Engels
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Dana Elbers
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Henrik Mouritsen
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
3
|
Ramírez E, Marín G, Mpodozis J, Letelier JC. Extracellular recordings reveal absence of magneto sensitive units in the avian optic tectum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:983-96. [PMID: 25281335 PMCID: PMC4237910 DOI: 10.1007/s00359-014-0947-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
There is a consensus that birds detect the earth's magnetic field and use some of its features for orientation and homing purposes. Since the late 1960s, when the first solid behavioral evidence of magnetoreception was obtained, much research has been devoted to describing the ethological aspects of this behavior. The neurophysiological basis of magnetoreception has been much less studied, although a frequently cited 1986 report described a high prevalence (70 %) of magneto-sensitive neurons in the pigeon optic tectum with high signal-to-noise ratios (Semm and Demaine, J Comp Physiol A 159:619-625, 1986). Here, we repeated these neurophysiological experiments using anesthetized as well as awake pigeons and new recording techniques. Our data indicate that magneto-sensitive units do not exist in the avian tectum.
Collapse
Affiliation(s)
- Edgardo Ramírez
- Department of Biology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile,
| | | | | | | |
Collapse
|
4
|
Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus. Naturwissenschaften 2014; 101:557-63. [DOI: 10.1007/s00114-014-1192-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 05/23/2014] [Indexed: 11/26/2022]
|
5
|
Mouritsen H, Hore PJ. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr Opin Neurobiol 2012; 22:343-52. [DOI: 10.1016/j.conb.2012.01.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/03/2012] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
|
6
|
Oliveriusová L, Němec P, Králová Z, Sedláček F. Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? J Exp Biol 2012; 215:3649-54. [DOI: 10.1242/jeb.069625] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Evidence for magnetoreception in mammals remains limited. Magnetic compass orientation or magnetic alignment has been conclusively demonstrated in only a handful of mammalian species. The functional properties and underlying mechanisms have been most thoroughly characterized in Ansell's mole-rat, Fukomys anselli, which is the species of choice due to its spontaneous drive to construct nests in the south-eastern sector of a circular arena using the magnetic field azimuth as the primary orientation cue. Due to the remarkable consistency between experiments, it is generally believed that this directional preference is innate. To test the hypothesis that spontaneous south-eastern directional preference is a shared, ancestral feature of all African mole rats (Bathyergidae, Rodentia), we employed the same arena assay to study magnetic orientation in two other mole-rat species, the social giant mole-rat Fukomys mechowii and the solitary silvery mole-rat Heliophobius argenteocinereus. Both species exhibited spontaneous western directional preference and deflected their directional preference according to shifts in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Because all of the experiments were performed in total darkness, our results strongly suggest that all African mole rats use a light-independent magnetic compass for near-space orientation. However, the spontaneous directional preference is not common and may be either innate but species-specific, or learned. We propose an experiment that should be performed to distinguish between these two alternatives.
Collapse
|
7
|
Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 2010; 7 Suppl 2:S135-46. [PMID: 20129953 PMCID: PMC2843994 DOI: 10.1098/rsif.2009.0456.focus] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 01/12/2010] [Indexed: 11/12/2022] Open
Abstract
The sensory basis of magnetoreception in animals still remains a mystery. One hypothesis of magnetoreception is that photochemical radical pair reactions can transduce magnetic information in specialized photoreceptor cells, possibly involving the photoreceptor molecule cryptochrome. This hypothesis triggered a considerable amount of research in the past decade. Here, we present an updated picture of the radical-pair photoreceptor hypothesis. In our review, we will focus on insights that can assist biologists in their search for the elusive magnetoreceptors.
Collapse
Affiliation(s)
- Thorsten Ritz
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
8
|
Burger T, Lucová M, Moritz RE, Oelschläger HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Nemec P. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J R Soc Interface 2010; 7:1275-92. [PMID: 20219838 DOI: 10.1098/rsif.2009.0551] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal-hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit.
Collapse
Affiliation(s)
- Tomás Burger
- Department of Zoology, Faculty of Science Charles University in Prague, Vinicna 7, CZ-12844 Praha 2, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing. J R Soc Interface 2010. [PMID: 20129953 DOI: 10.1098/rsif.2009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The sensory basis of magnetoreception in animals still remains a mystery. One hypothesis of magnetoreception is that photochemical radical pair reactions can transduce magnetic information in specialized photoreceptor cells, possibly involving the photoreceptor molecule cryptochrome. This hypothesis triggered a considerable amount of research in the past decade. Here, we present an updated picture of the radical-pair photoreceptor hypothesis. In our review, we will focus on insights that can assist biologists in their search for the elusive magnetoreceptors.
Collapse
Affiliation(s)
- Thorsten Ritz
- Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
10
|
Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DMS. Magnetoreception in eusocial insects: an update. J R Soc Interface 2010; 7 Suppl 2:S207-25. [PMID: 20106876 DOI: 10.1098/rsif.2009.0526.focus] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioural experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and along migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments and when exiting the hive. For the first time, the magnetic properties of the nanoparticles found in eusocial insects, obtained by magnetic techniques and electron microscopy, are reviewed. Different magnetic oxide nanoparticles, ranging from superparamagnetic to multi-domain particles, were observed in all body parts, but greater relative concentrations in the abdomens and antennae of honeybees and ants have focused attention on these segments. Theoretical models for how these specific magnetosensory apparatuses function have been proposed. Neuron-rich ant antennae may be the most amenable to discovering a magnetosensor that will greatly assist research into higher order processing of magnetic information. The ferromagnetic hypothesis is believed to apply to eusocial insects, but interest in a light-sensitive mechanism is growing. The diversity of compass mechanisms in animals suggests that multiple compasses may function in insect orientation and navigation. The search for magnetic compasses will continue even after a magnetosensor is discovered in eusocial insects.
Collapse
Affiliation(s)
- Eliane Wajnberg
- Coordenação de Física Aplicada, Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud, 150, Rio de Janeiro 22290-180, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Cadiou H, McNaughton PA. Avian magnetite-based magnetoreception: a physiologist's perspective. J R Soc Interface 2010; 7 Suppl 2:S193-205. [PMID: 20106875 DOI: 10.1098/rsif.2009.0423.focus] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is now well established that animals use the Earth's magnetic field to perform long-distance migration and other navigational tasks. However, the transduction mechanisms that allow the conversion of magnetic field variations into an electric signal by specialized sensory cells remain largely unknown. Among the species that have been shown to sense Earth-strength magnetic fields, birds have been a model of choice since behavioural tests show that their direction-finding abilities are strongly influenced by magnetic fields. Magnetite, a ferromagnetic mineral, has been found in a wide range of organisms, from bacteria to vertebrates. In birds, both superparamagnetic (SPM) and single-domain magnetite have been found to be associated with the trigeminal nerve. Electrophysiological recordings from cells in the trigeminal ganglion have shown an increase in action potential firing in response to magnetic field changes. More recently, histological evidence has demonstrated the presence of SPM magnetite in the subcutis of the pigeon's upper beak. The aims of the present review are to review the evidence for a magnetite-based mechanism in birds and to introduce physiological concepts in order to refine the proposed models.
Collapse
Affiliation(s)
- Hervé Cadiou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
12
|
Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci U S A 2009; 106:5708-13. [PMID: 19299504 DOI: 10.1073/pnas.0811194106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resting and grazing cattle and deer tend to align their body axes in the geomagnetic North-South direction. The mechanism(s) that underlie this behavior remain unknown. Here, we show that extremely low-frequency magnetic fields (ELFMFs) generated by high-voltage power lines disrupt alignment of the bodies of these animals with the geomagnetic field. Body orientation of cattle and roe deer was random on pastures under or near power lines. Moreover, cattle exposed to various magnetic fields directly beneath or in the vicinity of power lines trending in various magnetic directions exhibited distinct patterns of alignment. The disturbing effect of the ELFMFs on body alignment diminished with the distance from conductors. These findings constitute evidence for magnetic sensation in large mammals as well as evidence of an overt behavioral reaction to weak ELFMFs in vertebrates. The demonstrated reaction to weak ELFMFs implies effects at the cellular and molecular levels.
Collapse
|
13
|
Esquivel DMS, Wajnberg E, do Nascimento FS, Pinho MB, Lins de Barros HGP, Eizemberg R. Do geomagnetic storms change the behaviour of the stingless bee guiruçu (Schwarziana quadripunctata)? Naturwissenschaften 2006; 94:139-42. [PMID: 17028885 DOI: 10.1007/s00114-006-0169-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 08/11/2006] [Accepted: 08/21/2006] [Indexed: 11/30/2022]
Abstract
Six behavioural experiments were carried out to investigate the magnetic field effects on the nest-exiting flight directions of the honeybee Schwarziana quadripunctata (Meliponini). No significant differences resulted during six experiment days under varying geomagnetic field and the applied static inhomogeneous field (about ten times the geomagnetic field) conditions. A surprising statistically significant response was obtained on a unique magnetic storm day. The magnetic nanoparticles in these bees, revealed by ferromagnetic resonance, could be involved in the observed effect of the geomagnetic storm.
Collapse
Affiliation(s)
- Darci M S Esquivel
- Centro Brasileiro de Pesquisas Físicas, R Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Diverse animals can detect magnetic fields but little is known about how they do so. Three main hypotheses of magnetic field perception have been proposed. Electrosensitive marine fish might detect the Earth's field through electromagnetic induction, but direct evidence that induction underlies magnetoreception in such fish has not been obtained. Studies in other animals have provided evidence that is consistent with two other mechanisms: biogenic magnetite and chemical reactions that are modulated by weak magnetic fields. Despite recent advances, however, magnetoreceptors have not been identified with certainty in any animal, and the mode of transduction for the magnetic sense remains unknown.
Collapse
Affiliation(s)
- Sönke Johnsen
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
15
|
Mouritsen H, Ritz T. Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 2005; 15:406-14. [PMID: 16006116 DOI: 10.1016/j.conb.2005.06.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Recent advances have brought new insight into the physiological mechanisms that enable birds and other animals to use magnetic fields for orientation. Many birds seem to have two magnetodetection senses, one based on magnetite near the beak and one based on light-dependent radical-pair processes in the bird's eye(s). Among the most exciting recent results are: first, behavioural responses of birds experiencing oscillating magnetic fields. Second, the occurrence of putative magnetosensory molecules, the cryptochromes, in the eyes of migratory birds. Third, detection of a brain area that integrates specialised visual input at night in night-migratory songbirds. Fourth, a putative magnetosensory cluster of magnetite in the upper beak. These and other recent findings have important implications for magnetoreception; however, many crucial open questions remain.
Collapse
Affiliation(s)
- Henrik Mouritsen
- Volkswagen Nachwuchsgruppe Animal Navigation, Institute of Biology, University of Oldenburg, D-26111 Oldenburg, Germany.
| | | |
Collapse
|