1
|
Rathore RS, Jiang W, Sedeek K, Mahfouz M. Harnessing neo-domestication of wild pigmented rice for enhanced nutrition and sustainable agriculture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:108. [PMID: 40317300 PMCID: PMC12049317 DOI: 10.1007/s00122-025-04896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
Advances in precision gene editing have enabled the rapid domestication of wild crop relatives, a process known as neo-domestication. During domestication, breeding rice for maximum productivity under optimal growth conditions reduced genetic diversity, eliminating variants for stress tolerance and grain nutrients. Wild rice varieties have rich genetic diversity, including variants for disease resistance, stress tolerance, and grain nutritional quality. For example, the grain of pigmented wild rice has abundant antioxidants (anthocyanins, proanthocyanidins, and flavonoids), but low yield, poor plant architecture, and long life cycle limit its cultivation. In this review, we address the neo-domestication of wild pigmented rice, focusing on recent progress, CRISPR-Cas editing toolboxes, selection of key candidate genes for domestication, identifying species with superior potential via generating genomic and multi-omics resources, efficient crop transformation methods and highlight strategies for the promotion and application pigmented rice. We also address critical outstanding questions and potential solutions to enable efficient neo-domestication of wild pigmented rice and thus enhance food security and nutrition.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Chiou WY, Kawamoto T, Himi E, Rikiishi K, Sugimoto M, Hayashi-Tsugane M, Tsugane K, Maekawa M. LARGE GRAIN Encodes a Putative RNA-Binding Protein that Regulates Spikelet Hull Length in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:503-515. [PMID: 30690508 DOI: 10.1093/pcp/pcz014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Grain size is a key determiner of grain weight, one of the yield components in rice (Oryza sativa). Therefore, to increase grain yield, it is important to elucidate the detailed mechanisms regulating grain size. The Large grain (Lgg) mutant, found in the nonautonomous DNA-based active rice transposon1 (nDart1)-tagged lines of Koshihikari, is caused by a truncated nDart1-3 and 355 bp deletion in the 5' untranslated region of LGG, which encodes a putative RNA-binding protein, through transposon display and cosegregation analysis between grain length and LGG genotype in F2 and F3. Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9-mediated knockout and overexpression of LGG led to longer and shorter grains than wild type, respectively, showing that LGG regulates spikelet hull length. Expression of LGG was highest in the 0.6-mm-long young panicle and gradually decreased as the panicle elongated. LGG was also expressed in roots and leaves. These results show that LGG functions at the very early stage of panicle development. Longitudinal cell numbers of spikelet hulls of Lgg, knockout and overexpressed plants were significantly different from those of the wild type, suggesting that LGG might regulate longitudinal cell proliferation in the spikelet hull. RNA-Seq analysis of 1-mm-long young panicles from LGG knockout and overexpressing plants revealed that the expressions of many cell cycle-related genes were reduced in knockout plants relative to LGG-overexpressing plants and wild type, whereas some genes for cell proliferation were highly expressed in knockout plants. Taken together, these results suggest that LGG might be a regulator of cell cycle and cell division in the rice spikelet hull.
Collapse
Affiliation(s)
- Wan-Yi Chiou
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Manabu Sugimoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Mika Hayashi-Tsugane
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
| | - Kazuo Tsugane
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
3
|
Moin M, Bakshi A, Madhav MS, Kirti PB. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice. Brief Funct Genomics 2018; 17:339-351. [PMID: 29579147 DOI: 10.1093/bfgp/ely010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - M S Madhav
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
4
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
5
|
Lu N, Carter JD, Boluarte Medina T, Holt SH, Manrique-Carpintero NC, Upham KT, Pereira A, Shulaev V, Veilleux RE. Transposon based activation tagging in diploid strawberry and monoploid derivatives of potato. PLANT CELL REPORTS 2014; 33:1203-1216. [PMID: 24728112 DOI: 10.1007/s00299-014-1610-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Diploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds. As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences. To study gene function, we examined transposon-tagged mutant strategies in model populations for both species, Fragaria vesca and Solanum tuberosum Group Phureja, using the same Activation/Dissociation (Ac/Ds) construct. Early somatic transposition during tissue culture occurred at a frequency of 18.5% in strawberry but not in potato transformants. Green fluorescent protein under a monocot promoter was a more reliable selectable marker in strawberry compared to potato. BASTA (gluphosinate herbicide) resistance served as an effective selectable marker for both species (80 and 85% reliable in strawberry and potato, respectively), although the effective concentration differed (0.5% for strawberry and 0.03% for potato). Transposons preferentially reinserted within genes (exons and introns) in both species. Real-time quantitative PCR revealed enhanced gene expression (670 and 298-fold expression compared to wild type in petiole and leaf tissue, respectively) for an activation tagged strawberry mutant with Ds inserted about 0.6 kb upstream from a gene coding for an epidermis-specific secreted glycoprotein EP1. Our data also suggested that endopolyploid (diploid) cells occurring in leaf explants of monoploid potato were the favored targets of T-DNA integration during transformation. Mutants obtained in these studies provide a useful resource for future genetic studies.
Collapse
Affiliation(s)
- Nan Lu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wei FJ, Droc G, Guiderdoni E, Hsing YIC. International Consortium of Rice Mutagenesis: resources and beyond. RICE (NEW YORK, N.Y.) 2013; 6:39. [PMID: 24341871 PMCID: PMC3946042 DOI: 10.1186/1939-8433-6-39] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 05/20/2023]
Abstract
Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses.As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| | - Gaëtan Droc
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Emmanuel Guiderdoni
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Yue-ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| |
Collapse
|
7
|
Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C. Mutant resources for the functional analysis of the rice genome. MOLECULAR PLANT 2013; 6:596-604. [PMID: 23204502 DOI: 10.1093/mp/sss142] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rice is one of the most important crops worldwide, both as a staple food and as a model system for genomic research. In order to systematically assign functions to all predicted genes in the rice genome, a large number of rice mutant lines, including those created by T-DNA insertion, Ds/dSpm tagging, Tos17 tagging, and chemical/irradiation mutagenesis, have been generated by groups around the world. In this study, we have reviewed the current status of mutant resources for functional analysis of the rice genome. A total of 246 566 flanking sequence tags from rice mutant libraries with T-DNA, Ds/dSpm, or Tos17 insertion have been collected and analyzed. The results show that, among 211 470 unique hits, inserts located in the genic region account for 68.16%, and 60.49% of nuclear genes contain at least one insertion. Currently, 57% of non-transposable-element-related genes in rice have insertional tags. In addition, chemical/irradiation-induced rice mutant libraries have contributed a lot to both gene identification and new technology for the identification of mutant sites. In this review, we summarize how these tools have been used to generate a large collection of mutants. In addition, we discuss the merits of classic mutation strategies. In order to achieve saturation of mutagenesis in rice, DNA targeting, and new resources like RiceFox for gene functional identification are reviewed from a perspective of the future generation of rice mutant resources.
Collapse
Affiliation(s)
- Nili Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.
Collapse
Affiliation(s)
- Katina Lazarow
- Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | |
Collapse
|
9
|
Yu C, Han F, Zhang J, Birchler J, Peterson T. A transgenic system for generation of transposon Ac/Ds-induced chromosome rearrangements in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1449-62. [PMID: 22798058 PMCID: PMC3470690 DOI: 10.1007/s00122-012-1925-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/16/2012] [Indexed: 05/04/2023]
Abstract
The maize Activator (Ac)/Dissociation (Ds) transposable element system has been used in a variety of plants for insertional mutagenesis. Ac/Ds elements can also generate genome rearrangements via alternative transposition reactions which involve the termini of closely linked transposons. Here, we introduced a transgene containing reverse-oriented Ac/Ds termini together with an Ac transposase gene into rice (Oryza sativa ssp. japonica cv. Nipponbare). Among the transgenic progeny, we identified and characterized 25 independent genome rearrangements at three different chromosomal loci. The rearrangements include chromosomal deletions and inversions and one translocation. Most of the deletions occurred within the T-DNA region, but two cases showed the loss of 72 kilobase pairs (kb) and 79 kb of rice genomic DNA flanking the transgene. In addition to deletions, we obtained chromosomal inversions ranging in size from less than 10 kb (within the transgene DNA) to over 1 million base pairs (Mb). For 11 inversions, we cloned and sequenced both inversion breakpoints; in all 11 cases, the inversion junctions contained the typical 8 base pairs (bp) Ac/Ds target site duplications, confirming their origin as transposition products. Together, our results indicate that alternative Ac/Ds transposition can be an efficient tool for functional genomics and chromosomal manipulation in rice.
Collapse
Affiliation(s)
- Chuanhe Yu
- Department of Genetics, Development and Cell Biology, Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Fangpu Han
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 USA
- State Key Lab of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jianbo Zhang
- Department of Genetics, Development and Cell Biology, Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - James Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Thomas Peterson
- Department of Genetics, Development and Cell Biology, Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
10
|
Veilleux RE, Mills KP, Baxter AJ, Upham KT, Ferguson TJ, Holt SH, Lu N, Ruiz-Rojas JJ, Pantazis CJ, Davis CM, Lindsay RC, Powell FL, Dan Y, Dickerman AW, Oosumi T, Shulaev V. Transposon tagging in diploid strawberry. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:985-994. [PMID: 22845757 DOI: 10.1111/j.1467-7652.2012.00728.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fragaria vesca was transformed with a transposon tagging construct harbouring amino terminally deleted maize transposase and EGFP (Ac element), NPTII, CaMV 35S promoter (P35S) driving transposase and mannopine synthase promoter (Pmas) driving EGFP (Ds element). Of 180 primary transgenics, 48 were potential launch pads, 72 were multiple insertions or chimaeras, and 60 exhibited somatic transposition. T₁ progeny of 32 putative launch pads were screened by multiplex PCR for transposition. Evidence of germ-line transposition occurred in 13 putative launch pads; however, the transposition frequency was too low in three for efficient recovery of transposants. The transposition frequency in the remaining launch pads ranged from 16% to 40%. After self-pollination of the T₀ launch pads, putative transposants in the T₁ generation were identified by multiplex PCR. Sequencing of hiTAIL-PCR products derived from nested primers within the Ds end sequences (either P35S at the left border or the inverted repeat at the right border) of T₁ plants revealed transposition of the Ds element to distant sites in the strawberry genome. From more than 2400 T₁ plants screened, 103 unique transposants have been identified, among which 17 were somatic transpositions observed in the T₀ generation. Ds insertion sites were dispersed among various gene elements [exons (15%), introns (23%), promoters (30%), 3' UTRs (17%) as well as intergenically (15%)]. Three-primer (one on either side of the Ds insertion and one within the Ds T-DNA) PCR could be used to identify homozygous T₂ transposon-tagged plants. The mutant collection has been catalogued in an on-line database.
Collapse
|
11
|
Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery. BMC Genomics 2012; 13:61. [PMID: 22309468 PMCID: PMC3295694 DOI: 10.1186/1471-2164-13-61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/06/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rapid improvements in the development of new sequencing technologies have led to the availability of genome sequences of more than 300 organisms today. Thanks to bioinformatic analyses, prediction of gene models and protein-coding transcripts has become feasible. Various reverse and forward genetics strategies have been followed to determine the functions of these gene models and regulatory sequences. Using T-DNA or transposons as tags, significant progress has been made by using "Knock-in" approaches ("gain-of-function" or "activation tagging") in different plant species but not in perennial plants species, e.g. long-lived trees. Here, large scale gene tagging resources are still lacking. RESULTS We describe the first application of an inducible transposon-based activation tagging system for a perennial plant species, as example a poplar hybrid (P. tremula L. × P. tremuloides Michx.). Four activation-tagged populations comprising a total of 12,083 individuals derived from 23 independent "Activation Tagging Ds" (ATDs) transgenic lines were produced and phenotyped. To date, 29 putative variants have been isolated and new ATDs genomic positions were successfully determined for 24 of those. Sequences obtained were blasted against the publicly available genome sequence of P. trichocarpa v2.0 (Phytozome v7.0; http://www.phytozome.net/poplar) revealing possible transcripts for 17 variants.In a second approach, 300 randomly selected individuals without any obvious phenotypic alterations were screened for ATDs excision. For one third of those transposition of ATDs was confirmed and in about 5% of these cases genes were tagged. CONCLUSIONS The novel strategy of first genotyping and then phenotyping a tagging population as proposed here is, in particular, applicable for long-lived, difficult to transform plant species. We could demonstrate the power of the ATDs transposon approach and the simplicity to induce ATDs transposition in vitro. Since a transposon is able to pass chromosomal boundaries, only very few primary transposon-carrying transgenic lines are required for the establishment of large transposon tagging populations. In contrast to T-DNA-based activation tagging, which is plagued by a lack of transformation efficiency and its time consuming nature, this for the first time, makes it feasible one day to tag (similarly to Arabidopsis) every gene within a perennial plant genome.
Collapse
|
12
|
Charng YC. A one-time inducible transposon to create knockout mutants in rice. Methods Mol Biol 2012; 847:369-377. [PMID: 22351022 DOI: 10.1007/978-1-61779-558-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Use of a transposon is an efficient tagging tool for exploring the function of the gene it inserts into or is adjacent to. A few modifications have been applied to the native Ac transposon to allow it to transpose efficiently or spontaneously and stop quickly thereafter. Furthermore, locating the transposon between a constitutive plant promoter and a reporter gene, such as the firefly luciferase gene, allows for nondestructively detecting excision events in vivo. This chapter describes a detailed protocol for one-time inducible transposon tagging of rice cells and their subsequent screening and regeneration into mutant lines.
Collapse
Affiliation(s)
- Yuh-Chyang Charng
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
13
|
Abstract
Rice is the model plant for monocotyledons. Since the completion of the high-quality sequence of its genome, the international community is deploying efforts to identify the function of the 30-40,000 nontransposable element genes of rice. These efforts comprise the creation of large collections of rice mutants accessible to the international scientific community. In addition to loss of function mutants, insertion mutagenesis using Agrobacterium-mediated transformation and engineered mobile elements allows the identification of genes through enhancer or gene trapping or activation tagging. The maize transposable element Ac-Ds is known to be active in rice since the early 1990s and it does not interfere with endogenous rice transposons. This is the guaranty that induced mutation obtained with the mobility of the Ds element will be stable when the source of Ac transposase is removed from the mutated genome. In this paper, we describe single- or double-component T-DNA constructs that have been used to introduce a functional Ac-Ds system in rice and allowed the generation and selection of different type of Ds insertion mutations in the rice genome.
Collapse
|
14
|
Singh S, Tan HQ, Singh J. Mutagenesis of barley malting quality QTLs with Ds transposons. Funct Integr Genomics 2011; 12:131-41. [DOI: 10.1007/s10142-011-0258-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
|
15
|
Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis. Biotechnol Lett 2010; 32:1753-63. [PMID: 20703802 DOI: 10.1007/s10529-010-0377-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Rice is the first cereal genome to be completely sequenced. Since the completion of its genome sequencing, considerable progress has been made in multiple areas including the whole genome annotation, gene expression profiling, mutant collection, etc. Here, we summarize the current status of rice genome annotation and review the methodology of assigning biological functions to hundreds of thousands of rice genes as well as discuss the major limitations and the future perspective in rice functional genomics. Available data analysis shows that the rice genome encodes around 32,000 protein-coding genes. Expression analysis revealed at least 31,000 genes with expression evidence from full-length cDNA/EST collection or other transcript profiling. In addition, we have summarized various strategies to generate mutant population including natural, physical, chemical, T-DNA, transposon/retrotransposon or gene silencing based mutagenesis. Currently, more than 1 million of mutants have been generated and 27,551 of them have their flanking sequence tags. To assign biological functions to hundreds of thousands of rice genes, global co-operations are required, various genetic resources should be more easily accessible and diverse data from transcriptomics, proteomics, epigenetics, comparative genomics and bioinformatics should be integrated to better understand the functions of these genes and their regulatory mechanisms.
Collapse
|
16
|
Jiang SY, Ramachandran S. Natural and artificial mutants as valuable resources for functional genomics and molecular breeding. Int J Biol Sci 2010; 6:228-51. [PMID: 20440406 PMCID: PMC2862397 DOI: 10.7150/ijbs.6.228] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/20/2010] [Indexed: 12/31/2022] Open
Abstract
With the completion of rice genome sequencing, large collection of expression data and the great efforts in annotating rice genomes, the next challenge is to systematically assign functions to all predicted genes in the genome. The generations and collections of mutants at the genome-wide level form technological platform of functional genomics. In this study, we have reviewed currently employed tools to generate such mutant populations. These tools include natural, physical, chemical, tissue culture, T-DNA, transposon or gene silencing based mutagenesis. We also reviewed how these tools were used to generate a large collection of mutants and how these mutants can be screened and detected for functional analysis of a gene. The data suggested that the current population of mutants might be large enough to tag all predicted genes. However, the collection of flanking sequencing tags (FSTs) is limited due to the relatively higher cost. Thus, we have proposed a new strategy to generate gene-silencing mutants at the genome-wide level. Due to the large collection of insertion mutants, the next step to rice functional genomics should be focusing on functional characterization of tagged genes by detailed survey of corresponding mutants. Additionally, we also evaluated the utilization of these mutants as valuable resources for molecular breeding.
Collapse
Affiliation(s)
| | - Srinivasan Ramachandran
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604
| |
Collapse
|
17
|
Qu S, Jeon JS, Ouwerkerk PBF, Bellizzi M, Leach J, Ronald P, Wang GL. Construction and application of efficient Ac-Ds transposon tagging vectors in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:982-992. [PMID: 19903220 DOI: 10.1111/j.1744-7909.2009.00870.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transposons are effective mutagens alternative to T-DNA for the generation of insertional mutants in many plant species including those whose transformation is inefficient. The current strategies of transposon tagging are usually slow and labor-intensive and yield low frequency of tagged lines. We have constructed a series of transposon tagging vectors based on three approaches: (i) AcTPase controlled by glucocorticoid binding domain/VP16 acidic activation domain/Gal4 DNA-binding domain (GVG) chemical-inducible expression system; (ii) deletion of AcTPase via Cre-lox site-specific recombination that was initially triggered by Ds excision; and (iii) suppression of early transposition events in transformed rice callus through a dual-functional hygromycin resistance gene in a novel Ds element (HPT-Ds). We tested these vectors in transgenic rice and characterized the transposition events. Our results showed that these vectors are useful resources for functional genomics of rice and other crop plants. The vectors are freely available for the community.
Collapse
Affiliation(s)
- Shaohong Qu
- Department of Plant Pathology, Ohio State University, Columbus OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kondrychyn I, Garcia-Lecea M, Emelyanov A, Parinov S, Korzh V. Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 2009; 10:418. [PMID: 19737393 PMCID: PMC2753552 DOI: 10.1186/1471-2164-10-418] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/08/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. RESULTS We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. CONCLUSION Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.
Collapse
Affiliation(s)
- Igor Kondrychyn
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | - Marta Garcia-Lecea
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | - Alexander Emelyanov
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Temasek Life Sciences Laboratory, Singapore
| | - Sergey Parinov
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Temasek Life Sciences Laboratory, Singapore
| | - Vladimir Korzh
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
19
|
Krishnan A, Guiderdoni E, An G, Hsing YIC, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. PLANT PHYSIOLOGY 2009; 149:165-70. [PMID: 19126710 PMCID: PMC2613728 DOI: 10.1104/pp.108.128918] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/04/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Arjun Krishnan
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim CK, Lee MC, Ahn BO, Yun DW, Yoon UH, Suh SC, Eun MY, Hahn JH. KRDD: Korean Rice Ds-tagging Lines Database for Rice (Oryza sativa L. Dongjin). Genomics Inform 2008. [DOI: 10.5808/gi.2008.6.2.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Jenkins G, Phillips D, Mikhailova EI, Timofejeva L, Jones RN. Meiotic genes and proteins in cereals. Cytogenet Genome Res 2008; 120:291-301. [PMID: 18504358 DOI: 10.1159/000121078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2007] [Indexed: 12/20/2022] Open
Abstract
We review the current status of our understanding and knowledge of the genes and proteins controlling meiosis in five major cereals, rye, wheat, barley, rice and maize. For each crop, we describe the genetic and genomic infrastructure available to investigators, before considering the inventory of genes and proteins that have roles to play in this process. Emphasis is given throughout as to how translational genomic and proteomic approaches have enabled us to circumvent some of the intractable features of this important group of plants.
Collapse
Affiliation(s)
- G Jenkins
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK.
| | | | | | | | | |
Collapse
|
22
|
Luan WJ, He CK, Hu GC, Dey M, Fu YP, Si HM, Zhu L, Liu WZ, Duan F, Zhang H, Liu WY, Zhuo RY, Garg A, Wu R, Sun ZX. An efficient field screening procedure for identifying transposants for constructing an Ac/Ds-based insertional-mutant library of rice. Genome 2008; 51:41-9. [DOI: 10.1139/g07-102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient system was developed, and several variables tested, for generating a large-scale insertional-mutagenesis population of rice. The most important feature in this improved Ac/Ds tagging system is that one can conveniently carry out large-scale screening in the field and select transposants at the seedling stage. Rice was transformed with a plasmid that includes a Basta-resistance gene (bar). After the Ds element is excised during transposition, bar becomes adjacent to the ubiquitin promoter, and the rice plant becomes resistant to the herbicide Basta. In principle, one can plant up to one million plants in the field and select those plants that survive after spraying with Basta. To test the utility of this system, 4 Ds starter lines were crossed with 14 different Ac plants, and many transposants were successfully identified after planting 134 285 F2 plants in the field. Over 2 800 of these transposants were randomly chosen for PCR analysis, and the results fully confirmed the reliability of the field screening procedure.
Collapse
Affiliation(s)
- Wei-Jiang Luan
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Cheng-Kun He
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Guo-Cheng Hu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Moul Dey
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ya-Ping Fu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hua-Min Si
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Li Zhu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wen-Zhen Liu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Faping Duan
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hong Zhang
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wen-Ying Liu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ren-Ying Zhuo
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ajay Garg
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ray Wu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Zong-Xiu Sun
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Park SH, Jun NS, Kim CM, Oh TY, Huang J, Xuan YH, Park SJ, Je BI, Piao HL, Park SH, Cha YS, Ahn BO, Ji HS, Lee MC, Suh SC, Nam MH, Eun MY, Yi G, Yun DW, Han CD. Analysis of gene-trap Ds rice populations in Korea. PLANT MOLECULAR BIOLOGY 2007; 65:373-84. [PMID: 17611799 DOI: 10.1007/s11103-007-9192-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/21/2007] [Indexed: 05/16/2023]
Abstract
Insertional mutagen-mediated gene tagging populations have been essential resources for analyzing the function of plant genes. In rice, maize transposable elements have been successfully utilized to produce transposant populations. However, many generations and substantial field space are required to obtain a sufficiently sized transposant population. In rice, the japonica and indica subspecies are phenotypically and genetically divergent. Here, callus cultures with seeds carrying Ac and Ds were used to produce 89,700 lines of Dongjin, a japonica cultivar, and 6,200 lines of MGRI079, whose genome is composed of a mixture of the genetic backgrounds of japonica and indica. Of the more than 3,000 lines examined, 67% had Ds elements. Among the Ds-carrying lines, 81% of Dongjin and 63% of MGRI079 contained transposed Ds, with an average of around 2.0 copies. By examining more than 15,000 lines, it was found that 12% expressed the reporter gene GUS during the early-seedling stage. GUS was expressed in root hairs and crown root initials at estimated frequencies of 0.78% and 0.34%, respectively. The 5,271 analyzed Ds loci were found to be randomly distributed over all of the rice chromosomes.
Collapse
Affiliation(s)
- Sung Han Park
- Rice Functional Genomics, National Institute of Agricultural Biotechnology, RDA, Suwon 441-707, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu F, Zhang X, Zhang Z, Chen Z, Zhu H, Wang J, Zhang J, Zhang G. Transpositional behaviour of the Ds element in the Ac/Ds system in rice. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0415-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Pastori GM, Huttly A, West J, Sparks C, Pieters A, Luna CM, Jones HD, Foyer CH. The maize Activator/Dissociation system is functional in hexaploid wheat through successive generations. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:835-843. [PMID: 32689411 DOI: 10.1071/fp07112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 07/03/2007] [Indexed: 06/11/2023]
Abstract
The aim of the present study was to provide useful background information and evidence of the functionality of the maize Activator/Dissociation (Ac/Ds) system in hexaploid wheat. Two transgenic parental wheat lines, one harbouring the immobilised Ac element (iAc) and the other the Ds element (pUbi[Ds-uidA]bar), were crossed. Transient GUS assays confirmed that the iAc transposase is active in hexaploid wheat. Selected F1 and F2 lines were analysed by PCR using primers specific to Ac, uidA and bar genes. The primer pair Ubi/bar-tag was used to detect excision of the Ds-uidA sequence, which occurred at a frequency of 39% in the F1 generation. Lines free of Ac and showing evidence of Ds excision were subject to Southern analysis, which indicated that at least one transposition event might have occurred in these lines. Although more evidence is required to unequivocally support the reintegration of the Ds element in the wheat genome, the evidence presented here nevertheless demonstrates the effectiveness and potential value of using this system to tag genes in wheat.
Collapse
Affiliation(s)
- Gabriela M Pastori
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Alison Huttly
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Jevon West
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Caroline Sparks
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Alejandro Pieters
- IVI, Centro de Ecología, Altos de Pipe, Carretera Panamericana Km 11, Apartado 21827, Caracas 1020-A, Venezuela
| | - Celina M Luna
- Instituto de Fitopatología y FisiologíaVegetal (IFFIVE)-INTA, Camino 60 cuadras Km 5, 5009 Cordoba, Argentina
| | - Huw D Jones
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
26
|
Vij S, Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:361-80. [PMID: 17430544 DOI: 10.1111/j.1467-7652.2007.00239.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress tolerance have been conducted to unravel the intrinsic mechanisms developed during evolution to mitigate against stress by plants. Before the advent of the genomics era, researchers primarily used a gene-by-gene approach to decipher the function of the genes involved in the abiotic stress response. However, abiotic stress tolerance is a complex trait and, although large numbers of genes have been identified to be involved in the abiotic stress response, there remain large gaps in our understanding of the trait. The availability of the genome sequences of certain important plant species has enabled the use of strategies, such as genome-wide expression profiling, to identify the genes associated with the stress response, followed by the verification of gene function by the analysis of mutants and transgenics. Certain components of both abscisic acid-dependent and -independent cascades involved in the stress response have already been identified. Information originating from the genome-wide analysis of abiotic stress tolerance will help to provide an insight into the stress-responsive network(s), and may allow the modification of this network to reduce the loss caused by stress and to increase agricultural productivity.
Collapse
Affiliation(s)
- Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
27
|
Jander G, Barth C. Tandem gene arrays: a challenge for functional genomics. TRENDS IN PLANT SCIENCE 2007; 12:203-10. [PMID: 17416543 DOI: 10.1016/j.tplants.2007.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/20/2007] [Accepted: 03/27/2007] [Indexed: 05/14/2023]
Abstract
In sequenced plant genomes, 15% or more of the identified genes are members of tandem-arrayed gene families. Because mutating only one gene in a duplicated pair often produces no measurable phenotype, this poses a particular challenge for functional analysis. To generate phenotypic knockouts, it is necessary to create deletions that affect multiple genes, select for rare meiotic recombination between tightly linked loci, or perform sequential mutant screens in the same plant line. Successfully implemented strategies include PCR-based screening for fast neutron-induced deletions, selection for recombination between herbicide resistance markers, and localized transposon mutagenesis. Here, we review the relative merits of current genetic approaches and discuss the prospect of site-directed mutagenesis for generating elusive knockouts of tandem-arrayed gene families.
Collapse
Affiliation(s)
- Georg Jander
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
28
|
Miyao A, Iwasaki Y, Kitano H, Itoh JI, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. PLANT MOLECULAR BIOLOGY 2007; 63:625-35. [PMID: 17180734 PMCID: PMC1805041 DOI: 10.1007/s11103-006-9118-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/16/2006] [Indexed: 05/13/2023]
Abstract
In order to facilitate the functional analysis of rice genes, we produced about 50,000 insertion lines with the endogenous retrotransposon Tos17. Phenotypes of these lines in the M2 generation were observed in the field and characterized based on 53 phenotype descriptors. Nearly half of the lines showed more than one mutant phenotype. The most frequently observed phenotype was low fertility, followed by dwarfism. Phenotype data with photographs of each line are stored in the Tos17 mutant panel web-based database with a dataset of sequences flanking Tos17 insertion points in the rice genome (http://tos.nias.affrc.go.jp/). This combination of phenotypic and flanking sequence data will stimulate the functional analysis of rice genes.
Collapse
Affiliation(s)
- Akio Miyao
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yukimoto Iwasaki
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1, Kenjyojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195 Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601 Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Masahiko Maekawa
- Research Institute for Bioresources, Okayama University, Kurashiki, 710-0046 Japan
| | - Kazumasa Murata
- Agricultural Experiment Station, Toyama Agricultural Research Center, 1124-1 Yoshioka, Toyama, 939-8153 Japan
| | - Osamu Yatou
- Rice Biotechnology Research Subteam, Hokuriku Research Center, National Agricultural Research Center (NARC), 1-2-1 Inada, Joetsu, Niigata, 943-0193 Japan
| | - Yasuo Nagato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Hirohiko Hirochika
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| |
Collapse
|
29
|
Bai L, Singh M, Pitt L, Sweeney M, Brutnell TP. Generating novel allelic variation through Activator insertional mutagenesis in maize. Genetics 2007; 175:981-92. [PMID: 17151236 PMCID: PMC1840078 DOI: 10.1534/genetics.106.066837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 11/25/2006] [Indexed: 01/30/2023] Open
Abstract
The maize transposable element Activator (Ac) has been exploited as an insertional mutagen to disrupt, clone, and characterize genes in a number of plant species. To develop an Ac-based mutagenesis platform for maize, a large-scale mutagenesis was conducted targeting the pink scutellum1 locus. We selected 1092 Ac transposition events from a closely linked donor Ac, resulting in the recovery of 17 novel ps1 alleles. Multiple phenotypic classes were identified corresponding to Ac insertions in the 5'-UTR and coding region of the predicted Ps1 gene. To generate a stable allelic series, we employed genetic screens and identified 83 germinally heritable ps1 excision alleles. Molecular characterization of these excision alleles revealed a position-dependent bias in excision allele frequencies and the predominance of 7- and 8-bp footprint products. In total, 19 unique ps1 excision alleles were generated in this study, including several that resulted in weak mutant phenotypes. The analysis of footprint alleles suggests a model of Ac excision in maize that is consistent with recent in vitro studies of hAT element excision. Importantly, the genetic and molecular methods developed in this study can be extended to generate novel allelic variation at any Ac-tagged gene in the genome.
Collapse
Affiliation(s)
- Ling Bai
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
30
|
Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG. High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. PLANT MOLECULAR BIOLOGY 2006; 62:937-50. [PMID: 17004014 DOI: 10.1007/s11103-006-9067-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/26/2006] [Indexed: 05/12/2023]
Abstract
Transposable elements have certain advantages over other approaches for identifying and determining gene function in large genome cereals. Different strategies have been used to exploit the maize Activator/dissociation (Ac/Ds) transposon system for functional genomics in heterologous species. Either large numbers of independent Ds insertion lines or transposants (TNPs) are generated and screened phenotypically, or smaller numbers of TNPs are produced, Ds locations mapped and remobilized for localized gene targeting. It is imperative to characterize key features of the system in order to utilize the latter strategy, which is more feasible in large genome cereals like barley and wheat. In barley, we generated greater than 100 single-copy Ds TNPs and determined remobilization frequencies of primary, secondary, and tertiary TNPs with intact terminal inverted repeats (TIRs); frequencies ranged from 11.8 to 17.1%. In 16% of TNPs that had damaged TIRs no transposition was detected among progeny of crosses using those TNPs as parental lines. In half of the greater than 100 TNP lines, the nature of flanking sequences and status of the 11 bp TIRs and 8-bp direct repeats were determined. BLAST searches using a gene prediction program revealed that 86% of TNP flanking sequences matched either known or putative genes, indicating preferential Ds insertion into genic regions, critical in large genome species. Observed remobilization frequencies of primary, secondary, tertiary, and quaternary TNPs, coupled with the tendency for localized Ds transposition, validates a saturation mutagenesis approach using Ds to tag and characterize genes linked to Ds in large genome cereals like barley and wheat.
Collapse
Affiliation(s)
- Jaswinder Singh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T. Mapped Ds/T-DNA launch pads for functional genomics in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:811-26. [PMID: 16889649 DOI: 10.1111/j.1365-313x.2006.02831.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A system for targeted gene tagging and local saturation mutagenesis based on maize transposable elements (Ac/Ds) was developed in barley (Hordeum vulgare L.). We generated large numbers of transgenic barley lines carrying a single copy of the non-autonomous maize Ds element at defined positions in the genome. Independent Ds lines were either generated by activating Ds elements in existing single-copy lines after crossing with AcTPase-expressing plants or by Agrobacterium-mediated transformation. Genomic DNA flanking Ds and T-DNA insertion sites from over 200 independent lines was isolated and sequenced, and was used for a sequence based mapping strategy in a barley reference population. More than 100 independent Ds insertion sites were mapped and can be used as launch pads for future targeted tagging of genes in the vicinity of the insertion sites. Sequence analysis of Ds and T-DNA flanking regions revealed a sevenfold preference of both mutagens for insertion into non-redundant, gene-containing regions of the barley genome. However, whilst transposed Ds elements preferentially inserted adjacent to regions with a high number of predicted and experimentally validated matrix attachment regions (nuclear MARs), this was not the case for T-DNA integration sites. These findings and an observed high transposition frequency from mapped launch pads demonstrate the future potential of gene tagging for functional genomics and gene discovery in barley.
Collapse
Affiliation(s)
- Tiehan Zhao
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Szeverenyi I, Ramamoorthy R, Teo ZW, Luan HF, Ma ZG, Ramachandran S. Large-scale systematic study on stability of the Ds element and timing of transposition in rice. PLANT & CELL PHYSIOLOGY 2006; 47:84-95. [PMID: 16275658 DOI: 10.1093/pcp/pci226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Activator/Dissociation (Ac/Ds) transposon mutagenesis is a widely used tool for gene identification; however, several reports on silencing of the Ac/Ds element in starter lines and in stable transposants question the applicability of such an approach in later generations. We have performed a systematic analysis on various aspects of the silencing phenomenon in rice (Oryza sativa ssp. japonica cv. Nipponbare). High somatic and germinal transposition frequencies observed in earlier generations were maintained as late as T4 and T5 generations; thus the propagation of parental lines did not induce transposon silencing. Moreover, the stably transposed Ds element was active even at the F5 generation, since Ac could remobilize the Ds element as indicated by the footprint analysis of several revertants. Expression of the bar gene was monitored from F3 to F6 generations in >1,000 lines. Strikingly, substantial transgene silencing was not observed in any of the generations tested. We analyzed the timing of transposition during rice development and provide evidence that Ds is transposed late after tiller formation. The possibility, that the independent events could be the result of secondary transposition, was ruled out by analyzing potential footprints by reciprocal PCR. Our study validates the Ac/Ds system as a tool for large-scale mutagenesis in rice, since the Ds elements were active in the starter and insertion lines even in the later generations. We propose that harvesting rice seeds using their panicles is an alternative way to increase the number of independent transposants due to post-tillering transposition.
Collapse
Affiliation(s)
- Ildiko Szeverenyi
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore
| | | | | | | | | | | |
Collapse
|
33
|
Conrad LJ, Brutnell TP. Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize. Genetics 2005; 171:1999-2012. [PMID: 16143613 PMCID: PMC1456122 DOI: 10.1534/genetics.105.046623] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/21/2005] [Indexed: 02/05/2023] Open
Abstract
We have identified and characterized a novel Activator (Ac) element that is incapable of excision yet contributes to the canonical negative dosage effect of Ac. Cloning and sequence analysis of this immobilized Ac (Ac-im) revealed that it is identical to Ac with the exception of a 10-bp deletion of sequences at the left end of the element. In screens of approximately 6800 seeds, no germinal transpositions of Ac-im were detected. Importantly, Ac-im catalyzes germinal excisions of a Ds element resident at the r1 locus resulting in the recovery of independent transposed Ds insertions in approximately 4.5% of progeny kernels. Many of these transposition events occur during gametophytic development. Furthermore, we demonstrate that Ac-im transactivates multiple Ds insertions in somatic tissues including those in reporter alleles at bronze1, anthocyaninless1, and anthocyaninless2. We propose a model for the generation of Ac-im as an aberrant transposition event that failed to generate an 8-bp target site duplication and resulted in the deletion of Ac end sequences. We also discuss the utility of Ac-im in two-component Ac/Ds gene-tagging programs in maize.
Collapse
Affiliation(s)
- Liza J Conrad
- Dept. of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
34
|
Kumar CS, Wing RA, Sundaresan V. Efficient insertional mutagenesis in rice using the maize En/Spm elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:879-92. [PMID: 16297077 DOI: 10.1111/j.1365-313x.2005.02570.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have developed a novel system for insertional mutagenesis in rice (Oryza sativa) based on the maize (Zea mays) enhancer/suppressor mutator (En/Spm) element. In this system, a single T-DNA construct with Spm-transposase and the non-autonomous defective suppressor mutator (dSpm) element is used in conjunction with green fluorescent protein (GFP) and Discosoma sp. Red Fluorescence Protein (DsRed) fluorescent markers to select unlinked stable transpositions of dSpm. Using this system, we could demonstrate high frequencies of unlinked germinal transposition of dSpm in rice. Analysis of dSpm flanking sequences from 353 stable insertion lines revealed that the dSpm insertions appear to be widely distributed on rice chromosomes with a preference for genic regions (70%). The dSpm insertions appear to differ from Activator-Dissociation (Ac-Ds) elements in genomic distribution and exhibit a greater fraction of unlinked transpositions when compared with Ds elements. The results obtained in this study demonstrate that the maize En/Spm element can be used as an effective tool for functional genomics in rice and can complement efforts using other insertional mutagens. Further, the efficacy of the non-invasive fluorescence-based selection system is promising for its application to other crops.
Collapse
Affiliation(s)
- Chellian Santhosh Kumar
- Department of Plant Sciences, Life Sciences Addition 1002, University of California, Davis, 95616, USA
| | | | | |
Collapse
|
35
|
van Enckevort LJG, Droc G, Piffanelli P, Greco R, Gagneur C, Weber C, González VM, Cabot P, Fornara F, Berri S, Miro B, Lan P, Rafel M, Capell T, Puigdomènech P, Ouwerkerk PBF, Meijer AH, Pe' E, Colombo L, Christou P, Guiderdoni E, Pereira A. EU-OSTID: a collection of transposon insertional mutants for functional genomics in rice. PLANT MOLECULAR BIOLOGY 2005; 59:99-110. [PMID: 16217605 DOI: 10.1007/s11103-005-8532-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 06/08/2005] [Indexed: 05/04/2023]
Abstract
A collection of 1373 unique flanking sequence tags (FSTs), generated from Ac/Ds and Ac transposon lines for reverse genetics studies, were produced in japonica and indica rice, respectively. The Ds and Ac FSTs together with the original T-DNAs were assigned a position in the rice genome sequence represented as assembled pseudomolecules, and found to be distributed evenly over the entire rice genome with a distinct bias for predicted gene-rich regions. The bias of the Ds and Ac transposon inserts for genes was exemplified by the presence of 59% of the inserts in genes annotated on the rice chromosomes and 41% present in genes transcribed as disclosed by their homology to cDNA clones. In a screen for inserts in a set of 75 well annotated transcription factors, including homeobox-containing genes, we found six Ac/Ds inserts. This high frequency of Ds and Ac inserts in genes suggests that saturated knockout mutagenesis in rice using this strategy will be efficient and possible with a lower number of inserts than expected. These FSTs and the corresponding plant lines are publicly available through OrygenesDB database and from the EU consortium members.
Collapse
|
36
|
Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. PLANT MOLECULAR BIOLOGY 2005; 59:85-97. [PMID: 16217604 DOI: 10.1007/s11103-004-5112-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 10/19/2004] [Indexed: 05/04/2023]
Abstract
IR64, the most widely grown indica rice in South and Southeast Asia, possesses many positive agronomic characteristics (e.g., wide adaptability, high yield potential, tolerance to multiple diseases and pests, and good eating quality,) that make it an ideal genotype for identifying mutational changes in traits of agronomic importance. We have produced a large collection of chemical and irradiation-induced IR64 mutants with different genetic lesions that are amenable to both forward and reverse genetics. About 60,000 IR64 mutants have been generated by mutagenesis using chemicals (diepoxybutane and ethylmethanesulfonate) and irradiation (fast neutron and gamma ray). More than 38,000 independent lines have been advanced to M4 generation enabling evaluation of quantitative traits by replicated trials. Morphological variations at vegetative and reproductive stages, including plant architecture, growth habit, pigmentation and various physiological characters, are commonly observed in the four mutagenized populations. Conditional mutants such as gain or loss of resistance to blast, bacterial blight, and tungro disease have been identified at frequencies ranging from 0.01% to 0.1%. Results from pilot experiments indicate that the mutant collections are suitable for reverse genetics through PCR-detection of deletions and TILLING. Furthermore, deletions can be detected using oligomer chips suggesting a general technique to pinpoint deletions when genome-wide oligomer chips are broadly available. M4 mutant seeds are available for users for screening of altered response to multiple stresses. So far, more than 15,000 mutant lines have been distributed. To facilitate broad usage of the mutants, a mutant database has been constructed in the International Rice Information System (IRIS; http: //www.iris.irri.org) to document the phenotypes and gene function discovered by users.
Collapse
Affiliation(s)
- Jian-Li Wu
- Entomology and Plant Pathology Division, International Rice Research Institute, Metro Manila, Philippines
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
An G, Jeong DH, Jung KH, Lee S. Reverse genetic approaches for functional genomics of rice. PLANT MOLECULAR BIOLOGY 2005; 59:111-23. [PMID: 16217606 DOI: 10.1007/s11103-004-4037-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 09/30/2004] [Indexed: 05/04/2023]
Abstract
T-DNA and transposable elements e.g., Ds and Tos17, are used to generate a large number of insertional mutant lines in rice. Some carry the GUS or GFP reporter for gene trap or enhancer trap. These reporter systems are valuable for identifying tissue- or organ-preferential genes. Activation tagging lines have also been generated for screening mutants and isolating mutagenized genes. To utilize these resources more efficiently, tagged lines have been produced for reverse genetic approaches. DNA pools of the T-DNA tagged lines and Tos17 lines have been prepared for PCR screening of insertional mutants in a given gene. Tag end sequences (TES) of the inserts have also been produced. TES databases are beneficial for analyzing the function of a large number of rice genes.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
38
|
Cotsaftis O, Guiderdoni E. Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgenic Res 2005; 14:1-14. [PMID: 15865044 DOI: 10.1007/s11248-004-4066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Meeting the challenge of routine gene targeting (GT) in higher plants is of crucial interest to researchers and plant breeders who are currently in need of a powerful tool to specifically modify a given locus in a genome. Higher plants have long been considered the last lineage resistant to targeting technology. However, a recent report described an efficient method of T-DNA-mediated targeted disruption of a non-selectable locus in rice [Terada et al., Nat Biotechnol 20: 1030-1034 (2002)]. Though this study was an obvious breakthrough, further improvement of GT frequencies may derive from a better understanding of the natural mechanisms that control homologous recombination (HR) processes. In this review, we will focus on what is known about HR and the factors which may hamper the development of routine GT by HR in higher plants. We will also present the current strategies envisaged to overcome these limitations, such as expression of recombination proteins and refinements in the design of the transformation vector.
Collapse
Affiliation(s)
- Olivier Cotsaftis
- UMR1096 PIA, Biotrop Program, Cirad-Amis, Avenue Agropolis, F-34398 Montpellier Cedex 5, France.
| | | |
Collapse
|
39
|
Kolkman JM, Conrad LJ, Farmer PR, Hardeman K, Ahern KR, Lewis PE, Sawers RJH, Lebejko S, Chomet P, Brutnell TP. Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis. Genetics 2005; 169:981-95. [PMID: 15520264 PMCID: PMC1449104 DOI: 10.1534/genetics.104.033738] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 11/08/2004] [Indexed: 11/18/2022] Open
Abstract
A collection of Activator (Ac)-containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed that the majority of insertions are in hypomethylated, low- or single-copy sequences, indicating an insertion site preference for genic sequences in the genome. However, a number of Ac transposition events were to highly repetitive sequences in the genome. We present evidence that suggests Ac expression is regulated by genomic context resulting in subtle variations in Ac-mediated excision patterns. These tr-Ac lines can be utilized to isolate genes with unknown function, to conduct fine-scale genetic mapping experiments, and to generate novel allelic diversity in applied breeding programs.
Collapse
Affiliation(s)
- Judith M Kolkman
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Now that sequencing of the rice genome is nearly completed, functional analysis of its large number of genes is the next challenge. Because rice is easy to transform, T-DNA has been used successfully to generate insertional mutant lines. Collectively, several laboratories throughout the world have established at least 200,000 T-DNA insertional lines. Some of those carry the GUS or GFP reporters for either gene or enhancer traps. Others are activation tagging lines for gain-of-function mutagenesis when T-DNA is inserted in the intergenic region. A forward genetic approach showed limited success because of somaclonal variations induced during tissue culture. To utilize these resources more efficiently, tagged lines have been produced for reverse genetics approaches. DNA pools of the T-DNA-tagged lines have been prepared for polymerase chain reaction (PCR) screening of insertional mutants in a given gene. Appropriate T-DNA insertion sites are determined by sequencing the region flanking the T-DNA. This information is then used to make databases that are shared with the scientific community. International efforts on seed amplification and maintenance are needed to exploit these valuable materials efficiently.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
41
|
Sallaud C, Gay C, Larmande P, Bès M, Piffanelli P, Piégu B, Droc G, Regad F, Bourgeois E, Meynard D, Périn C, Sabau X, Ghesquière A, Glaszmann JC, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:450-64. [PMID: 15255873 DOI: 10.1111/j.1365-313x.2004.02145.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A library of 29,482 T-DNA enhancer trap lines has been generated in rice cv. Nipponbare. The regions flanking the T-DNA left border from the first 12,707 primary transformants were systematically isolated by adapter anchor PCR and sequenced. A survey of the 7480 genomic sequences larger than 30 bp (average length 250 bp), representing 56.4% of the total readable sequences and matching the rice bacterial artificial chromosome/phage artificial chromosome (BAC/PAC) sequences assembled in pseudomolecules allowed the assigning of 6645 (88.8%) T-DNA insertion sites to at least one position in the rice genome of cv. Nipponbare. T-DNA insertions appear to be rather randomly distributed over the 12 rice chromosomes, with a slightly higher insertion frequency in chromosomes 1, 2, 3 and 6. The distribution of 723 independent T-DNA insertions along the chromosome 1 pseudomolecule did not differ significantly from that of the predicted coding sequences in exhibiting a lower insertion density around the centromere region and a higher density in the subtelomeric regions where the gene density is higher. Further establishment of density graphs of T-DNA inserts along the recently released 12 rice pseudomolecules confirmed this non-uniform chromosome distribution. T-DNA appeared less prone to hot spots and cold spots of integration when compared with those revealed by a concurrent assignment of the Tos17 retrotransposon flanking sequences deposited in the National Center for Biotechnology Information (NCBI). T-DNA inserts rarely integrated into repetitive sequences. Based on the predicted gene annotation of chromosome 1, preferential insertion within the first 250 bp from the putative ATG start codon has been observed. Using 4 kb of sequences surrounding the insertion points, 62% of the sequences showed significant similarity to gene encoding known proteins (E-value < 1.00 e(-05)). To illustrate the in silico reverse genetic approach, identification of 83 T-DNA insertions within genes coding for transcription factors (TF) is presented. Based both on the estimated number of members of several large TF gene families (e.g. Myb, WRKY, HD-ZIP, Zinc-finger) and on the frequency of insertions in chromosome 1 predicted genes, we could extrapolate that 7-10% of the rice gene complement is already tagged by T-DNA insertion in the 6116 independent transformant population. This large resource is of high significance while assisting studies unravelling gene function in rice and cereals, notably through in silico reverse genetics.
Collapse
|