1
|
Yazid SN, Ahmad K, Razak MSFA, Rahman ZA, Ramachandran K, Mohamad SNA, Ghaffar MBA. Introgression of bacterial leaf blight (BLB) resistant gene, Xa7 into MARDI elite variety, MR219 by marker assisted backcrossing (MABC) approach. BRAZ J BIOL 2021; 84:e248359. [PMID: 34730685 DOI: 10.1590/1519-6984.248359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial leaf blight (BLB) is one of the major rice diseases in Malaysia. This disease causes substantial yield loss as high as 70%. Development of rice varieties which inherited BLB resistant traits is a crucial approach to promote and sustain rice industry in Malaysia. Hence, this study aims were to enhance BLB disease resistant characters of high yielding commercial variety MR219 through backcross breeding approach with supporting tool of marker-assisted selection (MAS). Broad spectrum BLB resistance gene, Xa7 from donor parent IRBB7 were introgressed into the susceptible MR219 (recurrent parent) using two flanking markers ID7 and ID15. At BC3F4, we managed to generate 19 introgressed lines with homozygous Xa7 gene and showed resistant characteristics as donor parent when it was challenged with Xanthomonas oryzae pv. oryzae through artificial inoculation. Recurrent parent MR219 and control variety, MR263 were found to be severely infected by the disease. The improved lines exhibited similar morphological and yield performance characters as to the elite variety, MR219. Two lines, PB-2-107 and PB-2-34 were chosen to be potential lines because of their outstanding performances compared to parent, MR219. This study demonstrates a success story of MAS application in development of improved disease resistance lines of rice against BLB disease.
Collapse
Affiliation(s)
- S N Yazid
- Universiti Putra Malaysia - UPM, Faculty of Agriculture, Department of Plant Protection, Serdang, Selangor, Malaysia
| | - K Ahmad
- Universiti Putra Malaysia - UPM, Faculty of Agriculture, Department of Plant Protection, Serdang, Selangor, Malaysia.,Universiti Putra Malaysia - UPM, Institute of Tropical Agriculture and Food Security - ITAFoS, Serdang, Selangor, Malaysia
| | - M S F A Razak
- Malaysia Agricultural Research and Development Institute - MARDI, Centre for Marker Discovery and Validation - CMDV, Serdang, Selangor, Malaysia
| | - Z A Rahman
- Malaysia Agricultural Research and Development Institute - MARDI, Centre for Marker Discovery and Validation - CMDV, Serdang, Selangor, Malaysia
| | - K Ramachandran
- Malaysia Agricultural Research and Development Institute - MARDI, Paddy and Rice Research Centre, Kepala Batas, Pulau Pinang, Malaysia
| | - S N A Mohamad
- Universiti Sains Malaysia, School of Biological Science, Penang, Malaysia
| | - M B Ab Ghaffar
- Malaysia Agricultural Research and Development Institute - MARDI, Industrial Crop Research Centre, Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Carrillo MGC, Martin F, Variar M, Bhatt JC, L Perez-Quintero A, Leung H, Leach JE, Vera Cruz CM. Accumulating candidate genes for broad-spectrum resistance to rice blast in a drought-tolerant rice cultivar. Sci Rep 2021; 11:21502. [PMID: 34728643 PMCID: PMC8563964 DOI: 10.1038/s41598-021-00759-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Biotic stresses, including diseases, severely affect rice production, compromising producers’ ability to meet increasing global consumption. Understanding quantitative responses for resistance to diverse pathogens can guide development of reliable molecular markers, which, combined with advanced backcross populations, can accelerate the production of more resistant varieties. A candidate gene (CG) approach was used to accumulate different disease QTL from Moroberekan, a blast-resistant rice variety, into Vandana, a drought-tolerant variety. The advanced backcross progeny were evaluated for resistance to blast and tolerance to drought at five sites in India and the Philippines. Gene-based markers were designed to determine introgression of Moroberekan alleles for 11 CGs into the progeny. Six CGs, coding for chitinase, HSP90, oxalate oxidase, germin-like proteins, peroxidase and thaumatin-like protein, and 21 SSR markers were significantly associated with resistance to blast across screening sites. Multiple lines with different combinations, classes and numbers of CGs were associated with significant levels of race non-specific resistance to rice blast and sheath blight. Overall, the level of resistance effective in multiple locations was proportional to the number of CG alleles accumulated in advanced breeding lines. These disease resistant lines maintained tolerance to drought stress at the reproductive stage under blast disease pressure.
Collapse
Affiliation(s)
- Maria Gay C Carrillo
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Federico Martin
- Agricultural Biology, Colorado State University, 307 University Avenue, Fort Collins, CO, 80523-1177, USA
| | - Mukund Variar
- Central Rainfed Upland Rice Research Station, PO Box 48, Hazaribag, 825 301, India
| | - J C Bhatt
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (VPKAS), Almora, Uttarakhand, India
| | - Alvaro L Perez-Quintero
- Agricultural Biology, Colorado State University, 307 University Avenue, Fort Collins, CO, 80523-1177, USA
| | - Hei Leung
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| | - Jan E Leach
- Agricultural Biology, Colorado State University, 307 University Avenue, Fort Collins, CO, 80523-1177, USA.
| | - Casiana M Vera Cruz
- International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
3
|
Tonnessen BW, Bossa-Castro AM, Martin F, Leach JE. Intergenic spaces: a new frontier to improving plant health. THE NEW PHYTOLOGIST 2021; 232:1540-1548. [PMID: 34478160 DOI: 10.1111/nph.17706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To more sustainably mitigate the impact of crop diseases on plant health and productivity, there is a need for broader spectrum, long-lasting resistance traits. Defense response (DR) genes, located throughout the genome, participate in cellular and system-wide defense mechanisms to stave off infection by diverse pathogens. This multigenic resistance avoids rapid evolution of a pathogen to overcome host resistance. DR genes reside within resistance-associated quantitative trait loci (QTL), and alleles of DR genes in resistant varieties are more active during pathogen attack relative to susceptible haplotypes. Differential expression of DR genes results from polymorphisms in their regulatory regions, that includes cis-regulatory elements such as transcription factor binding sites as well as features that influence epigenetic structural changes to modulate chromatin accessibility during infection. Many of these elements are found in clusters, known as cis-regulatory modules (CRMs), which are distributed throughout the host genome. Regulatory regions involved in plant-pathogen interactions may also contain pathogen effector binding elements that regulate DR gene expression, and that, when mutated, result in a change in the plants' response. We posit that CRMs and the multiple regulatory elements that comprise them are potential targets for marker-assisted breeding for broad-spectrum, durable disease resistance.
Collapse
Affiliation(s)
- Bradley W Tonnessen
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Western Colorado Research Center, Colorado State University, 30624 Hwy 92, Hotchkiss, CO, 81419, USA
| | - Ana M Bossa-Castro
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Universidad de los Andes, Bogotá, 111711, Colombia
| | - Federico Martin
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jan E Leach
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
4
|
Dong J, Zhou L, Feng A, Zhang S, Fu H, Chen L, Zhao J, Yang T, Yang W, Ma Y, Wang J, Zhu X, Liu Q, Liu B. The OsOXO2, OsOXO3 and OsOXO4 Positively Regulate Panicle Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2021; 14:51. [PMID: 34091752 PMCID: PMC8179873 DOI: 10.1186/s12284-021-00494-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. RESULTS In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. CONCLUSION OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.
Collapse
Affiliation(s)
- Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Aiqing Feng
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640 China
| |
Collapse
|
5
|
Uniparental Inheritance of Salinity Tolerance and Beneficial Phytochemicals in Rice. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10071032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Salinity stress is one of the most problematic constraints to significantly reduce rice productivity. The Saltol QTL (quantitative trait locus) has been known as one among many principal genes/QTLs responsible for salinity tolerance in rice. However, the introgression of the Saltol QTL from the donor (male) into the recipient (female) cultivars induces great recessions from the progeny generation, which results in heavy fieldwork and greater cost and time required for breeding. In this study, the F1 generation of the cross TBR1 (female cultivar, salinity tolerant) × KD18 (male cultivar, salinity susceptible) was preliminarily treated with N-methyl-N-nitrosourea (MNU) to induce the mutants M1. Results on physiological traits show that all the M2 (self-pollinated from M1) and M3 (self-pollinated from M2) individuals obtain salinity tolerant levels as the recurrent TBR1. Twelve SSR (simple sequence repeat) markers involved in the Saltol QTL (RM493, RM562, RM10694, RM10720, RM10793, RM10852, RM13197, RM201, RM149, RM508, RM587, and RM589) and other markers related to yield-contributing traits and disease resistance, as well as water and nitrogen use, have efficacy that is polymorphic. The phenotype and genotype analyses indicate that the salinity tolerant Saltol QTL, growth parameter, grain yield and quality, pest resistance, water and nitrogen use efficacy, and beneficial phytochemicals including antioxidants, momilactone A (MA) and momilactone B (MB) are uniparentally inherited from the recurrent (female) TBR1 cultivar and stabilized in the M2 and M3 generations. Further MNU applications should be examined to induce the uniparental inheritance of other salinity tolerant genes such as OsCPK17, OsRMC, OsNHX1, OsHKT1;5 to target rice cultivars. However, the mechanism of inducing this novel uniparental inheritance for salinity tolerance by MNU application needs elaboration.
Collapse
|
6
|
Tonnessen BW, Bossa-Castro AM, Mauleon R, Alexandrov N, Leach JE. Shared cis-regulatory architecture identified across defense response genes is associated with broad-spectrum quantitative resistance in rice. Sci Rep 2019; 9:1536. [PMID: 30733489 PMCID: PMC6367480 DOI: 10.1038/s41598-018-38195-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Plant disease resistance that is durable and effective against diverse pathogens (broad-spectrum) is essential to stabilize crop production. Such resistance is frequently controlled by Quantitative Trait Loci (QTL), and often involves differential regulation of Defense Response (DR) genes. In this study, we sought to understand how expression of DR genes is orchestrated, with the long-term goal of enabling genome-wide breeding for more effective and durable resistance. We identified short sequence motifs in rice promoters that are shared across Broad-Spectrum DR (BS-DR) genes co-expressed after challenge with three major rice pathogens (Magnaporthe oryzae, Rhizoctonia solani, and Xanthomonas oryzae pv. oryzae) and several chemical elicitors. Specific groupings of these BS-DR-associated motifs, called cis-Regulatory Modules (CRMs), are enriched in DR gene promoters, and the CRMs include cis-elements known to be involved in disease resistance. Polymorphisms in CRMs occur in promoters of genes in resistant relative to susceptible BS-DR haplotypes providing evidence that these CRMs have a predictive role in the contribution of other BS-DR genes to resistance. Therefore, we predict that a CRM signature within BS-DR gene promoters can be used as a marker for future breeding practices to enrich for the most responsive and effective BS-DR genes across the genome.
Collapse
Affiliation(s)
| | | | - Ramil Mauleon
- International Rice Research Institute, Manila, Philippines
| | | | - Jan E Leach
- Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
7
|
Sun Z, Yin X, Ding J, Yu D, Hu M, Sun X, Tan Y, Sheng X, Liu L, Mo Y, Ouyang N, Jiang B, Yuan G, Duan M, Yuan D, Fang J. QTL analysis and dissection of panicle components in rice using advanced backcross populations derived from Oryza Sativa cultivars HR1128 and 'Nipponbare'. PLoS One 2017; 12:e0175692. [PMID: 28422981 PMCID: PMC5396889 DOI: 10.1371/journal.pone.0175692] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/29/2017] [Indexed: 02/04/2023] Open
Abstract
Panicle traits are among the most important agronomic characters which directly relate to yield in rice. Grain number (GN), panicle length (PL), primary branch number (PBN), and secondary branch number (SBN) are the major components of rice panicle structure, and are all controlled by quantitative trait loci (QTLs). In our research, four advanced backcross overlapping populations (BIL152, BIL196a, BIL196b, and BIL196b-156) carrying introgressed segments from chromosome 6 were derived from an indica/japonica cross that used the super-hybrid rice restorer line HR1128 and the international sequenced japonica cultivar ‘Nipponbare’ as the donor and recurrent parents, respectively. The four panicle traits, GN, PL, PBN, and SBN, were evaluated for QTL effects using the inclusive composite interval mapping (ICIM) method in populations over two years at two sites. Results showed that a total of twelve QTLs for GN, PL, PBN, and SBN were detected on chromosome 6. Based on marker loci physical positions, the QTLs were found to be tightly linked to three important chromosomal intervals described as RM7213 to RM19962, RM20000 to RM20210, and RM412 to RM20595. Three QTLs identified in this study, PL6-5, PBN6-1, and PBN6-2, were found to be novel compared with previous studies. A major QTL (PL6-5) for panicle length was detected in all four populations at two locations, and its position was narrowed down to a 1.3Mb region on chromosome 6. Near isogenic lines (NILs) carrying PL6-5 will be developed for fine mapping of the QTL, and our results will provide referable information for gene excavation of panicle components in rice.
Collapse
Affiliation(s)
- Zhizhong Sun
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Xiaoling Yin
- Long Ping Branch, Graduate School of Hunan University, Changsha, Hunan, China
| | - Jia Ding
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Dong Yu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Miao Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
| | - Xuewu Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Xiabing Sheng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Ling Liu
- Long Ping Branch, Graduate School of Hunan University, Changsha, Hunan, China
| | - Yi Mo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ning Ouyang
- Long Ping Branch, Graduate School of Hunan University, Changsha, Hunan, China
| | - Beibei Jiang
- Long Ping Branch, Graduate School of Hunan University, Changsha, Hunan, China
| | - Guilong Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Meijuan Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, Hunan, China
- * E-mail: (JF); (DYY); (MD)
| | - Dingyang Yuan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
- * E-mail: (JF); (DYY); (MD)
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- * E-mail: (JF); (DYY); (MD)
| |
Collapse
|
8
|
Liu Q, Yang J, Yan S, Zhang S, Zhao J, Wang W, Yang T, Wang X, Mao X, Dong J, Zhu X, Liu B. The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice. PLANT MOLECULAR BIOLOGY 2016; 92:411-423. [PMID: 27631432 DOI: 10.1007/s11103-016-0521-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/01/2016] [Indexed: 05/06/2023]
Abstract
This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H2O2 both before and after pathogen inoculation. Moreover, OsGLP2-1 was significantly induced by jasmonic acid (JA). Overexpression of OsGLP2-1 induced three well-characterized defense-related genes which are associated in JA-dependent pathway after pathogen infection. Higher endogenous level of JA was also identified in OsGLP2-1 overexpressing plants than in control plants both before and after pathogen inoculation. Together, these results suggest that OsGLP2-1 functions as a positive regulator to modulate disease resistance. Its good quantitative resistance to the two major diseases in rice makes it to be a promising target in rice breeding.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Key Laboratory of New Technology in Plant protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shaohong Zhang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Wenjuan Wang
- Guangdong Key Laboratory of New Technology in Plant protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Tifeng Yang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Xiaofei Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Xingxue Mao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Jingfang Dong
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Key Laboratory of New Technology in Plant protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China.
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China.
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Wushan, Tianhe District, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses. PLoS One 2016; 11:e0159264. [PMID: 27415007 PMCID: PMC4944987 DOI: 10.1371/journal.pone.0159264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/29/2016] [Indexed: 02/04/2023] Open
Abstract
Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal resistant and high yielding varieties of finger millet.
Collapse
|
10
|
Liu Q, Yang J, Zhang S, Zhao J, Feng A, Yang T, Wang X, Mao X, Dong J, Zhu X, Leung H, Leach JE, Liu B. OsGF14b Positively Regulates Panicle Blast Resistance but Negatively Regulates Leaf Blast Resistance in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:46-56. [PMID: 26467468 DOI: 10.1094/mpmi-03-15-0047-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although 14-3-3 proteins have been reported to be involved in responses to biotic stresses in plants, their functions in rice blast, the most destructive disease in rice, are largely unknown. Only GF14e has been confirmed to negatively regulate leaf blast. We report that GF14b is highly expressed in seedlings and panicles during blast infection. Rice plants overexpressing GF14b show enhanced resistance to panicle blast but are susceptible to leaf blast. In contrast, GF14b-silenced plants show increased susceptibility to panicle blast but enhanced resistance to leaf blast. Yeast one-hybrid assays demonstrate that WRKY71 binds to the promoter of GF14b and modulates its expression. Overexpression of GF14b induces expression of jasmonic acid (JA) synthesis-related genes but suppresses expression of salicylic acid (SA) synthesis-related genes. In contrast, suppressed GF14b expression causes decreased expression of JA synthesis-related genes but activation of SA synthesis-related genes. These results suggest that GF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance, and that GF14b-mediated disease resistance is associated with the JA- and SA-dependent pathway. The different functions for 14-3-3 proteins in leaf and panicle blast provide new evidence that leaf and panicle blast resistance are controlled by different mechanisms.
Collapse
Affiliation(s)
- Qing Liu
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianyuan Yang
- 3 Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences
| | - Shaohong Zhang
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junliang Zhao
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Aiqing Feng
- 3 Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences
| | - Tifeng Yang
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaofei Wang
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinxue Mao
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingfang Dong
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoyuan Zhu
- 3 Guangdong Key Laboratory of New Technology in Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences
| | - Hei Leung
- 4 Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines; and
| | - Jan E Leach
- 5 Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins 80537-1177, U.S.A
| | - Bin Liu
- 1 Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- 2 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Tonnessen BW, Manosalva P, Lang JM, Baraoidan M, Bordeos A, Mauleon R, Oard J, Hulbert S, Leung H, Leach JE. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. PLANT MOLECULAR BIOLOGY 2015; 87:273-86. [PMID: 25515696 DOI: 10.1007/s11103-014-0275-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/09/2014] [Indexed: 05/21/2023]
Abstract
Most agronomically important traits, including resistance against pathogens, are governed by quantitative trait loci (QTL). QTL-mediated resistance shows promise of being effective and long-lasting against diverse pathogens. Identification of genes controlling QTL-based disease resistance contributes to breeding for cultivars that exhibit high and stable resistance. Several defense response genes have been successfully used as good predictors and contributors to QTL-based resistance against several devastating rice diseases. In this study, we identified and characterized a rice (Oryza sativa) mutant line containing a 750 bp deletion in the second exon of OsPAL4, a member of the phenylalanine ammonia-lyase gene family. OsPAL4 clusters with three additional OsPAL genes that co-localize with QTL for bacterial blight and sheath blight disease resistance on rice chromosome 2. Self-pollination of heterozygous ospal4 mutant lines produced no homozygous progeny, suggesting that homozygosity for the mutation is lethal. The heterozygous ospal4 mutant line exhibited increased susceptibility to three distinct rice diseases, bacterial blight, sheath blight, and rice blast. Mutation of OsPAL4 increased expression of the OsPAL2 gene and decreased the expression of the unlinked OsPAL6 gene. OsPAL2 function is not redundant because the changes in expression did not compensate for loss of disease resistance. OsPAL6 co-localizes with a QTL for rice blast resistance, and is down-regulated in the ospal4 mutant line; this may explain enhanced susceptibility to Magnoporthe oryzae. Overall, these results suggest that OsPAL4 and possibly OsPAL6 are key contributors to resistance governed by QTL and are potential breeding targets for improved broad-spectrum disease resistance in rice.
Collapse
Affiliation(s)
- Bradley W Tonnessen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, 80523-1177, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 2013; 14:22499-528. [PMID: 24240810 PMCID: PMC3856076 DOI: 10.3390/ijms141122499] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 10/16/2013] [Indexed: 11/16/2022] Open
Abstract
Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1-6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding programs aimed at improving blast resistance in this species. We also discuss the various advantages, disadvantages and uses of microsatellite markers relative to other molecular marker types.
Collapse
Affiliation(s)
- Gous Miah
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (G.M.); (M.R.I.)
| | - Mohd Y. Rafii
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (G.M.); (M.R.I.)
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-8947-1149
| | - Mohd R. Ismail
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (G.M.); (M.R.I.)
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
| | - Adam B. Puteh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
| | - Harun A. Rahim
- Agrotechnology and Bioscience Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia; E-Mail:
| | - Kh. Nurul Islam
- Laboratory of Anatomy and Histology, Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail:
| | - Mohammad Abdul Latif
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: (A.B.P.); (M.A.L.)
- Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh
| |
Collapse
|
13
|
Zhang XY, Nie ZH, Wang WJ, Leung DWM, Xu DG, Chen BL, Chen Z, Zeng LX, Liu EE. Relationship between disease resistance and rice oxalate oxidases in transgenic rice. PLoS One 2013; 8:e78348. [PMID: 24205207 PMCID: PMC3813443 DOI: 10.1371/journal.pone.0078348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/18/2013] [Indexed: 01/09/2023] Open
Abstract
Differential expression of rice oxalate oxidase genes (OsOxO1-4) in rice leaves (Oryza sativa L.) in response to biotic stress was assayed using RT-PCR. OsOxO4 was induced transiently at 12 h in plants inoculated with the pathogens of bacterial blight and that of the wounding control. Inoculation with the rice blast pathogen induced OsOxO2 expression compared to the mock spray control. Overexpressing OsOxO1 or OsOxO4 in rice resulted in elevated transcript levels of the respective transgene as well as OsOxO3 in leaves compared to that in untransformed wild type (WT). In a line of RNA-i transgenic rice plants (i-12), expression of all four OsOxO genes except that of OsOxO2 was severely inhibited. Oxalate oxidase (OxO, EC 1.2.3.4) activity in plants overexpressing OsOxO1 or OsOxO4 was substantially higher than that in WT and the RNA-i lines. It was found that transgenic rice plants with substantially higher OxO activity were not more resistant to rice blast and bacterial blight than WT. In contrast, some RNA-i lines with less OxO activity seemed to be more resistant to rice blast while some overexpressing lines were more susceptible to rice blast than WT. Therefore, OxO might not be a disease resistance factor in rice.
Collapse
Affiliation(s)
- Xian Yong Zhang
- College of Life Science, South China Agricultural University, Guangzhou, China
| | - Zhuan Hua Nie
- College of Life Science, South China Agricultural University, Guangzhou, China
| | - Wen Juan Wang
- Plant Protection Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - David W. M. Leung
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Da Gao Xu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bai Ling Chen
- College of Life Science, South China Agricultural University, Guangzhou, China
| | - Zhe Chen
- College of Life Science, South China Agricultural University, Guangzhou, China
| | - Lie Xian Zeng
- Plant Protection Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - E. E. Liu
- College of Life Science, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
14
|
Inheritance of blast resistance and identification of SSR marker associated with it in rice cultivar RDN 98-2. J Genet 2013; 92:317-21. [DOI: 10.1007/s12041-013-0255-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, Latif MA. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep 2012. [DOI: 10.1007/s11033-012-2318-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet 2012; 29:233-40. [PMID: 23153595 DOI: 10.1016/j.tig.2012.10.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/19/2012] [Accepted: 10/08/2012] [Indexed: 11/21/2022]
Abstract
The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant-pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops.
Collapse
|
17
|
Passos MAN, de Oliveira Cruz V, Emediato FL, de Camargo Teixeira C, Souza MT, Matsumoto T, Rennó Azevedo VC, Ferreira CF, Amorim EP, de Alencar Figueiredo LF, Martins NF, de Jesus Barbosa Cavalcante M, Baurens FC, da Silva OB, Pappas GJ, Pignolet L, Abadie C, Ciampi AY, Piffanelli P, Miller RNG. Development of expressed sequence tag and expressed sequence tag-simple sequence repeat marker resources for Musa acuminata. AOB PLANTS 2012; 2012:pls030. [PMID: 23240072 PMCID: PMC3521319 DOI: 10.1093/aobpla/pls030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 09/14/2012] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Banana (Musa acuminata) is a crop contributing to global food security. Many varieties lack resistance to biotic stresses, due to sterility and narrow genetic background. The objective of this study was to develop an expressed sequence tag (EST) database of transcripts expressed during compatible and incompatible banana-Mycosphaerella fijiensis (Mf) interactions. Black leaf streak disease (BLSD), caused by Mf, is a destructive disease of banana. Microsatellite markers were developed as a resource for crop improvement. METHODOLOGY cDNA libraries were constructed from in vitro-infected leaves from BLSD-resistant M. acuminata ssp. burmaniccoides Calcutta 4 (MAC4) and susceptible M. acuminata cv. Cavendish Grande Naine (MACV). Clones were 5'-end Sanger sequenced, ESTs assembled with TGICL and unigenes annotated using BLAST, Blast2GO and InterProScan. Mreps was used to screen for simple sequence repeats (SSRs), with markers evaluated for polymorphism using 20 diploid (AA) M. acuminata accessions contrasting in resistance to Mycosphaerella leaf spot diseases. PRINCIPAL RESULTS A total of 9333 high-quality ESTs were obtained for MAC4 and 3964 for MACV, which assembled into 3995 unigenes. Of these, 2592 displayed homology to genes encoding proteins with known or putative function, and 266 to genes encoding proteins with unknown function. Gene ontology (GO) classification identified 543 GO terms, 2300 unigenes were assigned to EuKaryotic orthologous group categories and 312 mapped to Kyoto Encyclopedia of Genes and Genomes pathways. A total of 624 SSR loci were identified, with trinucleotide repeat motifs the most abundant in MAC4 (54.1 %) and MACV (57.6 %). Polymorphism across M. acuminata accessions was observed with 75 markers. Alleles per polymorphic locus ranged from 2 to 8, totalling 289. The polymorphism information content ranged from 0.08 to 0.81. CONCLUSIONS This EST collection offers a resource for studying functional genes, including transcripts expressed in banana-Mf interactions. Markers are applicable for genetic mapping, diversity characterization and marker-assisted breeding.
Collapse
Affiliation(s)
- Marco A. N. Passos
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Viviane de Oliveira Cruz
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Flavia L. Emediato
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Cristiane de Camargo Teixeira
- Postgraduate Program in Genomic Science and
Biotechnology, Universidade Católica de
Brasília, SGAN 916, Módulo B, CEP 70.790-160,
Brasília, DF, Brazil
| | - Manoel T. Souza
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Takashi Matsumoto
- National Institute of Agrobiological Resources,
Tsukuba 305-8602, Japan
| | - Vânia C. Rennó Azevedo
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Claudia F. Ferreira
- EMBRAPA Mandioca e Fruticultura Tropical, Rua
Embrapa, CEP 44380-000, Cruz das Almas, BA, Brazil
| | - Edson P. Amorim
- EMBRAPA Mandioca e Fruticultura Tropical, Rua
Embrapa, CEP 44380-000, Cruz das Almas, BA, Brazil
| | - Lucio Flavio de Alencar Figueiredo
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Natalia F. Martins
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | | | | | - Orzenil Bonfim da Silva
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Georgios J. Pappas
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Luc Pignolet
- CIRAD/UMR BGPI, TA A 54/K Campus International de
Baillarguet, 34398 Montpellier Cedex 5, France
| | - Catherine Abadie
- CIRAD/UMR BGPI, TA A 54/K Campus International de
Baillarguet, 34398 Montpellier Cedex 5, France
| | - Ana Y. Ciampi
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Pietro Piffanelli
- CIRAD/UMR DAP 1098, TA A 96/03 Avenue Agropolis,
34098 Montpellier Cedex 5, France
- Present address: Genomics
Platform at Parco Tecnologico Padano, Via Einstein, Località Cascina Codazza, 26900
Lodi, Italy
| | - Robert N. G. Miller
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
- Corresponding author's e-mail address:
| |
Collapse
|
18
|
Campo S, Peris-Peris C, Montesinos L, Peñas G, Messeguer J, San Segundo B. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:983-99. [PMID: 22016430 PMCID: PMC3254693 DOI: 10.1093/jxb/err328] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
14-3-3 proteins are found in all eukaryotes where they act as regulators of diverse signalling pathways associated with a wide range of biological processes. In this study the functional characterization of the ZmGF14-6 gene encoding a maize 14-3-3 protein is reported. Gene expression analyses indicated that ZmGF14-6 is up-regulated by fungal infection and salt treatment in maize plants, whereas its expression is down-regulated by drought stress. It is reported that rice plants constitutively expressing ZmGF14-6 displayed enhanced tolerance to drought stress which was accompanied by a stronger induction of drought-associated rice genes. However, rice plants expressing ZmGF14-6 either in a constitutive or under a pathogen-inducible regime showed a higher susceptibility to infection by the fungal pathogens Fusarium verticillioides and Magnaporthe oryzae. Under infection conditions, a lower intensity in the expression of defence-related genes occurred in ZmGF14-6 rice plants. These findings support that ZmGF14-6 positively regulates drought tolerance in transgenic rice while negatively modulating the plant defence response to pathogen infection. Transient expression assays of fluorescently labelled ZmGF14-6 protein in onion epidermal cells revealed a widespread distribution of ZmGF14-6 in the cytoplasm and nucleus. Additionally, colocalization experiments of fluorescently labelled ZmGF14-6 with organelle markers, in combination with cell labelling with the endocytic tracer FM4-64, revealed a subcellular localization of ZmGF14-6 in the early endosomes. Taken together, these results improve our understanding of the role of ZmGF14-6 in stress signalling pathways, while indicating that ZmGF14-6 inversely regulates the plant response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Sonia Campo
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Cristina Peris-Peris
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Laura Montesinos
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Gisela Peñas
- Department of Plant Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Joaquima Messeguer
- Department of Plant Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Blanca San Segundo
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Bresson A, Jorge V, Dowkiw A, Guerin V, Bourgait I, Tuskan GA, Schmutz J, Chalhoub B, Bastien C, Faivre Rampant P. Qualitative and quantitative resistances to leaf rust finely mapped within two nucleotide-binding site leucine-rich repeat (NBS-LRR)-rich genomic regions of chromosome 19 in poplar. THE NEW PHYTOLOGIST 2011; 192:151-163. [PMID: 21658182 DOI: 10.1111/j.1469-8137.2011.03786.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
• R(US) is a major dominant gene controlling quantitative resistance, inherited from Populus trichocarpa, whereas R(1) is a gene governing qualitative resistance, inherited from P. deltoides. • Here, we report a reiterative process of concomitant fine-scale genetic and physical mapping guided by the P. trichocarpa genome sequence. The high-resolution linkage maps were developed using a P. deltoides × P. trichocarpa progeny of 1415 individuals. R(US) and R(1) were mapped in a peritelomeric region of chromosome 19. Markers closely linked to R(US) were used to screen a bacterial artificial chromosome (BAC) library constructed from the P. trichocarpa parent, heterozygous at the locus R(US) . • Two local physical maps were developed, one encompassing the R(US) allele and the other spanning r(US) . The alignment of the two haplophysical maps showed structural differences between haplotypes. The genetic and physical maps were anchored to the genome sequence, revealing genome sequence misassembly. Finally, the R(US) locus was localized within a 0.8-cM interval, whereas R(1) was localized upstream of R(US) within a 1.1-cM interval. • The alignment of the genetic and physical maps with the local reorder of the chromosome 19 sequence indicated that R(US) and R(1) belonged to a genomic region rich in nucleotide-binding site leucine-rich repeat (NBS-LRR) and serine threonine kinase (STK) genes.
Collapse
Affiliation(s)
- Aloïs Bresson
- INRA, UMR1165, UMR INRA/Université de Evry: Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry Cedex, 91057, France
| | - Véronique Jorge
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Arnaud Dowkiw
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Vanina Guerin
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Isabelle Bourgait
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Gerald A Tuskan
- Oak Ridge National Laboratory, PO Box 2008, MS-6422, Bldg. 1062, Rm 215, Oak Ridge, TN 37831-6422, USA
| | - Jeremy Schmutz
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 3508-2908, USA
| | - Boulos Chalhoub
- INRA, UMR1165, UMR INRA/Université de Evry: Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry Cedex, 91057, France
| | - Catherine Bastien
- INRA, UR0588, Unité de Recherche Amélioration, Génétique et Physiologie Forestières, Centre de Recherche d'Orléans, Orléans Cedex 2, 45075, France
| | - Patricia Faivre Rampant
- INRA, UMR1165, UMR INRA/Université de Evry: Unité de Recherche en Génomique Végétale, Centre de Recherche de Versailles-Grignon, Evry Cedex, 91057, France
| |
Collapse
|
20
|
Mapping quantitative trait loci conferring blast resistance in upland indica rice (Oryza sativa L.). ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12892-010-0030-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Selvaraj CI, Nagarajan P, Thiyagaraj K, Bharathi M, Rabindran R. Studies on Heterosis and Combining Ability of Well Known Blast Resistant Rice Genotypes with High Yielding Varieties of Rice (Oryza sativa L.). ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ijpbg.2011.111.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Breen J, Bellgard M. Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence. Funct Integr Genomics 2010; 10:463-76. [PMID: 20683632 DOI: 10.1007/s10142-010-0184-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/29/2022]
Abstract
The recent release of the genome sequences of a number of crop and model plant species has made it possible to define the genome organisation and functional characteristics of specific genes and gene families of agronomic importance. For instance, Sorghum bicolor, maize (Zea mays) and Brachypodium distachyon genome sequences along with the model grass species rice (Oryza sativa) enable the comparative analysis of genes involved in plant defence. Germin-like proteins (GLPs) are a small, functionally and taxonomically diverse class of cupin-domain containing proteins that have recently been shown to cluster in an area of rice chromosome 8. The genomic location of this gene cluster overlaps with a disease resistance QTL that provides defence against two rice fungal pathogens (Magnaporthe oryzae and Rhizoctonia solani). Studies showing the involvement of GLPs in basal host resistance against powdery mildew (Blumeria graminis ssp.) have also been reported in barley and wheat. In this mini-review, we compare the close proximity of GLPs in publicly available cereal crop genomes and discuss the contribution that these proteins, and their genome sequence organisation, play in plant defence.
Collapse
Affiliation(s)
- James Breen
- Institute for Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | | |
Collapse
|
23
|
Yang X, Wang W, Coleman M, Orgil U, Feng J, Ma X, Ferl R, Turner JG, Xiao S. Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:539-50. [PMID: 19624472 DOI: 10.1111/j.1365-313x.2009.03978.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The RPW8 locus from Arabidopsis thaliana Ms-0 includes two functional paralogous genes (RPW8.1 and RPW8.2) and confers broad-spectrum resistance via the salicylic acid-dependent signaling pathway to the biotrophic fungal pathogens Golovinomyces spp. that cause powdery mildew diseases on multiple plant species. To identify proteins involved in regulation of the RPW8 protein function, a yeast two-hybrid screen was performed using RPW8.2 as bait. The 14-3-3 isoform lambda (designated GF14lambda) was identified as a potential RPW8.2 interactor. The RPW8.2-GF14lambda interaction was specific and engaged the C-terminal domain of RPW8.2, which was confirmed by pulldown assays. The physiological impact of the interaction was revealed by knocking down GF14lambda by T-DNA insertion, which compromised basal and RPW8-mediated resistance to powdery mildew. In addition, over-expression of GF14lambda resulted in hypersensitive response-like cell death and enhanced resistance to powdery mildew via the salicylic acid-dependent signaling pathway. The results from this study suggest that GF14lambda may positively regulate the RPW8.2 resistance function and play a role in enhancing basal resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaohua Yang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE. A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. PLANT PHYSIOLOGY 2009; 149:286-96. [PMID: 19011003 PMCID: PMC2613727 DOI: 10.1104/pp.108.128348] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/09/2008] [Indexed: 05/18/2023]
Abstract
Plant disease resistance governed by quantitative trait loci (QTL) is predicted to be effective against a broad spectrum of pathogens and long lasting. Use of these QTL to improve crop species, however, is hindered because the genes contributing to the trait are not known. Five disease resistance QTL that colocalized with defense response genes were accumulated by marker-aided selection to develop blast-resistant varieties. One advanced backcross line carrying the major-effect QTL on chromosome (chr) 8, which included a cluster of 12 germin-like protein (OsGLP) gene members, exhibited resistance to rice (Oryza sativa) blast disease over 14 cropping seasons. To determine if OsGLP members contribute to resistance and if the resistance was broad spectrum, a highly conserved portion of the OsGLP coding region was used as an RNA interference trigger to silence a few to all expressed chr 8 OsGLP family members. Challenge with two different fungal pathogens (causal agents of rice blast and sheath blight diseases) revealed that as more chr 8 OsGLP genes were suppressed, disease susceptibility of the plants increased. Of the 12 chr 8 OsGLPs, one clustered subfamily (OsGER4) contributed most to resistance. The similarities of sequence, gene organization, and roles in disease resistance of GLP family members in rice and other cereals, including barley (Hordeum vulgare) and wheat (Triticum aestivum), suggest that resistance contributed by the chr 8 OsGLP is a broad-spectrum, basal mechanism conserved among the Gramineae. Natural selection may have preserved a whole gene family to provide a stepwise, flexible defense response to pathogen invasion.
Collapse
Affiliation(s)
- Patricia M Manosalva
- Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523-1177, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, Clément C. Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. PLANTA 2009; 229:393-402. [PMID: 18974997 DOI: 10.1007/s00425-008-0838-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 10/06/2008] [Indexed: 05/14/2023]
Abstract
Microspore embryogenesis (ME) is a process in which the gametophytic pollen programme of the microspore is reoriented towards a new embryo sporophytic programme. This process requires a stress treatment, usually performed in the anther or isolated microspores for several days. Despite the universal use of stress to induce ME, very few studies have addressed the physiological processes that occur in the anther during this step. To further understand the processes triggered by stress treatment, we followed the response of anthers by measuring the expression of stress-related genes in two barley (Hordeum vulgare L.) cultivars differing in their ME response. Genes encoding enzymes involved in oxidative stress (glutathione-S-transferase, GST; oxalate oxidase, OxO), in the synthesis of jasmonic acid (13-lipoxygenase, Lox; allene oxide cyclase, AOC; allene oxide synthase, AOS) and in the phenylpropanoid pathway (phenylalanine ammonia lyase, PAL), as well as those encoding PR proteins (Barwin, chitinase 2b, Chit 2b; glucanase, Gluc; basic pathogenesis-related protein 1, PR1; pathogenesis-related protein 10, PR10) were up-regulated in whole anthers upon stress treatment, indicating that anther perceives stress and reacts by triggering general plant defence mechanisms. In particular, both OxO and Chit 2b genes are good markers of anther reactivity owing to their high level of induction during the stress treatment. The effect of copper sulphate appeared to limit the expression of defence-related genes, which may be correlated with its positive effect on the yield of microspore embryos.
Collapse
Affiliation(s)
- Cédric Jacquard
- Laboratoire Stress Défenses et Reproduction des Plantes, URVVC UPRES EA 2069, UFR Sciences, Université de Reims Champagne-Ardenne, 51687, Reims Cedex 2, France
| | | | | | | | | | | |
Collapse
|
26
|
Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:859-68. [PMID: 18533827 DOI: 10.1094/mpmi-21-7-0859] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The completion of the genome sequences of both rice and Magnaporthe oryzae has strengthened the position of rice blast disease as a model to study plant-pathogen interactions in monocotyledons. Genetic studies of blast resistance in rice were established in Japan as early as 1917. Despite such long-term study, examples of cultivars with durable resistance are rare, partly due to our limited knowledge of resistance mechanisms. A rising number of blast resistance genes and quantitative trait loci (QTL) have been genetically described, and some have been characterized during the last 20 years. Using the rice genome sequence, can we now go a step further toward a better understanding of the genetics of blast resistance by combining all these results? Is such knowledge appropriate and sufficient to improve breeding for durable resistance? A review of bibliographic references identified 85 blast resistance genes and approximately 350 QTL, which we mapped on the rice genome. These data provide a useful update on blast resistance genes as well as new insights to help formulate hypotheses about the molecular function of blast QTL, with special emphasis on QTL for partial resistance. All these data are available from the OrygenesDB database.
Collapse
Affiliation(s)
- Elsa Ballini
- CIRAD, UMR BGPI, CIRAD-INRA-SupAgro.M, TA A 54/K, 34398 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Jie F, Makoto T. Identification of oxalate oxidase in rice defence system against rice blast. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/cjb200438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractA rice cDNA library was screened using OSK3 protein kinase as bait in a yeast two-hybrid system. The gene encoding oxalate oxidase was one of the positive clones interacting with OSK3 protein kinase. The interactions were verified by detecting expression of the reporter gene lacZ. The results suggest that oxalate oxidase is a downstream element in the disease resistance signal cascade mediated by OSK3 protein kinase in rice.
Collapse
|
28
|
Ladyzhenskaya EP, Korableva NP. The effect of thaumatin gene overexpression on the properties of H+-ATPase from the plasmalemma of potato tuber cells. APPL BIOCHEM MICRO+ 2006. [DOI: 10.1134/s0003683806040120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
von Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1221-31. [PMID: 16477429 DOI: 10.1007/s00122-006-0223-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 01/15/2006] [Indexed: 05/06/2023]
Abstract
The objective of the present study was to identify favourable exotic Quantitative Trait Locus (QTL) alleles for the improvement of agronomic traits in the BC2DH population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). QTLs were detected as a marker main effect and/or a marker x environment interaction effect (M x E) in a three-factorial ANOVA. Using field data of up to eight environments and genotype data of 98 SSR loci, we detected 86 QTLs for nine agronomic traits. At 60 QTLs the marker main effect, at five QTLs the M x E interaction effect, and at 21 QTLs both the effects were significant. The majority of the M x E interaction effects were due to changes in magnitude and are, therefore, still valuable for marker assisted selection across environments. The exotic alleles improved performance in 31 (36.0%) of 86 QTLs detected for agronomic traits. The exotic alleles had favourable effects on all analysed quantitative traits. These favourable exotic alleles were detected, in particular on the short arm of chromosome 2H and the long arm of chromosome 4H. The exotic allele on 4HL, for example, improved yield by 7.1%. Furthermore, the presence of the exotic allele on 2HS increased the yield component traits ears per m2 and thousand grain weight by 16.4% and 3.2%, respectively. The present study, hence, demonstrated that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits.
Collapse
Affiliation(s)
- M von Korff
- Institute of Crop Science and Resource Conservation, Chair of Crop Science and Plant Breeding, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
30
|
von Korff M, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:583-90. [PMID: 15902395 DOI: 10.1007/s00122-005-2049-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 04/15/2005] [Indexed: 05/02/2023]
Abstract
The objective of this study was to map new resistance genes against powdery mildew (Blumeria graminis f. sp. hordei L.), leaf rust (Puccinia hordei L.) and scald [Rhynchosporium secalis (Oud.) J. Davis] in the advanced backcross doubled haploid (BC2DH) population S42 derived from a cross between the spring barley cultivar 'Scarlett' and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). Using field data of disease severity recorded in eight environments under natural infestation and genotype data of 98 SSR loci, we detected nine QTL for powdery mildew, six QTL for leaf rust resistance and three QTL for scald resistance. The presence of the exotic QTL alleles reduced disease symptoms by a maximum of 51.5, 37.6 and 16.5% for powdery mildew, leaf rust and scald, respectively. Some of the detected QTL may correspond to previously identified qualitative (i.e. Mla) and to quantitative resistance genes. Others may be newly identified resistance genes. For the majority of resistance QTL (61.0%) the wild barley contributed the favourable allele demonstrating the usefulness of wild barley in the quest for resistant cultivars.
Collapse
Affiliation(s)
- M von Korff
- Department of Crop Science & Plant Breeding, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
31
|
Wu JL, Fan YY, Li DB, Zheng KL, Leung H, Zhuang JY. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:50-6. [PMID: 15856160 DOI: 10.1007/s00122-005-1971-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 02/17/2005] [Indexed: 05/04/2023]
Abstract
To further our understanding of the genetic control of blast resistance in rice cultivar Gumei 2 and, consequently, to facilitate the utilization of this durably blast-resistant cultivar, we studied 304 recombinant inbred lines of indica rice cross Zhong 156/Gumei 2 and a linkage map comprising 181 markers. An analysis of segregation for resistance against five isolates of rice blast suggested that one gene cluster and three additional major genes that are independently inherited are responsible for the complete resistance of Gumei 2. The gene cluster was located to chromosome 6 and includes two genes mapped previously, Pi25(t), against Chinese rice blast isolate 92-183 (race ZC15) and Pi26(t) against Philippine rice blast isolate Ca89 (lineage 4), and a gene for resistance against Philippine rice blast isolate 92330-5 (lineage 17). Of the two genes conferring resistance against the Philippine isolates V86013 (lineage 15) and C923-39 (lineage 46), we identified one as Pi26(t) and mapped the other onto the distal end of chromosome 2 where Pib is located. We used three components of partial blast resistance, percentage diseased leaf area (DLA), lesion number and lesion size, all measured in the greenhouse, to measure the degree of susceptibility to isolates Ca89 and C923-39 and subsequently identified nine and eight quantitative trait loci (QTLs), respectively. Epistasis was determined to play an important role in partial resistance against Ca89. Using DLA measured on lines susceptible in a blast nursery, we detected six QTLs. While different QTLs were detected for partial resistance to Ca89 and C923-39, respectively, most were involved in the partial resistance in the field. Our results suggest that the blast resistance in Gumei 2 is controlled by multiple major genes and minor genes with epistatic effects.
Collapse
Affiliation(s)
- J-L Wu
- Chinese National Centre for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | | | | | | | | | | |
Collapse
|