1
|
Jardón MR, Alvarez-Prado S, Vanzetti L, Gonzalez FG, Pérez-Gianmarco T, Gómez D, Serrago RA, Dubcovsky J, Fernandez Long ME, Miralles DJ. Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2162-2176. [PMID: 39918258 DOI: 10.1093/jxb/eraf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/04/2025] [Indexed: 05/29/2025]
Abstract
While numerous wheat phenology prediction models are available, most of them are constrained to using variety-dependent coefficients. The overarching objective of this study was to calibrate a gene-based model to predict wheat heading date that allows breeders to select specific gene combinations that would head within the optimal window for a given environment independently of varietal genetic background. A dataset with a total of 49 Argentine wheat cultivars and two recombinant inbred lines was chosen to cover a wide range of allelic combinations for major vernalization, photoperiod, and earliness per se genes. The model was validated using independent data from an Argentine wheat trial network that includes sites from a wide latitudinal range. Ultimately, using this gene-based model, simulations were made to identify optimal gene combinations (ideotypes) × site combinations in contrasting locations. The selected model accurately predicted heading date with an overall median error of 4.6 d. This gene-based crop model for wheat phenology allowed the identification of groups of gene combinations predicted to produce heads within a low-risk window and can be adapted to predict other phenological stages based on accessible climatic information and publicly available molecular markers, facilitating its adoption in wheat-growing regions worldwide.
Collapse
Affiliation(s)
- Mariana R Jardón
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
| | - Santiago Alvarez-Prado
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
- Cátedra de Sistemas de Cultivos Extensivos-GIMUCE, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino S/N, S2125ZAA, Zavalla, Prov. de Santa Fe, Argentina
| | - Leonardo Vanzetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA INTA Marcos Juárez, Ruta 12 s/n CP 2850, Marcos Juárez, Córdoba, Argentina
| | - Fernanda G Gonzalez
- CITNOBA, CONICET-UNNOBA, Monteagudo 2772 (2700) Pergamino, Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA INTA Pergamino, Ruta 32, km 4.5 CP 2700, Pergamino, Buenos Aires, Argentina
| | | | - Dionisio Gómez
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA INTA Marcos Juárez, Ruta 12 s/n CP 2850, Marcos Juárez, Córdoba, Argentina
| | - Román A Serrago
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California-Davis, 387 N Quad, Davis, CA 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Maria Elena Fernandez Long
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
| | - Daniel J Miralles
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
| |
Collapse
|
2
|
Mata B, Cabrera A. Allelic Variations in Phenology Genes in Club Wheat ( Triticum compactum) and Their Association with Heading Date. Int J Mol Sci 2025; 26:4875. [PMID: 40430014 PMCID: PMC12112085 DOI: 10.3390/ijms26104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The allelic diversity within genes controlling the vernalization requirement (VRN1) and photoperiod response (PPD1) determines the ability of wheat to adapt to a wide range of environmental conditions and influences grain yield. In this study, allelic variations at the VRN-A1, VRN-B1, VRN-D1 and PPD-D1 genes were studied for 89 accessions of Triticum compactum from different eco-geographical regions of the world. The collection was evaluated for heading date in both field and greenhouse experiments under a long photoperiod and without vernalization. Based on heading date characteristics, 52 (58.4%) of the genotypes had a spring growth habit, and all of them carried at least one dominant VRN1 allele, while 37 (41.6%) accessions had a winter growth habit and carried the triple recessive allele combination. The photoperiod-sensitive Ppd-D1b allele was detected in 85 (95.5%) accessions and the insensitive Ppd-D1a allele in four (4.5%) accessions. A total of 10 phenology gene profiles (haplotypes) were observed at four major genes in the T. compactum germplasm collection. The LSD test revealed significant differences in the mean heading date among the different spring phenology gene profiles, both in greenhouse and field conditions. In addition, 21 microsatellite markers (simple sequence repeats, SSRs) were used to assess the genetic diversity in the collection. The 21 SSR markers amplified a total of 183 alleles across all the genotypes, with a mean of 3.2 alleles per locus. The polymorphic information content ranged from 0.49 to 0.94, with a mean of 0.84. The results of this study may be useful for both T. compactum and common wheat breeding programs as a source of agronomic traits.
Collapse
Affiliation(s)
| | - Adoración Cabrera
- Genetics Department, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071 Córdoba, Spain;
| |
Collapse
|
3
|
Sertse D, Kassa MT, McCallum BD, von Wettberg EJB, McCartney CA. Enhancing the breeding gene pool of wheat using accessions in gene banks as demonstrated by the Watkins collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:109. [PMID: 40325257 DOI: 10.1007/s00122-025-04898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
KEY MESSAGE This study demonstrates an approach to identify accessions carrying desirable alleles affecting traits of breeding interest, paving the way for the development of environmentally resilient cultivars. Recent advances in genome technology have opened opportunities to explore old germplasm collections for accessions possessing traits valuable in cultivar development. This study analyzed genotypic and phenotypic data from the pre-Green Revolution Watkins collection, to find loci linked to climate adaptation and rust resistance (leaf, stem, and stripe) using genome scans and single-nucleotide polymorphism (SNP)-level fixation index (FST) analysis. Key signature regions were revealed on chromosomes 2A and 3B. Consistent with the past findings, a highly differentiated region was detected on 6B in the cultivar subset of the collection, highlighting this region a breeding target. Chromosome-based scans located a region previously associated with RVA peak viscosity and breakdown, spanning 12.5 Mb and 13 Mb on 7D, harboring 13 genes, including the most pleiotropic TRAESCS7D02G026700 (ET2/AP2/ERF). SNP-FST analysis noticeably differentiated several loci between spring and winter wheat, including 5A:582,550,290 linked to the Vrn-A1 gene. Likewise, SNP-level FST analysis between rust resistant and susceptible accessions detected loci associated with resistance such as 1B:670,137,479-670,543,997 linked to Lr46/Yr29, and 2B:763,926,560 in a region harboring the Yr7/Yr5/YrSP gene cluster. Significant phenotypic variation was observed between the resistant and susceptible alleles at the high-FST loci indicating the role of these loci in disease resistance. At all the top ten high-FST loci, eight and thirteen accessions carried the resistance alleles for leaf and stripe rust, respectively, suggesting these accessions as potential pre-breeding candidates. This study highlights how historic germplasm collections, combined with their genetic and environmental data, can enhance breeding diversity and identify pre-breeding materials for developing resilient cultivars.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| | | | - Brent D McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Eric J B von Wettberg
- Department of Plant and Soil Science, The University of Vermont, Burlington, VT, USA
| | - Curt A McCartney
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Davarpanah SJ, Maali-Amiri R, Parastouei K. Effect of low temperature acclimation on developmental regulation of redox responses and phytohormones metabolism in lines of crosses between spring and winter wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109740. [PMID: 40090075 DOI: 10.1016/j.plaphy.2025.109740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/18/2025]
Abstract
Low temperature (LT) acclimation in winter wheat (Triticum aestivum L.) was related to developmental regulation of transcriptome and metabolome for balancing growth and responses. In this study, six wheat lines from the F8 generation, derived from crosses between spring wheat (Pishtaz) and winter wheat (Claire) with distinct growth habits (based on the Vrn-1 loci) were planted under field conditions. The final leaf number (FLN) and double ridge (DR) formation showed that genotypes without vernalization requirement, including Pishtaz parent, and lines 8041 and 8044 transitioned rapidly into the reproductive stage. They also had lower LT tolerance, antioxidants activity and abscisic acid (ABA) content among genotypes. In these genotypes, cytokinin (CK) and gibberellin (GA3) contents and expression levels of gibberellin 20 oxidase (GA20ox) and gibberellin 3 oxidase (GA3ox) genes, were more active than other genotypes. Facultative lines 8020 and 8025 had higher antioxidants activity and lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents compared to spring types. Winter genotypes, including Claire parent, lines 8011 and 8015 had a strong vernalization requirement resulted in prolonged vegetative phase, accompanied by increased LT tolerance, antioxidants activity and expression of ABA biosynthetic genes, confirming that the duration of the vegetative phase plays a key role in determining wheat's winter survival capacity. Higher LT tolerance was effectively related to retarded reproductive phase, minimized redox damages through co-regulating phytohormone-metabolites under developmental periods in winter wheat.
Collapse
Affiliation(s)
- Seyed Javad Davarpanah
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Liu F, Cao W, Zhang Q, Li Y, Zhou H, Wan Y. Winter Wheat Vernalization Alleles and Freezing Tolerance at the Seedling and Jointing Stages. PLANTS (BASEL, SWITZERLAND) 2025; 14:1350. [PMID: 40364379 PMCID: PMC12073134 DOI: 10.3390/plants14091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
This study explores the relationship between allelic variation of the vernalization genes (VRN) and the freezing tolerance at the seedling and jointing stages of winter wheat growth. It provides a basis for molecular marker development for freezing tolerance breeding of winter wheat. A total of 435 wheat accessions were used to identify and evaluate the freezing tolerance at the seedling stage using field tests, while 192 wheat accessions were used to evaluate the freezing tolerance at the jointing stage in climate chamber tests. The VRN genes of the wheat accessions were detected using allele-specific markers of the VRN-A1, VRN-B1, VRN-D1 and VRN-B3 loci, and the relationship between VRN genotype and freezing tolerance at the two developmental stages was tested. There were significant differences in freezing tolerance between the wheat accessions. Assessing the freezing tolerance of 52 wheat accessions at both the seedling and jointing stages revealed no significant correlation between tolerance at these two stages. The genotypic analysis found that Vrn-D1 was the most frequent dominant allele in winter wheat, while no accession contained the dominant alleles Vrn-A1 and Vrn-B3. Notably, freezing tolerance showed stage-specific genetic regulation; seedling-stage freezing tolerance strongly correlated with vernalization gene allelic combinations (p < 0.05), whereas jointing-stage freezing tolerance exhibited no such association. The presence of all recessive alleles vrn-A1, vrn-B1, vrn-D1 and vrn-B3 was required for strong seedling-stage freezing tolerance. The VRN-D1 marker was effective for screening freezing tolerance materials under the premise that vrn-A1 and vrn-B1 alleles are recessive at winter wheat seedling stage.
Collapse
Affiliation(s)
- Fangfang Liu
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Wenxin Cao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Qiqi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Yao Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Heng Zhou
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| |
Collapse
|
6
|
Song T, Fan Q, Shi C, Li S, Zhou J, Bu Y, Chang X, Yu Y, Lei X, Wang Y, Chen D, Xiang J, Zhang X. Effects of five allelic variants of the wheat vernalization gene VRN-B1 on heading date and vernalization requirements. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:44. [PMID: 40242017 PMCID: PMC11996741 DOI: 10.1007/s11032-025-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Winter wheat must undergo vernalization to flower, while spring wheat does not require vernalization. The requirement for vernalization in wheat is primarily controlled by vernalization genes. VRN-1 are the most important vernalization genes. The recessive vrn-1 alleles have a strict vernalization requirement, while dominant mutations in Vrn-1 eliminate or reduce this requirement. In this study, the near-isogenic lines for several VRN-B1 allelic variants (Vrn-B1a, Vrn-B1b, Vrn-B1c, Vrn-B1 d and vrn-B1) were generated in two winter wheat backgrounds. Under field conditions, the four dominant Vrn-B1 allelic variants (Vrn-B1a, Vrn-B1b, Vrn-B1c, and Vrn-B1 d) resulted in an advancement in the heading date by 3-5 days. Using an artificially controlled gradient vernalization treatment (4-5 ℃, ranging from 0 to 45 days with 5-day intervals), the vernalization requirements of VRN-B1 allelic variants were analyzed. The relative effects on vernalization requirements were found to be vrn-B1 > Vrn-B1a = Vrn-B1 d > Vrn-B1b = Vrn-B1c (opposite to the heading date). Gene expression analysis indicates that the earlier heading associated with the dominant Vrn-B1 allelic variants is linked to their open expression under non-vernalization conditions. There may be an expression threshold at the VRN-B1 locus that eliminates the vernalization requirement, and this threshold should be lower than the vrn-B1 levels observed under saturated vernalization conditions. Furthermore, once this hypothesized threshold is reached, there appears to be no dosage effect on VRN-B1 expression. These results deepen our understanding of wheat vernalization genes and provide a theoretical basis for utilizing these genes in breeding programs aimed at improving wheat adaptability. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01565-1.
Collapse
Affiliation(s)
- Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Qiru Fan
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Caiyin Shi
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Siyi Li
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jianfei Zhou
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yaning Bu
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xiling Chang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yang Yu
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xinpeng Lei
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yuxin Wang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Dongsheng Chen
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002 Ningxia China
| | - Jishan Xiang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500 Xinjiang China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili Normal University, Yili, 830500 Xinjiang China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
7
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
8
|
Li T, Nagarajan R, Liu S, Luzuriaga JC, Zhai W, Cao S, Jia H, Carver BF, Yan L. The E3 ligase TaE3V-B1 ubiquitinates proteins encoded by the vernalization gene TaVRN1 and regulates developmental processes in wheat. PLANT PHYSIOLOGY 2024; 197:kiae606. [PMID: 39556771 DOI: 10.1093/plphys/kiae606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
In wheat (Triticum aestivum), early maturity is desired to avoid the hot and dry summer season, especially in view of climate change. Here, we report that TaE3V1, a C3H2C3 RING-type E3 ligase that interacts with TaVRN1, is associated with early development. Aside from its RING domain, TaE3V1 does not harbor any domains that are conserved in other RING-type or other E3 ligase proteins. TaE3V-B1b, encoded by the functional TaE3V1 allele, interacts with and ubiquitinates TaVRN1. In contrast, TaE3V-B1a, encoded by a natural nonfunctional TaE3V1 allele, neither interacts with TaVRN1 nor has E3 ligase activity. TaE3V-B1b activity decreases with plant age under warmer temperatures, but not under the low temperatures required for vernalization. We employed a gene editing method to simultaneously inactivate the 3 homoeologous TaE3V1 genes to validate their functions. Overall, our results suggest that the naturally mutated and edited TaE3V1 alleles can accelerate wheat development and aid adaptation to warming climates.
Collapse
Affiliation(s)
- Tian Li
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shujuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan C Luzuriaga
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Wenxuan Zhai
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shuanghe Cao
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
9
|
Li R, Yao J, Cai S, Fu Y, Lai C, Zhu X, Cui L, Li Y. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements in Barley ( Hordeum vulgare). FRONTIERS IN PLANT SCIENCE 2024; 15:1474846. [PMID: 39544535 PMCID: PMC11560428 DOI: 10.3389/fpls.2024.1474846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Miniature inverted-repeat transposable elements (MITEs) constitute a class of class II transposable elements (TEs) that are abundant in plant genomes, playing a crucial role in their evolution and diversity. Barley (Hordeum vulgare), the fourth-most important cereal crop globally, is widely used for brewing, animal feed, and human consumption. However, despite their significance, the mechanisms underlying the insertion or amplification of MITEs and their contributions to barley genome evolution and diversity remain poorly understood. Through our comprehensive analysis, we identified 32,258 full-length MITEs belonging to 2,992 distinct families, accounting for approximately 0.17% of the barley genome. These MITE families can be grouped into four well-known superfamilies (Tc1/Mariner-like, PIF/Harbinger-like, hAT-like, and Mutator-like) and one unidentified superfamily. Notably, we observed two major expansion events in the barley MITE population, occurring approximately 12-13 million years ago (Mya) and 2-3 Mya. Our investigation revealed a strong preference of MITEs for gene-related regions, particularly in promoters, suggesting their potential involvement in regulating host gene expression. Additionally, we discovered that 7.73% miRNAs are derived from MITEs, thereby influencing the origin of certain miRNAs and potentially exerting a significant impact on post-transcriptional gene expression control. Evolutionary analysis demonstrated that MITEs exhibit lower conservation compared to genes, consistent with their dynamic mobility. We also identified a series of MITE insertions or deletions associated with domestication, highlighting these regions as promising targets for crop improvement strategies. These findings significantly advance our understanding of the fundamental characteristics and evolutionary patterns of MITEs in the barley genome. Moreover, they contribute to our knowledge of gene regulatory networks and provide valuable insights for crop improvement endeavors.
Collapse
Affiliation(s)
- Ruiying Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ju Yao
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shaoshuai Cai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yi Fu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chongde Lai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- The Public Instrument Platform of Jiangxi Agricultural University, Jiangxi Agricultural University, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Amalova A, Babkenov A, Philp C, Griffiths S, Abugalieva S, Turuspekov Y. Identification of Quantitative Trait Loci Associated with Plant Adaptation Traits Using Nested Association Mapping Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:2623. [PMID: 39339597 PMCID: PMC11435412 DOI: 10.3390/plants13182623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
This study evaluated 290 recombinant inbred lines (RILs) of the nested association mapping (NAM) population from the UK. The population derived from 24 families, where a common parent was "Paragon," one of the UK's spring wheat cultivar standards. All genotypes were tested in two regions of Kazakhstan at the Kazakh Research Institute of Agriculture and Plant Industry (KRIAPI, Almaty region, Southeast Kazakhstan, 2019-2022 years) and Alexandr Barayev Scientific-Production Center for Grain Farming (SPCGF, Shortandy, Akmola region, Northern Kazakhstan, 2019-2022 years). The studied traits consisted of plant adaptation-related traits, including heading date (HD, days), seed maturation date (SMD, days), plant height (PH, cm), and peduncle length (PL, cm). In addition, the yield per m2 was analyzed in both regions. Based on a field evaluation of the population in northern and southeastern Kazakhstan and using 10,448 polymorphic SNP (single-nucleotide polymorphism) markers, the genome-wide association study (GWAS) allowed for detecting 74 QTLs in four studied agronomic traits (HD, SMD, PH, and PL). The literature survey suggested that 16 of the 74 QTLs identified in our study had also been detected in previous QTL mapping studies and GWASs for all studied traits. The results will be used for further studies related to the adaptation and productivity of wheat in breeding projects for higher grain productivity.
Collapse
Affiliation(s)
- Akerke Amalova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Adylkhan Babkenov
- Alexandr Barayev Scientific-Production Center for Grain Farming, Shortandy 021600, Kazakhstan
| | | | | | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
11
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
12
|
Liao S, Xu Z, Fan X, Zhou Q, Liu X, Jiang C, Ma F, Wang Y, Wang T, Feng B. Identification and validation of two major QTL for grain number per spike on chromosomes 2B and 2D in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:147. [PMID: 38834870 DOI: 10.1007/s00122-024-04652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
KEY MESSAGE Major QTL for grain number per spike were identified on chromosomes 2B and 2D. Haplotypes and candidate genes of QGns.cib-2B.1 were analyzed. Grain number per spike (GNS) is one of the main components of wheat yield. Genetic dissection of their regulatory factors is essential to improve the yield potential. In present study, a recombinant inbred line population comprising 180 lines developed from the cross between a high GNS line W7268 and a cultivar Chuanyu12 was employed to identify quantitative trait loci (QTL) associated with GNS across six environments. Two major QTL, QGns.cib-2B.1 and QGns.cib-2D.1, were detected in at least four environments with the phenotypic variations of 12.99-27.07% and 8.50-13.79%, respectively. And significant interactions were observed between the two major QTL. In addition, QGns.cib-2B.1 is a QTL cluster for GNS, grain number per spikelet and fertile tiller number, and they were validated in different genetic backgrounds using Kompetitive Allele Specific PCR (KASP) markers. QGns.cib-2B.1 showed pleotropic effects on other yield-related traits including plant height, spike length, and spikelet number per spike, but did not significantly affect thousand grain weight which suggested that it might be potentially applicable in breeding program. Comparison analysis suggested that QGns.cib-2B.1 might be a novel QTL. Furthermore, haplotype analysis of QGns.cib-2B.1 indicated that it is a hot spot of artificial selection during wheat improvement. Based on the expression patterns, gene annotation, orthologs analysis and sequence variations, the candidate genes of QGns.cib-2B.1 were predicted. Collectively, the major QTL and KASP markers reported here provided a wealth of information for the genetic basis of GNS and grain yield improvement.
Collapse
Affiliation(s)
- Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
13
|
Komura S, Yoshida K, Jinno H, Oono Y, Handa H, Takumi S, Kobayashi F. Identification of the causal mutation in early heading mutant of bread wheat ( Triticum aestivum L.) using MutMap approach. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:41. [PMID: 38779634 PMCID: PMC11106051 DOI: 10.1007/s11032-024-01478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
In bread wheat (Triticum aestivum L.), fine-tuning the heading time is essential to maximize grain yield. Photoperiod-1 (Ppd-1) and VERNALIZATION 1 (Vrn-1) are major genes affecting photoperiod sensitivity and vernalization requirements, respectively. These genes have predominantly governed heading timing. However, Ppd-1 and Vrn-1 significantly impact heading dates, necessitating another gene that can slightly modify heading dates for fine-tuning. In this study, we developed an early heading mutant from the ethyl methanesulfonate-mutagenized population of the Japanese winter wheat cultivar "Kitahonami." MutMap analysis identified a nonsense mutation in the clock component gene Wheat PHYTOCLOCK 1/LUX ARRHYTHMO (WPCL-D1) as the probable SNP responsible for the early heading mutant on chromosome 3D. Segregation analysis using F2 and F3 populations confirmed that plants carrying the wpcl-D1 allele headed significantly earlier than those with the functional WPCL-D1. The early heading mutant exhibited increased expression levels of Ppd-1 and circadian clock genes, such as WPCL1 and LATE ELONGATED HYPOCOTYL (LHY). Notably, the transcript accumulation levels of Ppd-A1 and Ppd-D1 were influenced by the copy number of the functional WPCL1 gene. These results suggest that a loss-of-function mutation in WPCL-D1 is the causal mutation for the early heading phenotype. Adjusting the functional copy number of WPCL1 will be beneficial in fine-tuning of heading dates. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01478-5.
Collapse
Affiliation(s)
- Shoya Komura
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Kentaro Yoshida
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Hironobu Jinno
- Hokkaido Research Organization, Kitami Agricultural Experiment Station, Yayoi 52, Kunneppucho, Tokorogun, Hokkaido, 099-1496 Japan
| | - Youko Oono
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-0856 Japan
| | - Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-0856 Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, 305-0856 Japan
| |
Collapse
|
14
|
Plotnikov KO, Klimenko AI, Ovchinnikova ES, Lashin SA, Goncharov NP. Analysis of the Effects of the Vrn-1 and Ppd-1 Alleles on Adaptive and Agronomic Traits in Common Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1453. [PMID: 38891261 PMCID: PMC11174496 DOI: 10.3390/plants13111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Wheat heading time is primarily governed by two loci: VRN-1 (response to vernalization) and PPD-1 (response to photoperiod). Five sets of near-isogenic lines (NILs) were studied with the aim of investigating the effect of the aforementioned genes on wheat vegetative period duration and 14 yield-related traits. Every NIL was sown in the hydroponic greenhouse of the Institute of Cytology and Genetics, SB RAS. To assess their allelic composition at the VRN-1 and PPD-1 loci, molecular markers were used. It was shown that HT in plants with the Vrn-A1vrn-B1vrn-D1 genotype was reduced by 29 and 21 days (p < 0.001) in comparison to HT in plants with the vrn-A1Vrn-B1vrn-D1 and the vrn-A1vrn-B1Vrn-D1 genotypes, respectively. In our study, we noticed a decrease in spike length as well as spikelet number per spike parameter for some NIL carriers of the Vrn-A1a allele in comparison to carriers of the Vrn-B1 allele. PCA revealed three first principal components (PC), together explaining more than 70% of the data variance. Among the studied genetic traits, the Vrn-A1a and Ppd-D1a alleles showed significant correlations with PCs. Regarding genetic components, significant correlations were calculated between PC3 and Ppd-B1a (-0.26, p < 0.05) and Vrn-B1 (0.57, p < 0.05) alleles. Thus, the presence of the Vrn-A1a allele affects heading time, while Ppd-D1a is associated with plant height reduction.
Collapse
Affiliation(s)
- Kirill O. Plotnikov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia
| | - Alexandra I. Klimenko
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia (S.A.L.)
| | - Ekaterina S. Ovchinnikova
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia
| | - Sergey A. Lashin
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia (S.A.L.)
| | - Nikolay P. Goncharov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia
| |
Collapse
|
15
|
Wang Y, Liu Y, Yu C, Chen S, Li Y, Wei L, Wu J, Yang J. Identification of a Rye Spring Mutant Derived from a Winter Rye Variety by High-Altitude Environment Screening Using RNA Sequencing Technology. Genes (Basel) 2024; 15:572. [PMID: 38790201 PMCID: PMC11121467 DOI: 10.3390/genes15050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Wintergrazer-70 and Ganyin No1 are high-yield forage varieties suitable for cultivation in high-altitude areas of Tibet (4300 m above sea level). Ganyin No1 was developed from Wintergrazer-70, with the latter serving as its parent variety. Ganyin No1 was identified as a spring variety, and subsequent RNA sequencing was conducted. RNA sequencing analysis identified 4 differentially expressed genes related to vernalization and 28 genes related to photoperiod regulation. The Sc7296g5-i1G3 gene is related to the flowering inhibition of rye, which may be related to the phenotypic difference in the Ganyin No1 variety in winter and spring. This finding provides valuable insights for future research on Ganyin No1, especially in addressing feed shortages in Tibet during winter and spring.
Collapse
Affiliation(s)
- Yanying Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai–Tibetan Plateau, School of Ecology and Environment, Ministry of Education, Tibet University, Lhasa 850000, China; (Y.W.); (Y.L.)
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
- Center for Crop Genome Engineering, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (Y.L.); (L.W.)
| | - Yixuan Liu
- Key Laboratory of Biodiversity and Environment on the Qinghai–Tibetan Plateau, School of Ecology and Environment, Ministry of Education, Tibet University, Lhasa 850000, China; (Y.W.); (Y.L.)
| | - Chengqun Yu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
| | - Shizhan Chen
- Center for Crop Genome Engineering, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (Y.L.); (L.W.)
| | - Yankun Li
- Center for Crop Genome Engineering, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (Y.L.); (L.W.)
| | - Lina Wei
- Center for Crop Genome Engineering, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (Y.L.); (L.W.)
| | - Junxi Wu
- Key Laboratory of Biodiversity and Environment on the Qinghai–Tibetan Plateau, School of Ecology and Environment, Ministry of Education, Tibet University, Lhasa 850000, China; (Y.W.); (Y.L.)
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jianping Yang
- Center for Crop Genome Engineering, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (Y.L.); (L.W.)
| |
Collapse
|
16
|
Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. MOLECULAR PLANT 2024; 17:438-459. [PMID: 38310351 DOI: 10.1016/j.molp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.
Collapse
Affiliation(s)
- Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoyu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Lu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
17
|
Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z, Xia X, Yan L, Cao S. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:635-649. [PMID: 37938892 PMCID: PMC10893938 DOI: 10.1111/pbi.14211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Bingyan Liu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Li Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ke Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dengan Xu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiuling Tian
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lina Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lingli Li
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xingguo Ye
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhonghu He
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xianchun Xia
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Shuanghe Cao
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
18
|
Afshari-Behbahanizadeh S, Puglisi D, Esposito S, De Vita P. Allelic Variations in Vernalization ( Vrn) Genes in Triticum spp. Genes (Basel) 2024; 15:251. [PMID: 38397240 PMCID: PMC10887697 DOI: 10.3390/genes15020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Rapid climate changes, with higher warming rates during winter and spring seasons, dramatically affect the vernalization requirements, one of the most critical processes for the induction of wheat reproductive growth, with severe consequences on flowering time, grain filling, and grain yield. Specifically, the Vrn genes play a major role in the transition from vegetative to reproductive growth in wheat. Recent advances in wheat genomics have significantly improved the understanding of the molecular mechanisms of Vrn genes (Vrn-1, Vrn-2, Vrn-3, and Vrn-4), unveiling a diverse array of natural allelic variations. In this review, we have examined the current knowledge of Vrn genes from a functional and structural point of view, considering the studies conducted on Vrn alleles at different ploidy levels (diploid, tetraploid, and hexaploid). The molecular characterization of Vrn-1 alleles has been a focal point, revealing a diverse array of allelic forms with implications for flowering time. We have highlighted the structural complexity of the different allelic forms and the problems linked to the different nomenclature of some Vrn alleles. Addressing these issues will be crucial for harmonizing research efforts and enhancing our understanding of Vrn gene function and evolution. The increasing availability of genome and transcriptome sequences, along with the improvements in bioinformatics and computational biology, offers a versatile range of possibilities for enriching genomic regions surrounding the target sites of Vrn genes, paving the way for innovative approaches to manipulate flowering time and improve wheat productivity.
Collapse
Affiliation(s)
- Sanaz Afshari-Behbahanizadeh
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Damiano Puglisi
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| | - Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), 80055 Portici, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| |
Collapse
|
19
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Liao S, Wang Y, Ma F, Zhao Y, Wang T, Feng B. Genetic dissection of major QTL for grain number per spike on chromosomes 5A and 6A in bread wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 14:1305547. [PMID: 38259947 PMCID: PMC10800429 DOI: 10.3389/fpls.2023.1305547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024]
Abstract
Grain number per spike (GNS) is a crucial component of grain yield and plays a significant role in improving wheat yield. To identify quantitative trait loci (QTL) associated with GNS, a recombinant inbred line (RIL) population derived from the cross of Zhongkemai 13F10 and Chuanmai 42 was employed to conduct QTL mapping across eight environments. Based on the bulked segregant exome sequencing (BSE-Seq), genomic regions associated with GNS were detected on chromosomes 5A and 6A. According to the constructed genetic maps, two major QTL QGns.cib-5A (LOD = 4.35-8.16, PVE = 8.46-14.43%) and QGns.cib-6A (LOD = 3.82-30.80, PVE = 5.44-12.38%) were detected in five and four environments, respectively. QGns.cib-6A is a QTL cluster for other seven yield-related traits. QGns.cib-5A and QGns.cib-6A were further validated using linked Kompetitive Allele Specific PCR (KASP) markers in different genetic backgrounds. QGns.cib-5A exhibited pleiotropic effects on productive tiller number (PTN), spike length (SL), fertile spikelet number per spike (FSN), and ratio of grain length to grain width (GL/GW) but did not significantly affect thousand grain weight (TGW). Haplotype analysis revealed that QGns.cib-5A and QGns.cib-6A were the targets of artificial selection during wheat improvement. Candidate genes for QGns.cib-5A and QGns.cib-6A were predicted by analyzing gene annotation, spatiotemporal expression patterns, and orthologous and sequence differences. These findings will be valuable for fine mapping and map-based cloning of genes underlying QGns.cib-5A and QGns.cib-6A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlin Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The Innovative of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
20
|
Niu D, Gao Z, Cui B, Zhang Y, He Y. A molecular mechanism for embryonic resetting of winter memory and restoration of winter annual growth habit in wheat. NATURE PLANTS 2024; 10:37-52. [PMID: 38177663 DOI: 10.1038/s41477-023-01596-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
The staple food crop winter bread wheat (Triticum aestivum) acquires competence to flower in late spring after experiencing prolonged cold in temperate winter seasons, through the physiological process of vernalization. Prolonged cold exposure results in transcriptional repression of the floral repressor VERNALIZATION 2 (TaVRN2) and activates the expression of the potent floral promoter VERNALIZATION 1 (TaVRN1). Cold-induced TaVRN1 activation and TaVRN2 repression are maintained in post-cold vegetative growth and development, leading to an epigenetic 'memory of winter cold', enabling spring flowering. When and how the cold memory is reset in wheat is essentially unknown. Here we report that the cold-induced TaVRN1 activation is inherited by early embryos, but reset in subsequent embryo development, whereas TaVRN2 remains silenced through seed development, but is reactivated rapidly by light during seed germination. We further found that a chromatin reader mediates embryonic resetting of TaVRN1 and that chromatin modifications play an important role in the regulation of TaVRN1 expression and thus the floral transition, in response to developmental state and environmental cues. The findings define a two-step molecular mechanism for re-establishing vernalization requirement in common wheat, ensuring that each generation must experience winter cold to acquire competence to flower in spring.
Collapse
Affiliation(s)
- De Niu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zheng Gao
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Bowen Cui
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yongxing Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
21
|
Palomino C, Cabrera A. Evaluation of the Allelic Variations in Vernalisation ( VRN1) and Photoperiod ( PPD1) Genes and Genetic Diversity in a Spanish Spelt Wheat Collection. Int J Mol Sci 2023; 24:16041. [PMID: 38003231 PMCID: PMC10671769 DOI: 10.3390/ijms242216041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Allelic variation within genes controlling the vernalisation requirement (VRN1) and photoperiod response (PPD1) determines the adaptation of wheat to different environmental growing conditions as well as influences other traits related to grain yield. This study aimed to screen a Spanish spelt wheat collection using gene-specific molecular markers for VRN-A1, VRN-B1, VRN-D1, and PPD-D1 loci and to phenotype for heading date (HD) in both field and greenhouse experiments under a long photoperiod and without vernalisation. Fifty-five spelt genotypes (91.7%) exhibited a spring growth habit, and all of them carried at least one dominant VRN1 allele, whereas five (8.3%) genotypes had a winter growth habit, and they carried the triple recessive allele combination. The Vrn-D1s was the most frequent allele in the studied set of spelt accessions, and it was found in combination with both the dominant Vrn-A1b and/or Vrn-B1a alleles in 88.3% of the spelt accessions tested. All spelt accessions carried the photoperiod-sensitive Ppd-D1b allele, which may explain the late heading of spelt germplasm compared to the commercial spring bread wheat Setenil used as a control. The least significant difference test showed significant differences between allelic combinations, the earliest accessions being those carrying two or three dominant alleles, followed by the one-gene combinations. In addition, the genetic diversity was evaluated through capillary electrophoresis using 15 wheat simple sequence repeat (SSR) markers. Most markers had high levels of polymorphism, producing 95 different alleles which ranged between 53 and 279 bp in size. Based on the polymorphic information content values obtained (from 0.51 to 0.97), 12 out of the 15 SSRs were catalogued as informative markers (values > 0.5). According to the dendrogram generated, the spelt accessions clustered as a separate group from the commercial bread wheat Setenil. Knowledge of VRN1 and PPD1 alleles, heading time, and genetic variability using SSR markers is valuable for spelt wheat breeding programs.
Collapse
Affiliation(s)
| | - Adoración Cabrera
- Genetics Department, ETSIAM, Campus de Rabanales, Universidad de Córdoba, CeiA3, 14071 Córdoba, Spain;
| |
Collapse
|
22
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Chepurnov GY, Ovchinnikova ES, Blinov AG, Chikida NN, Belousova MK, Goncharov NP. Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops tauschii Coss. PLANTS (BASEL, SWITZERLAND) 2023; 12:3596. [PMID: 37896059 PMCID: PMC10610194 DOI: 10.3390/plants12203596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The duration of the vegetative period is an important agronomic characteristic of cereal crops. It is mainly influenced by the Vrn (response to vernalization) and Ppd (response to photoperiod) genes. In this work, we searched for alleles of several known genes of these two systems of response to external conditions in 15 accessions of Aegilops tauschii Coss. (syn. Ae. squarrosa L.), with the aim of studying the impact these alleles have on the vegetative period duration and growth habit. As a result, three allelic variants have been found for the Vrn-D1 gene: (i) one intact (winter type), (ii) one with a 5437 bp deletion in the first intron and (iii) one previously undescribed allele with a 3273 bp deletion in the first intron. It has been shown that the spring growth habit of Ae. tauschii can be developed due to the presence of a new allele of the Vrn-D1 gene. Significant differences in expression levels between the new allelic variant of the Vrn-D1 gene and the intact allele vrn-D1 were confirmed by qPCR. The new allele can be introgressed into common wheat to enhance the biodiversity of the spring growth habit and vegetative period duration of plants.
Collapse
Affiliation(s)
- Grigory Yurievich Chepurnov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Ekaterina Sergeevna Ovchinnikova
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Alexander Genadevich Blinov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| | - Nadezhda Nikolaevna Chikida
- Division of Wheat Genetic Resources, Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Khasbulatovna Belousova
- Wheat Laboratory, Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Saint Petersburg, Russia;
| | - Nikolay Petrovich Goncharov
- Early Maturity Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia; (E.S.O.); (A.G.B.)
| |
Collapse
|
24
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|
25
|
Gao J, Hu X, Gao C, Chen G, Feng H, Jia Z, Zhao P, Yu H, Li H, Geng Z, Fu J, Zhang J, Cheng Y, Yang B, Pang Z, Xiang D, Jia J, Su H, Mao H, Lan C, Chen W, Yan W, Gao L, Yang W, Li Q. Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide association studies in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1966-1977. [PMID: 37392004 PMCID: PMC10502759 DOI: 10.1111/pbi.14104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/11/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Dissecting the genetic basis of complex traits such as dynamic growth and yield potential is a major challenge in crops. Monitoring the growth throughout growing season in a large wheat population to uncover the temporal genetic controls for plant growth and yield-related traits has so far not been explored. In this study, a diverse wheat panel composed of 288 lines was monitored by a non-invasive and high-throughput phenotyping platform to collect growth traits from seedling to grain filling stage and their relationship with yield-related traits was further explored. Whole genome re-sequencing of the panel provided 12.64 million markers for a high-resolution genome-wide association analysis using 190 image-based traits and 17 agronomic traits. A total of 8327 marker-trait associations were detected and clustered into 1605 quantitative trait loci (QTLs) including a number of known genes or QTLs. We identified 277 pleiotropic QTLs controlling multiple traits at different growth stages which revealed temporal dynamics of QTLs action on plant development and yield production in wheat. A candidate gene related to plant growth that was detected by image traits was further validated. Particularly, our study demonstrated that the yield-related traits are largely predictable using models developed based on i-traits and provide possibility for high-throughput early selection, thus to accelerate breeding process. Our study explored the genetic architecture of growth and yield-related traits by combining high-throughput phenotyping and genotyping, which further unravelled the complex and stage-specific contributions of genetic loci to optimize growth and yield in wheat.
Collapse
Affiliation(s)
- Jie Gao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chunyan Gao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Guang Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hui Feng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhen Jia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Peimin Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Haiyang Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Huaiwen Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zedong Geng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jingbo Fu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yikeng Cheng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Bo Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhanghan Pang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Daoquan Xiang
- Aquatic and Crop Resource DevelopmentNational Research Council CanadaSaskatoonSaskatchewanCanada
| | - Jizeng Jia
- Institute of Crop SciencesChinese Academy of Crop Sciences (CAAS)BeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Caixia Lan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wei Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lifeng Gao
- Institute of Crop SciencesChinese Academy of Crop Sciences (CAAS)BeijingChina
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- The Center of Crop NanobiotechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
26
|
Zhang J, Xiong H, Burguener GF, Vasquez-Gross H, Liu Q, Debernardi JM, Akhunova A, Garland-Campbell K, Kianian SF, Brown-Guedira G, Pozniak C, Faris JD, Akhunov E, Dubcovsky J. Sequencing 4.3 million mutations in wheat promoters to understand and modify gene expression. Proc Natl Acad Sci U S A 2023; 120:e2306494120. [PMID: 37703281 PMCID: PMC10515147 DOI: 10.1073/pnas.2306494120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos. We identified 4.3 million induced mutations with an accuracy of 99.8%, resulting in a mutation density of 41.9 mutations per kb. We also remapped Kronos exome capture reads to Chinese Spring RefSeq v1.1, identified 4.7 million mutations, and predicted their effects on annotated genes. Using these predictions, we identified 59% more nonsynonymous substitutions and 49% more truncation mutations than in the original study. To show the biological value of the promoter dataset, we selected two mutations within the promoter of the VRN-A1 vernalization gene. Both mutations, located within transcription factor binding sites, significantly altered VRN-A1 expression, and one reduced the number of spikelets per spike. These publicly available sequenced mutant datasets provide rapid and inexpensive access to induced variation in the promoters and coding regions of most wheat genes. These mutations can be used to understand and modulate gene expression and phenotypes for both basic and commercial applications, where limited governmental regulations can facilitate deployment. These mutant collections, together with gene editing, provide valuable tools to accelerate functional genetic studies in this economically important crop.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA95616
| | - Hongchun Xiong
- Department of Plant Sciences, University of California, Davis, CA95616
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Germán F. Burguener
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Hans Vasquez-Gross
- Department of Plant Sciences, University of California, Davis, CA95616
- Nevada Bioinformatics Center, University of Nevada, Reno, NV89557
| | - Qiujie Liu
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS66506
| | - Kimberly Garland-Campbell
- United States Department of Agriculture - Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA99164
| | - Shahryar F. Kianian
- United States Department of Agriculture - Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, MN55108-6086
| | - Gina Brown-Guedira
- United States Department of Agriculture - Agricultural Research Service, Plant Science Research Unit, Raleigh, NC27695
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, SaskatoonS7N 5A8, Canada
| | - Justin D. Faris
- United States Department of Agriculture - Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND58102
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS66506
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
27
|
Farhad M, Tripathi SB, Singh RP, Joshi AK, Bhati PK, Vishwakarma MK, Kumar U. GWAS for Early-Establishment QTLs and Their Linkage to Major Phenology-Affecting Genes ( Vrn, Ppd, and Eps) in Bread Wheat. Genes (Basel) 2023; 14:1507. [PMID: 37510411 PMCID: PMC10378780 DOI: 10.3390/genes14071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Farmers in northern and central Indian regions prefer to plant wheat early in the season to take advantage of the remaining soil moisture. By planting crops before the start of the season, it is possible to extend the time frame for spring wheat. The early-wheat-establishment experiment began in the 2017 growing season at the Borlaug Institute for South Asia (BISA) in Ludhiana, India, and, after three years of intensive study, numerous agronomic, physiological, and yield data points were gathered. This study aimed to identify wheat lines suitable for early establishment through an analysis of the agro-morphological traits and the genetic mapping of associated genes or quantitative trait loci (QTLs). Advancing the planting schedule by two-three weeks proved to be advantageous in terms of providing a longer duration for crop growth and reducing the need for irrigation. This is attributed to the presence of residual soil moisture resulting from the monsoon season. Early sowing facilitated the selection of genotypes able to withstand early elevated temperatures and a prolonged phenological period. The ideotype, which includes increased photo-growing degree days for booting and heading, as well as a longer grain-filling period, is better suited to early planting than timely planting. Senescence was delayed in combination with a slower rate of canopy temperature rise, which was an excellent trait for early-adapted ideotypes. Thus, a novel approach to wheat breeding would include a screening of genotypes for early planting and an ideotype design with consistent and appropriate features. A genome-wide association study (GWAS) revealed multiple QTLs linked to early adaptation in terms of the yield and its contributing traits. Among them, 44 novel QTLs were also found along with known loci. Furthermore, the study discovered that the phenology regulatory genes, such as Vrn and Ppd, are in the same genomic region, thereby contributing to early adaptation.
Collapse
Affiliation(s)
- Md Farhad
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur 5200, Bangladesh
| | - Shashi B Tripathi
- TERI School of Advanced Studies, Vasant Kunj, New Delhi 110070, India
| | - Ravi P Singh
- International Maize and Wheat Improvement Centre (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco C.P. 56237, Mexico
| | - Arun K Joshi
- Borlaug Institute for South Asia (BISA), New Delhi 110012, India
| | - Pradeep K Bhati
- Borlaug Institute for South Asia (BISA), New Delhi 110012, India
| | | | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), New Delhi 110012, India
| |
Collapse
|
28
|
Li Y, Xiong H, Guo H, Zhou C, Fu M, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Wang C, Irshad A, Liu L, Fang Z. Fine mapping and genetic analysis identified a C 2H 2-type zinc finger as a candidate gene for heading date regulation in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:140. [PMID: 37243757 DOI: 10.1007/s00122-023-04363-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/08/2023] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE A minor-effect QTL, Qhd.2AS, that affects heading date in wheat was mapped to a genomic interval of 1.70-Mb on 2AS, and gene analysis indicated that the C2H2-type zinc finger protein gene TraesCS2A02G181200 is the best candidate for Qhd.2AS. Heading date (HD) is a complex quantitative trait that determines the regional adaptability of cereal crops, and identifying the underlying genetic elements with minor effects on HD is important for improving wheat production in diverse environments. In this study, a minor QTL for HD that we named Qhd.2AS was detected on the short arm of chromosome 2A by Bulked Segregant Analysis and validated in a recombinant inbred population. Using a segregating population of 4894 individuals, Qhd.2AS was further delimited to an interval of 0.41 cM, corresponding to a genomic region spanning 1.70 Mb (from 138.87 to 140.57 Mb) that contains 16 high-confidence genes based on IWGSC RefSeq v1.0. Analyses of sequence variations and gene transcription indicated that TraesCS2A02G181200, which encodes a C2H2-type zinc finger protein, is the best candidate gene for Qhd.2AS that influences HD. Screening a TILLING mutant library identified two mutants with premature stop codons in TraesCS2A02G181200, both of which exhibited a delay in HD of 2-4 days. Additionally, variations in its putative regulatory sites were widely present in natural accession, and we also identified the allele which was positively selected during wheat breeding. Epistatic analyses indicated that Qhd.2AS-mediated HD variation is independent of VRN-B1 and environmental factors. Phenotypic investigation of homozygous recombinant inbred lines (RILs) and F2:3 families showed that Qhd.2AS has no negative effect on yield-related traits. These results provide important cues for refining HD and therefore improving yield in wheat breeding programs and will deepen our understanding of the genetic regulation of HD in cereal plants.
Collapse
Affiliation(s)
- Yuting Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyun Zhou
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiyu Fu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaojie Wang
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ahsan Irshad
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding/National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
29
|
Morcia C, De Flaviis R, Terzi V, Gasparelli ME, Ghizzoni R, Badeck FW, Rizza F, Santarelli V, Tumino G, Sacchetti G. Long-Term In Situ Conservation Drove Microevolution of Solina d'Abruzzo Wheat on Adaptive, Agronomic and Qualitative Traits. PLANTS (BASEL, SWITZERLAND) 2023; 12:1306. [PMID: 36986994 PMCID: PMC10057728 DOI: 10.3390/plants12061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Solina is an example of a bread wheat landrace that has been conserved in situ for centuries in Central Italy. A core collection of Solina lines sampled in areas at different altitudes and climatic conditions was obtained and genotyped. A clustering analysis based on a wide SNP dataset generated from DArTseq analysis outlined the existence of two main groups, which, after Fst analysis, showed polymorphism in genes associated with vernalization and photoperiod response. Starting from the hypothesis that the different pedoclimatic environments in which Solina lines were conserved may have shaped the population, some phenotypic characteristics were studied in the Solina core collection. Growth habit, low-temperature resistance, allelic variations at major loci involved in vernalization response, and sensitivity to photoperiod were evaluated, together with seed morphologies, grain colour, and hardness. The two Solina groups showed different responses to low temperatures and to photoperiod-specific allelic variations as well as the different morphology and technological characteristics of the grain. In conclusion, the long-term in situ conservation of Solina in environments sited at different altitudes has had an impact on the evolution of this landrace which, despite its high genetic diversity, remains clearly identifiable and distinct so as to be included in conservation varieties.
Collapse
Affiliation(s)
- Caterina Morcia
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy
| | - Riccardo De Flaviis
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Valeria Terzi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy
| | - Maria Eugenia Gasparelli
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy
| | - Roberta Ghizzoni
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy
| | - Franz-W. Badeck
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy
| | - Fulvia Rizza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria—Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy
| | - Veronica Santarelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Giorgio Tumino
- Plant Breeding, Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Giampiero Sacchetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
30
|
Zhang X, Jiang X, Zhang Y, Ren J, Feng J, Quan W. Identification of QTL for reducing loss of grain yield under salt stress conditions in bi-parental populations derived from wheat landrace Hongmangmai. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:49. [PMID: 36913045 DOI: 10.1007/s00122-023-04290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
A novel QTL (QSt.nftec-2BL) was mapped to a 0.7 cM interval on chromosome 2B. Plants carrying QSt.nftec-2BL produced higher grain yields by up to 21.4% than otherwise in salinized fields. Wheat yield has been limited by soil salinity in many wheat-growing areas globally. The wheat landrace Hongmangmai (HMM) possesses salt tolerance as it produced higher grain yields than other tested wheat varieties including Early Premium (EP) under salt stresses. To detect QTL underlying this tolerance, wheat cross EP × HMM was chosen to serve as mapping population that was homozygous at Ppd (photoperiod response gene), Rht (reduced plant height gene) and Vrn (vernalization gene); thus, interference with QTL detection by these loci could be minimized. QTL mapping was conducted firstly using 102 recombinant inbred lines (RILs) that were selected from the EP × HMM population (827 RILs) for similarity in grain yield under non-saline condition. Under salt stresses, however, the 102 RILs varied significantly in grain yield. These RILs were genotyped using a 90 K SNP (single nucleotide polymorphism) array; consequently, a QTL (QSt.nftec-2BL) was detected on chromosome 2B. Then, using 827 RILs and new simple sequence repeat (SSR) markers developed according to the reference sequence IWGSC RefSeq v1.0, location of QSt.nftec-2BL was refined to a 0.7 cM (6.9 Mb) interval flanked by SSR markers 2B-557.23 and 2B-564.09. Selection for QSt.nftec-2BL was performed based on the flanking markers using two bi-parental wheat populations. Trials for validating effectiveness of the selection were conducted in salinized fields in two geographical areas and two crop seasons, demonstrating that wheat plants with the salt-tolerant allele in homozygous status at QSt.nftec-2BL produced higher grain yields by up to 21.4% than otherwise.
Collapse
Affiliation(s)
- Xiang Zhang
- National Fisheries Technology Extension Center, Beijing, 100125, People's Republic of China
| | - Xu Jiang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
- Liaoning Provincial Key Laboratory of Forest Protection, Liaoning Academy of Forestry Science, Shenyang, 110032, People's Republic of China
| | - Yibin Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Junda Ren
- Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jing Feng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Wei Quan
- Institute of Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
31
|
Pegler JL, Oultram JMJ, Mann CWG, Carroll BJ, Grof CPL, Eamens AL. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. PLANTS (BASEL, SWITZERLAND) 2023; 12:1101. [PMID: 36903960 PMCID: PMC10004981 DOI: 10.3390/plants12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Angiosperms form the largest phylum within the Plantae kingdom and show remarkable genetic variation due to the considerable difference in the nuclear genome size of each species. Transposable elements (TEs), mobile DNA sequences that can amplify and change their chromosome position, account for much of the difference in nuclear genome size between individual angiosperm species. Considering the dramatic consequences of TE movement, including the complete loss of gene function, it is unsurprising that the angiosperms have developed elegant molecular strategies to control TE amplification and movement. Specifically, the RNA-directed DNA methylation (RdDM) pathway, directed by the repeat-associated small-interfering RNA (rasiRNA) class of small regulatory RNA, forms the primary line of defense to control TE activity in the angiosperms. However, the miniature inverted-repeat transposable element (MITE) species of TE has at times avoided the repressive effects imposed by the rasiRNA-directed RdDM pathway. MITE proliferation in angiosperm nuclear genomes is due to their preference to transpose within gene-rich regions, a pattern of transposition that has enabled MITEs to gain further transcriptional activity. The sequence-based properties of a MITE results in the synthesis of a noncoding RNA (ncRNA), which, after transcription, folds to form a structure that closely resembles those of the precursor transcripts of the microRNA (miRNA) class of small regulatory RNA. This shared folding structure results in a MITE-derived miRNA being processed from the MITE-transcribed ncRNA, and post-maturation, the MITE-derived miRNA can be used by the core protein machinery of the miRNA pathway to regulate the expression of protein-coding genes that harbor homologous MITE insertions. Here, we outline the considerable contribution that the MITE species of TE have made to expanding the miRNA repertoire of the angiosperms.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
32
|
Strejčková B, Mazzucotelli E, Čegan R, Milec Z, Brus J, Çakır E, Mastrangelo AM, Özkan H, Šafář J. Wild emmer wheat, the progenitor of modern bread wheat, exhibits great diversity in the VERNALIZATION1 gene. FRONTIERS IN PLANT SCIENCE 2023; 13:1106164. [PMID: 36684759 PMCID: PMC9853909 DOI: 10.3389/fpls.2022.1106164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Wild emmer wheat is an excellent reservoir of genetic variability that can be utilized to improve cultivated wheat to address the challenges of the expanding world population and climate change. Bearing this in mind, we have collected a panel of 263 wild emmer wheat (WEW) genotypes across the Fertile Crescent. The genotypes were grown in different locations and phenotyped for heading date. Genome-wide association mapping (GWAS) was carried out, and 16 SNPs were associated with the heading date. As the flowering time is controlled by photoperiod and vernalization, we sequenced the VRN1 gene, the most important of the vernalization response genes, to discover new alleles. Unlike most earlier attempts, which characterized known VRN1 alleles according to a partial promoter or intron sequences, we obtained full-length sequences of VRN-A1 and VRN-B1 genes in a panel of 95 wild emmer wheat from the Fertile Crescent and uncovered a significant sequence variation. Phylogenetic analysis of VRN-A1 and VRN-B1 haplotypes revealed their evolutionary relationships and geographic distribution in the Fertile Crescent region. The newly described alleles represent an attractive resource for durum and bread wheat improvement programs.
Collapse
Affiliation(s)
- Beáta Strejčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics (CREA) Research Centre for Genomics and Bioinformatics via San Protaso 302, Fiorenzuola d’Arda, Italy
| | - Radim Čegan
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, ;Czechia
| | - Zbyněk Milec
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Jan Brus
- Department of Geoinformatics, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Esra Çakır
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics (CREA) Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Jan Šafář
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
33
|
Milec Z, Strejčková B, Šafář J. Contemplation on wheat vernalization. FRONTIERS IN PLANT SCIENCE 2023; 13:1093792. [PMID: 36684728 PMCID: PMC9853533 DOI: 10.3389/fpls.2022.1093792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Vernalization is a period of low non-freezing temperatures, which provides the competence to flower. This mechanism ensures that plants sown before winter develop reproductive organs in more favourable conditions during spring. Such an evolutionary mechanism has evolved in both monocot and eudicot plants. Studies in monocots, represented by temperate cereals like wheat and barley, have identified and proposed the VERNALIZATION1 (VRN1) gene as a key player in the vernalization response. VRN1 belongs to MADS-box transcription factors and is expressed in the leaves and the apical meristem, where it subsequently promotes flowering. Despite substantial research advancement in the last two decades, there are still gaps in our understanding of the vernalization mechanism. Here we summarise the present knowledge of wheat vernalization. We discuss VRN1 allelic variation, review vernalization models, talk VRN1 copy number variation and devernalization phenomenon. Finally, we suggest possible future directions of the vernalization research in wheat.
Collapse
|
34
|
Mizuno N, Matsunaka H, Yanaka M, Nakata M, Nakamura K, Nakamaru A, Kiribuchi-Otobe C, Ishikawa G, Chono M, Hatta K, Fujita M, Kobayashi F. Allelic variations of Vrn-1 and Ppd-1 genes in Japanese wheat varieties reveal the genotype-environment interaction for heading time. BREEDING SCIENCE 2022; 72:343-354. [PMID: 36776445 PMCID: PMC9895800 DOI: 10.1270/jsbbs.22017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/07/2022] [Indexed: 05/31/2023]
Abstract
The timing of heading is largely affected by environmental conditions. In wheat, Vrn-1 and Ppd-1 have been identified as the major genes involved in vernalization requirement and photoperiod sensitivity, respectively. To compare the effects of Vrn-1 and Ppd-1 alleles on heading time under different environments, we genotyped Vrn-1 and Ppd-1 homoeologues and measured the heading time at Morioka, Tsukuba and Chikugo in Japan for two growing seasons. A total of 128 Japanese and six foreign varieties, classified into four populations based on the 519 genome-wide SNPs, were used for analysis. Varieties with the spring alleles (Vrn-D1a or Vrn-D1b) at the Vrn-D1 locus and insensitive allele (Hapl-I) at the Ppd-D1 locus were found in earlier heading varieties. The effects of Vrn-D1 and Ppd-D1 on heading time were stronger than those of the other Vrn-1 and Ppd-1 homoeologues. Analysis of variance revealed that heading time was significantly affected by the genotype-environment interactions. Some Vrn-1 and Ppd-1 alleles conferred earlier or later heading in specific environments, indicating that the effect of both alleles on the timing of heading depends on the environment. Information on Vrn-1 and Ppd-1 alleles, together with heading time in various environments, provide useful information for wheat breeding.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hitoshi Matsunaka
- Kyusyu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833-0041, Japan
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Mikiko Yanaka
- Kyusyu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833-0041, Japan
| | - Masaru Nakata
- Kyusyu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833-0041, Japan
| | - Kazuhiro Nakamura
- Kyusyu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, 496 Izumi, Chikugo, Fukuoka 833-0041, Japan
| | - Akiko Nakamaru
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, 4 Akahira, Shimo-kuriyagawa, Morioka, Iwate 020-0198, Japan
| | - Chikako Kiribuchi-Otobe
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Goro Ishikawa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Makiko Chono
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Koichi Hatta
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Masaya Fujita
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
35
|
Ma F, Brown-Guedira G, Kang M, Baik BK. Allelic Variations in Phenology Genes of Eastern U.S. Soft Winter and Korean Winter Wheat and Their Associations with Heading Date. PLANTS (BASEL, SWITZERLAND) 2022; 11:3116. [PMID: 36432845 PMCID: PMC9693561 DOI: 10.3390/plants11223116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Wheat heading time is genetically controlled by phenology genes including vernalization (Vrn), photoperiod (Ppd) and earliness per se (Eps) genes. Characterization of the existing genetic variation in the phenology genes of wheat would provide breeding programs with valuable genetic resources necessary for the development of wheat varieties well-adapted to the local environment and early-maturing traits suitable for double-cropping system. One hundred forty-nine eastern U.S. soft winter (ESW) and 32 Korean winter (KW) wheat genotypes were characterized using molecular markers for Vrn, Ppd, Eps and reduced-height (Rht) genes, and phenotyped for heading date (HD) in the eastern U.S. region. The Ppd-D1 and Rht-D1 genes exhibited the highest genetic diversity in ESW and KW wheat, respectively. The genetic variations for HD of ESW wheat were largely contributed by Ppd-B1, Ppd-D1 and Vrn-D3 genes. The Rht-D1 gene largely contributed to the genetic variation for HD of KW wheat. KW wheat headed on average 14 days earlier than ESW wheat in each crop year, largely due to the presence of the one-copy vrn-A1 allele in the former. The development of early-maturing ESW wheat varieties could be achieved by selecting for the one-copy vrn-A1 and vrn-D3a alleles in combination with Ppd-B1a and Ppd-D1a photoperiod insensitive alleles.
Collapse
Affiliation(s)
- Fengyun Ma
- Soft Wheat Quality Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, 1680 Madison Avenue, Wooster, OH 44691, USA
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Gina Brown-Guedira
- Eastern Regional Small Grains Genotyping Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Raleigh, NC 27695, USA
| | - Moonseok Kang
- Rural Development Administration, National Institute of Crop Science, Suwon 16429, Gyeonggi, Republic of Korea
| | - Byung-Kee Baik
- Soft Wheat Quality Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS)-CSWQRU, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
36
|
Trevaskis B, Harris FAJ, Bovill WD, Rattey AR, Khoo KHP, Boden SA, Hyles J. Advancing understanding of oat phenology for crop adaptation. FRONTIERS IN PLANT SCIENCE 2022; 13:955623. [PMID: 36311119 PMCID: PMC9614419 DOI: 10.3389/fpls.2022.955623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Oat (Avena sativa) is an annual cereal grown for forage, fodder and grain. Seasonal flowering behaviour, or phenology, is a key contributor to the success of oat as a crop. As a species, oat is a vernalization-responsive long-day plant that flowers after winter as days lengthen in spring. Variation in both vernalization and daylength requirements broadens adaptation of oat and has been used to breed modern cultivars with seasonal flowering behaviours suited to different regions, sowing dates and farming practices. This review examines the importance of variation in oat phenology for crop adaptation. Strategies to advance understanding of the genetic basis of oat phenology are then outlined. These include the potential to transfer knowledge from related temperate cereals, particularly wheat (Triticum aestivum) and barley (Hordeum vulgare), to provide insights into the potential molecular basis of variation in oat phenology. Approaches that use emerging genomic resources to directly investigate the molecular basis of oat phenology are also described, including application of high-resolution genome-wide diversity surveys to map genes linked to variation in flowering behaviour. The need to resolve the contribution of individual phenology genes to crop performance by developing oat genetic resources, such as near-isogenic lines, is emphasised. Finally, ways that deeper knowledge of oat phenology can be applied to breed improved varieties and to inform on-farm decision-making are outlined.
Collapse
Affiliation(s)
- Ben Trevaskis
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food Business Unit, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Felicity A. J. Harris
- Department of Primary Industries, Pine Gully Road, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - William D. Bovill
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food Business Unit, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | | | - Kelvin H. P. Khoo
- School of Agriculture, Food & Wine, Faculty of Sciences, Waite Research Institute, University of Adelaide, Urrbrae, Adelaide, SA, Australia
| | - Scott A. Boden
- School of Agriculture, Food & Wine, Faculty of Sciences, Waite Research Institute, University of Adelaide, Urrbrae, Adelaide, SA, Australia
| | - Jessica Hyles
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food Business Unit, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
37
|
Qiao L, Zhang X, Li X, Yang Z, Li R, Jia J, Yan L, Chang Z. Genetic incorporation of genes for the optimal plant architecture in common wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:66. [PMID: 37313009 PMCID: PMC10248654 DOI: 10.1007/s11032-022-01336-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2022] [Indexed: 06/15/2023]
Abstract
Wheat grain yield is affected by plant height, which is the total length of spike, the uppermost internode, and other elongated internodes. In this study, a population of recombinant inbred lines generated from a cross between two advanced winter wheat breeding lines were phenotyped over four locations/years and genotyped by using markers of genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) for mapping of genes for three traits, including spike length, the uppermost internode length, and plant height. Five genomic regions or quantitative trait loci (QTLs) were associated with candidate genes for these traits. A major QTL was associated with Q5A, and two novel haplotypes of Q5A were identified, one for a single nucleotide polymorphism (SNP) at position -2,149 in promoter region and the other for copy number variation. Compared with one copy Q5A on chromosome 5A in Chinese Spring, the novel haplotype of Q5A with two copies Q5A was found to generate spikes that are extremely compacted. A major QTL was associated with allelic variation in the recessive vrn-A1 alleles involving in protein sequences, and this QTL was associated with increased uppermost internode length but not with plant height. A major QTL for plant height was associated with Rht-B1b on chromosome 4B, but its effects could be compromised by two new minor QTLs on chromosome 7. Collectively, the favorable alleles from the four loci can be used to establish the optimal plant height in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01336-2.
Collapse
Affiliation(s)
- Linyi Qiao
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Xin Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Zujun Yang
- School of Life Science and Technology, Science and Technology of China, University of Electronic, Chengdu, 610054 China
| | - Rui Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Juqing Jia
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Zhijian Chang
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| |
Collapse
|
38
|
Shan D, Ali M, Shahid M, Arif A, Waheed MQ, Xia X, Trethowan R, Tester M, Poland J, Ogbonnaya FC, Rasheed A, He Z, Li H. Genetic networks underlying salinity tolerance in wheat uncovered with genome-wide analyses and selective sweeps. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2925-2941. [PMID: 35915266 DOI: 10.1007/s00122-022-04153-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A genetic framework underpinning salinity tolerance at reproductive stage was revealed by genome-wide SNP markers and major adaptability genes in synthetic-derived wheats, and trait-associated loci were used to predict phenotypes. Using wild relatives of crops to identify genes related to improved productivity and resilience to climate extremes is a prioritized area of crop genetic improvement. High salinity is a widespread crop production constraint, and development of salt-tolerant cultivars is a sustainable solution. We evaluated a panel of 294 wheat accessions comprising synthetic-derived wheat lines (SYN-DERs) and modern bread wheat advanced lines under control and high salinity conditions at two locations. The GWAS analysis revealed a quantitative genetic framework of more than 200 loci with minor effect underlying salinity tolerance at reproductive stage. The significant trait-associated SNPs were used to predict phenotypes using a GBLUP model, and the prediction accuracy (r2) ranged between 0.57 and 0.74. The r2 values for flag leaf weight, days to flowering, biomass, and number of spikes per plant were all above 0.70, validating the phenotypic effects of the loci discovered in this study. Furthermore, the germplasm sets were compared to identify selection sweeps associated with salt tolerance loci in SYN-DERs. Six loci associated with salinity tolerance were found to be differentially selected in the SYN-DERs (12.4 Mb on chromosome (chr)1B, 7.1 Mb on chr2A, 11.2 Mb on chr2D, 200 Mb on chr3D, 600 Mb on chr6B, and 700.9 Mb on chr7B). A total of 228 reported markers and genes, including 17 well-characterized genes, were uncovered using GWAS and EigenGWAS. A linkage disequilibrium (LD) block on chr5A, including the Vrn-A1 gene at 575 Mb and its homeologs on chr5D, were strongly associated with multiple yield-related traits and flowering time under salinity stress conditions. The diversity panel was screened with more than 68 kompetitive allele-specific PCR (KASP) markers of functional genes in wheat, and the pleiotropic effects of superior alleles of Rht-1, TaGASR-A1, and TaCwi-A1 were revealed under salinity stress. To effectively utilize the extensive genetic information obtained from the GWAS analysis, a genetic interaction network was constructed to reveal correlations among the investigated traits. The genetic network data combined with GWAS, selective sweeps, and the functional gene survey provided a quantitative genetic framework for identifying differentially retained loci associated with salinity tolerance in wheat.
Collapse
Affiliation(s)
- Danting Shan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China
| | - Mohsin Ali
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China
| | - Mohammed Shahid
- International Center for Biosaline Agriculture (ICBA), Al Ruwayyah 2, Academic City, Dubai, UAE
| | - Anjuman Arif
- National Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Richard Trethowan
- Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006, Australia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KASUT), Thuwal, 23955-6900, Saudi Arabia
| | - Jesse Poland
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KASUT), Thuwal, 23955-6900, Saudi Arabia
- Kansas State University, Manhattan, KS, USA
| | | | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China.
| |
Collapse
|
39
|
Wu J, Qiao L, Liu Y, Fu B, Nagarajan R, Rauf Y, Jia H, Yan L. Rapid identification and deployment of major genes for flowering time and awn traits in common wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:992811. [PMID: 36092425 PMCID: PMC9459131 DOI: 10.3389/fpls.2022.992811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Molecular markers are developed to accelerate deployment of genes for desirable traits segregated in a bi-parental population of recombinant inbred lines (RILs) or doubled haplotype (DH) lines for mapping. However, it would be the most effective if such markers for multiple traits could be identified in an F2 population. In this study, single nucleotide polymorphisms (SNP) chips were used to identify major genes for heading date and awn in an F2 population without developing RILs or DH lines. The population was generated from a cross between a locally adapted spring wheat cultivar "Ningmaizi119" and a winter wheat cultivar "Tabasco" with a diverse genetic background. It was found that the dominant Vrn-D1 allele could make Ningmaizi119 flowered a few months earlier than Tabasco in the greenhouse and without vernalization. The observed effects of the allele were validated in F3 populations. It was also found that the dominant Ali-A1 allele for awnless trait in Tabasco or the recessive ali-A1 allele for awn trait in Ningmaizi119 was segregated in the F2 population. The allelic variation in the ALI-A1 gene relies not only on the DNA polymorphisms in the promoter but also on gene copy number, with one copy ali-A1 in Ningmaizi119 but two copies Ali-A1 in Tabasco based on RT-PCR results. According to wheat genome sequences, cultivar "Mattis" has two copies Ali-A1 and cultivar "Spelta" has four copies Ali-A in a chromosome that was uncharacterized (ChrUN), in addition to one copy on chromosome 5A. This study rapidly characterized the effects of the dominant Vrn-D1 allele and identified the haplotype of Ali-A1 in gene copy number in the F2 segregation population of common wheat will accelerate their deployment in cycling lines in breeding.
Collapse
Affiliation(s)
- Jizhong Wu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Linyi Qiao
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Ying Liu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Bisheng Fu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahya Rauf
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
- The Applied Plant Genomics Laboratory, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
40
|
Benaouda S, Dadshani S, Koua P, Léon J, Ballvora A. Identification of QTLs for wheat heading time across multiple-environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2833-2848. [PMID: 35776141 PMCID: PMC9325850 DOI: 10.1007/s00122-022-04152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE The genetic response to changing climatic factors selects consistent across the tested environments and location-specific thermo-sensitive and photoperiod susceptible alleles in lower and higher altitudes, respectively, for starting flowering in winter wheat. Wheat breeders select heading date to match the most favorable conditions for their target environments and this is favored by the extensive genetic variation for this trait that has the potential to be further explored. In this study, we used a germplasm with broad geographic distribution and tested it in multi-location field trials across Germany over three years. The genotypic response to the variation in the climatic parameters depending on location and year uncovered the effect of photoperiod and spring temperatures in accelerating heading date in higher and lower latitudes, respectively. Spring temperature dominates other factors in inducing heading, whereas the higher amount of solar radiation delays it. A genome-wide scan of marker-trait associations with heading date detected two QTL: an adapted allele at locus TaHd102 on chromosome 5A that has a consistent effect on HD in German cultivars in multiple environments and a non-adapted allele at locus TaHd044 on chromosome 3A that accelerates flowering by 5.6 days. TaHd102 and TaHd044 explain 13.8% and 33% of the genetic variance, respectively. The interplay of the climatic variables led to the detection of environment specific association responding to temperature in lower latitudes and photoperiod in higher ones. Another locus TaHd098 on chromosome 5A showed epistatic interactions with 15 known regulators of flowering time when non-adapted cultivars from outside Germany were included in the analysis.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
| | - Said Dadshani
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
| | - Patrice Koua
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
41
|
Makhoul M, Chawla HS, Wittkop B, Stahl A, Voss-Fels KP, Zetzsche H, Snowdon RJ, Obermeier C. Long-Amplicon Single-Molecule Sequencing Reveals Novel, Trait-Associated Variants of VERNALIZATION1 Homoeologs in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:942461. [PMID: 36420025 PMCID: PMC9676936 DOI: 10.3389/fpls.2022.942461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 05/26/2023]
Abstract
The gene VERNALIZATION1 (VRN1) is a key controller of vernalization requirement in wheat. The genome of hexaploid wheat (Triticum aestivum) harbors three homoeologous VRN1 loci on chromosomes 5A, 5B, and 5D. Structural sequence variants including small and large deletions and insertions and single nucleotide polymorphisms (SNPs) in the three homoeologous VRN1 genes not only play an important role in the control of vernalization requirement, but also have been reported to be associated with other yield related traits of wheat. Here we used single-molecule sequencing of barcoded long-amplicons to assay the full-length sequences (∼13 kbp plus 700 bp from the promoter sequence) of the three homoeologous VRN1 genes in a panel of 192 predominantly European winter wheat cultivars. Long read sequences revealed previously undetected duplications, insertions and single-nucleotide polymorphisms in the three homoeologous VRN1 genes. All the polymorphisms were confirmed by Sanger sequencing. Sequence analysis showed the predominance of the winter alleles vrn-A1, vrn-B1, and vrn-D1 across the investigated cultivars. Associations of SNPs and structural variations within the three VRN1 genes with 20 economically relevant traits including yield, nodal root-angle index and quality related traits were evaluated at the levels of alleles, haplotypes, and copy number variants. Cultivars carrying structural variants within VRN1 genes showed lower grain yield, protein yield and biomass compared to those with intact genes. Cultivars carrying a single vrn-A1 copy and a unique haplotype with a high number of SNPs were found to have elevated grain yield, kernels per spike and kernels per m2 along with lower grain sedimentation values. In addition, we detected a novel SNP polymorphism within the G-quadruplex region of the promoter of vrn-A1 that was associated with deeper roots in winter wheat. Our findings show that multiplex, single-molecule long-amplicon sequencing is a useful tool for detecting variants in target genes within large plant populations, and can be used to simultaneously assay sequence variants among target multiple gene homoeologs in polyploid crops. Numerous novel VRN1 haplotypes and alleles were identified that showed significantly associations to economically important traits. These polymorphisms were converted into PCR or KASP assays for use in marker-assisted breeding.
Collapse
Affiliation(s)
- Manar Makhoul
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet S. Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Benjamin Wittkop
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Kai Peter Voss-Fels
- Institute for Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| | - Holger Zetzsche
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
42
|
Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) under Inoculation with Bacillus sp. V2026. PLANTS 2022; 11:plants11141817. [PMID: 35890450 PMCID: PMC9317556 DOI: 10.3390/plants11141817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and “inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%), a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.
Collapse
|
43
|
Population structure, allelic variation at Rht-B1 and Ppd-A1 loci and its effects on agronomic traits in Argentinian durum wheat. Sci Rep 2022; 12:9629. [PMID: 35688907 PMCID: PMC9187632 DOI: 10.1038/s41598-022-13563-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Exploring the genetic variability in yield and yield-related traits is essential to continue improving genetic gains. Fifty-nine Argentinian durum wheat cultivars were analyzed for important agronomic traits in three field experiments. The collection was genotyped with 3565 genome-wide SNPs and functional markers in order to determine the allelic variation at Rht-B1 and Ppd-A1 genes. Population structure analyses revealed the presence of three main groups, composed by old, modern and genotypes with European or CIMMYT ancestry. The photoperiod sensitivity Ppd-A1b allele showed higher frequency (75%) than the insensitivity one Ppd-A1a (GS105). The semi-dwarfism Rht-B1b and the Ppd-A1a (GS105) alleles were associated with increases in harvest index and decreases in plant height, grain protein content and earlier heading date, although only the varieties carrying the Rht-B1 variants showed differences in grain yield. Out of the two main yield components, grain number per plant was affected by allelic variants at Rht-B1 and Ppd-A1 loci, while no differences were observed in thousand kernel weight. The increases in grain number per spike associated with Rht-B1b were attributed to a higher grain number per spikelet, whereas Ppd-A1a (GS105) was associated with higher grain number per spikelet, but also with lower spikelets per spike.
Collapse
|
44
|
Ishikawa G, Sakai H, Mizuno N, Solovieva E, Tanaka T, Matsubara K. Developing core marker sets for effective genomic-assisted selection in wheat and barley breeding programs. BREEDING SCIENCE 2022; 72:257-266. [PMID: 36408318 PMCID: PMC9653188 DOI: 10.1270/jsbbs.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 06/16/2023]
Abstract
Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are widely cultivated temperate crops. In breeding programs with these crops in Japan, effective genomic-assisted selection was performed by selecting core marker sets from thousands of genome-wide amplicon sequencing markers. The core sets consist of 768 and 960 markers for barley and wheat, respectively. These markers are distributed evenly across the genomes and effectively detect widely distributed polymorphisms in the chromosomes. The core set utility was assessed using 1,032 barley and 1,798 wheat accessions across the country. Minor allele frequency and chromosomal distributions showed that the core sets could effectively capture polymorphisms across the entire genome, indicating that the core sets are applicable to highly-related advanced breeding materials. Using the core sets, we also assessed the trait value predictability. As observed via fivefold cross-validation, the prediction accuracies of six barley traits ranged from 0.56-0.74 and 0.62 on average, and the corresponding values for eight wheat traits ranged from 0.44-0.83 and 0.65 on average. These data indicate that the established core marker sets enable breeding processes to be accelerated in a cost-effective manner and provide a strong foundation for further research on genomic selection in crops.
Collapse
Affiliation(s)
- Goro Ishikawa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hiroaki Sakai
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Nobuyuki Mizuno
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Elena Solovieva
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Tsuyoshi Tanaka
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan
| | - Kazuki Matsubara
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
45
|
Fadida-Myers A, Fuerst D, Tzuberi A, Yadav S, Nashef K, Roychowdhury R, Sansaloni CP, Hübner S, Ben-David R. Emmer Wheat Eco-Geographic and Genomic Congruence Shapes Phenotypic Performance under Mediterranean Climate. PLANTS 2022; 11:plants11111460. [PMID: 35684235 PMCID: PMC9183160 DOI: 10.3390/plants11111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022]
Abstract
Emmer wheat (Triticum turgidum ssp. dicoccum) is one of the world’s oldest domesticated crops, and it harbors a potentially rich reservoir of agronomic and nutritional quality trait variations. The growing global demand for plant-based health-food niche markets has promoted new commercial interest in ancient grains, including Emmer wheat. Although T. dicoccum can also perform well under harsh environments, its cultivation along the Mediterranean agro-ecosystems is sparse. Here, we analyze a unique tetraploid wheat collection (n = 121) representing a wide geographic range of Emmer accessions, using 9897 DArTseq markers and on-field phenotypic characterization to quantify the extent of diversity among populations and the interactions between eco-geographic, genetic, and phenotypic attributes. Population genomic inferences based on the DArTseq data indicated that the collection could be split into four distinguished clusters in accordance with their eco-geographic origin although significant phenotypic variation was observed within clusters. Superior early vegetative vigor, shorter plant height, and early phenology were observed among emmer wheat accessions from Ethiopia compared to accessions from northern regions. This adaptive advantage highlights the potential of emmer wheat as an exotic germplasm for wheat improvement through breeding. The direct integration of such germplasm into conventional or organic farming agro-systems under the Mediterranean basin climate is also discussed.
Collapse
Affiliation(s)
- Aviya Fadida-Myers
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)—The Volcani Center, Rishon LeZion 7505101, Israel; (A.F.-M.); (A.T.); (S.Y.); (K.N.); (R.R.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dana Fuerst
- Galilee Research Institute (Migal), Tel-Hai Academic College, Upper Galilee 12210, Israel; (D.F.); (S.H.)
| | - Aviv Tzuberi
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)—The Volcani Center, Rishon LeZion 7505101, Israel; (A.F.-M.); (A.T.); (S.Y.); (K.N.); (R.R.)
| | - Shailesh Yadav
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)—The Volcani Center, Rishon LeZion 7505101, Israel; (A.F.-M.); (A.T.); (S.Y.); (K.N.); (R.R.)
| | - Kamal Nashef
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)—The Volcani Center, Rishon LeZion 7505101, Israel; (A.F.-M.); (A.T.); (S.Y.); (K.N.); (R.R.)
| | - Rajib Roychowdhury
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)—The Volcani Center, Rishon LeZion 7505101, Israel; (A.F.-M.); (A.T.); (S.Y.); (K.N.); (R.R.)
| | - Carolina Paola Sansaloni
- Genetic Resource Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco 56237, Mexico;
| | - Sariel Hübner
- Galilee Research Institute (Migal), Tel-Hai Academic College, Upper Galilee 12210, Israel; (D.F.); (S.H.)
| | - Roi Ben-David
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO)—The Volcani Center, Rishon LeZion 7505101, Israel; (A.F.-M.); (A.T.); (S.Y.); (K.N.); (R.R.)
- Correspondence: ; Tel.: +972-39683030
| |
Collapse
|
46
|
Accounting for heading date gene effects allows detection of small-effect QTL associated with resistance to Septoria nodorum blotch in wheat. PLoS One 2022; 17:e0268546. [PMID: 35588401 PMCID: PMC9119491 DOI: 10.1371/journal.pone.0268546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
In humid and temperate areas, Septoria nodorum blotch (SNB) is a major fungal disease of common wheat (Triticum aestivum L.) in which grain yield is reduced when the pathogen, Parastagonospora nodorum, infects leaves and glumes during grain filling. Foliar SNB susceptibility may be associated with sensitivity to P. nodorum necrotrophic effectors (NEs). Both foliar and glume susceptibility are quantitative, and the underlying genetics are not understood in detail. We genetically mapped resistance quantitative trait loci (QTL) to leaf and glume blotch using a double haploid (DH) population derived from the cross between the moderately susceptible cultivar AGS2033 and the resistant breeding line GA03185-12LE29. The population was evaluated for SNB resistance in the field in four successive years (2018–2021). We identified major heading date (HD) and plant height (PH) variants on chromosomes 2A and 2D, co-located with SNB escape mechanisms. Five QTL with small effects associated with adult plant resistance to SNB leaf and glume blotch were detected on 1A, 1B, and 6B linkage groups. These QTL explained a relatively small proportion of the total phenotypic variation, ranging from 5.6 to 11.8%. The small-effect QTL detected in this study did not overlap with QTL associated with morphological and developmental traits, and thus are sources of resistance to SNB.
Collapse
|
47
|
Reynolds MP, Slafer GA, Foulkes JM, Griffiths S, Murchie EH, Carmo-Silva E, Asseng S, Chapman SC, Sawkins M, Gwyn J, Flavell RB. A wiring diagram to integrate physiological traits of wheat yield potential. NATURE FOOD 2022; 3:318-324. [PMID: 37117579 DOI: 10.1038/s43016-022-00512-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 04/30/2023]
Abstract
As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.
Collapse
Affiliation(s)
| | - Gustavo Ariel Slafer
- Catalonian Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Center for Research in Agrotechnology (AGROTECNIO), Lleida, Spain.
- University of Lleida, Lleida, Spain.
| | | | | | | | | | | | | | - Mark Sawkins
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
- Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
| | | |
Collapse
|
48
|
He F, Wang W, Rutter WB, Jordan KW, Ren J, Taagen E, DeWitt N, Sehgal D, Sukumaran S, Dreisigacker S, Reynolds M, Halder J, Sehgal SK, Liu S, Chen J, Fritz A, Cook J, Brown-Guedira G, Pumphrey M, Carter A, Sorrells M, Dubcovsky J, Hayden MJ, Akhunova A, Morrell PL, Szabo L, Rouse M, Akhunov E. Genomic variants affecting homoeologous gene expression dosage contribute to agronomic trait variation in allopolyploid wheat. Nat Commun 2022; 13:826. [PMID: 35149708 PMCID: PMC8837796 DOI: 10.1038/s41467-022-28453-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/26/2022] [Indexed: 12/23/2022] Open
Abstract
Allopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is strongly affected by both selection and demographic events. Though trans-acting effects play major role in expression regulation, the expression dosage of homoeologs is largely influenced by cis-acting variants, which appear to be subjected to selection. The frequency and expression of homoeologous gene alleles showing strong expression dosage bias are predictive of variation in yield-related traits, and have likely been impacted by breeding for increased productivity. Our study highlights the importance of genomic variants affecting homoeolog expression dosage in shaping agronomic phenotypes and points at their potential utility for improving yield in polyploid crops.
Collapse
Affiliation(s)
- Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA
| | - William B Rutter
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, U.S. Vegetable Laboratory, Charleston, SC, USA
| | - Katherine W Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Jie Ren
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Ellie Taagen
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Noah DeWitt
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | | | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Sunish Kumar Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shuyu Liu
- Texas A&M AgriLife Research, Amarillo, TX, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jason Cook
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Gina Brown-Guedira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA.,USDA-ARS SAA, Plant Science Research, Raleigh, NC, USA
| | - Mike Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Arron Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Mark Sorrells
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Matthew J Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Integrated Genomics Facility, Kansas State University, Manhattan, KS, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Les Szabo
- USDA-ARS Cereal Disease Lab, St. Paul, MN, USA
| | | | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA. .,Wheat Genetic Resources Center, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
49
|
Xu H, Zhang R, Wang M, Li L, Yan L, Wang Z, Zhu J, Chen X, Zhao A, Su Z, Xing J, Sun Q, Ni Z. Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:389-403. [PMID: 34674009 DOI: 10.1007/s00122-021-03971-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
QHd.cau-7D.1 for heading date was delimited into the physical interval of approximately 17.38 Mb harboring three CONSTANS-like zinc finger genes. Spike morphological traits, plant height and heading date play important roles in yield improvement of wheat. To reveal the genetic factors that controlling spike morphological traits, plant height and heading date on the D genome, we conducted analysis of quantitative traits locus (QTL) using 198 F7:8 recombinant inbred lines (RILs) derived from a cross between the common wheat TAA10 and resynthesized allohexaploid wheat XX329 with similar AABB genomes. A total of 23 environmentally stable QTL on the D sub-genome for spike length (SL), fertile spikelet number per spike (FSN), sterile spikelet number per spike (SSN), total spikelet number per spike (TSN), spike compactness (SC), plant height (PHT) and heading date (HD) were detected, among which eight appeared to be novel QTL. Furthermore, QHd.cau-7D.1 and QPht.cau-7D.2 shared identical confidence interval and were delimited into the physical interval of approximately 17.38 Mb with 145 annotated genes, including three CONSTANS-like zinc finger genes (TraesCS7D02G209000, TraesCS7D02G213000 and TraesCS7D02G220300). This study will help elucidate the molecular mechanism of the seven traits (SL, FSN, SSN, TSN, SC, PHT and HD) and provide a potentially valuable resource for genetic improvement.
Collapse
Affiliation(s)
- Huanwen Xu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Runqi Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Mingming Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Linghong Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhen Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Jun Zhu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Xiyong Chen
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- National Plant Gene Research Centre, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
- National Plant Gene Research Centre, Beijing, 100193, China.
| |
Collapse
|
50
|
Time-course transcriptome profiling revealed the specific expression patterns of MADS-box genes associated with the distinct developmental processes between winter and spring wheat. Gene 2022; 809:146030. [PMID: 34673213 DOI: 10.1016/j.gene.2021.146030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022]
Abstract
The shoot apex is a region where new cells are produced and elongate. The developmental state of the wheat shoot apex under low temperature affects its cold resistance. In this study, the morphology of shoot apex before overwintering was characterized for 24 wheat line with different winter and spring characteristics. Our research showed that the shoot apex of autumn-sown spring wheat lines reached the temperature sensitive double-ridge stage before overwintering, whereas shoot apex of winter wheat lines are found in temperature-insensitive vegetative or elongation stages. In order to explore how gene expression is associated with shoot apex differentiation in winter and spring wheat, we used strand-specific RNA sequencing to profile the gene expression patterns at four time-points between 14 after germination and 45 days after germination in the winter wheat cultivar Dongnongdongmai No. 1 (DM1) and in the spring wheat cultivar China Spring (CS). We identified 11,848 differentially expressed genes between the two cultivars. Most up-regulated genes in CS were involved in energy metabolism and transport during the seedling stage, whereas up-regulated genes in DM1 were involved in protein and DNA synthesis. MADS-box genes affect plant growth and development. In this study, MADS-boxes with differential expression between CS and DM1 were screened and evolutionary tree analysis was conducted. During all sampling periods, CS highly expressed MADS-box genes that induce flowering promotion genes such as VRN1, VRT and AG, while lowly expressed MADS-box genes that induce flowering-inhibiting homologous genes such as SVP. TaVRN1 composition in DM1 and CS was vrn-A1, vrn-B1, and Vrn-D1b. Analysis of the sequence of TaVRN1 (TraesCS5A01G391700) from DM1 and CS revealed 5 SNP differences in the promoter regions and 3 SNP deletions in the intron regions. The expression levels of cold resistant genes in DM1 were significantly higher than those in CS at seedling stage (neither DM1 nor CS experienced cold in this study), including CBF, cold induced protein,acid desaturase and proline rich proteins. Additionally, the expression levels of auxin-related genes were significantly higher in CS than those in DM1 at 45 days after germination. Our study identified candidate genes associated with the process of differentiation of the shoot apex in winter and spring wheat at the seedling stage and also raised an internal stress tolerance model for winter wheat to endogenously anticipate the coming stressful conditions in winter.
Collapse
|