1
|
Aguilar-Benitez D, Gutierrez N, Casimiro-Soriguer I, Torres AM. A high-density linkage map and fine QTL mapping of architecture, phenology, and yield-related traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2025; 16:1457812. [PMID: 40260430 PMCID: PMC12009772 DOI: 10.3389/fpls.2025.1457812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/27/2025] [Indexed: 04/23/2025]
Abstract
Faba bean is a key protein feed and food worldwide that still requires accurate genomic tools to facilitate molecular marker-assisted breeding. Efficient quantitative trait locus (QTL) mapping in faba bean is restricted by the low or medium density of most of the available genetic maps. In this study, a recombinant inbred line faba bean population including 124 lines from the cross Vf6 x Vf27, highly segregating for autofertility, flowering time, plant architecture, dehiscence, and yield-related traits, was genotyped using the 'Vfaba_v2' SNP array. Genotypic data were used to generate a high-density genetic map that, after quality control and filtering, included 2,296 SNP markers. The final map consisted of 1,674 bin markers distributed across the six faba bean chromosomes, covering 2,963.87 cM with an average marker distance of 1.77 cM. A comparison of the physical and genetic maps revealed a good correspondence between chromosomes and linkage groups. QTL analysis of 66 segregating traits, previously phenotyped in different environments and years, identified 99 significant QTLs corresponding to 35 of the traits. Most QTLs were stable over the years and QTLs for highly correlated traits were mapped to the same or adjacent genomic regions. Colocalization of QTLs occurred in 13 major regions, joining three or more overlapping QTLs. Some of the pleiotropic QTL regions, especially in chromosome VI, shared the same significant marker for different traits related to pollen quantity and size, number of ovules per ovary, seeds per pod, and pod set. Finally, several putative candidate genes for yield-related traits, recently identified using a genome-wide association study, fall inside the colocalizing groups described in this study, indicating that, apart from refining the position of the QTLs and the detection of candidates, the dense new map provides a valuable tool for validation of causative loci derived from association studies and will help advance breeding programs in this crop.
Collapse
|
2
|
Mertten D, McKenzie CM, Souleyre EJF, Amadeu RR, Lenhard M, Baldwin S, Datson PM. Molecular breeding of flower load related traits in dioecious autotetraploid Actinidia arguta. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:36. [PMID: 38745882 PMCID: PMC11091038 DOI: 10.1007/s11032-024-01476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Flowering plants exhibit a wide range of sexual reproduction systems, with the majority being hermaphroditic. However, some plants, such as Actinidia arguta (kiwiberry), have evolved into dioecious species with distinct female and male vines. In this study, we investigated the flower load and growth habits of female kiwiberry genotypes to identify the genetic basis of high yield with low maintenance requirements. Owing to the different selection approaches between female and male genotypes, we further extended our study to male kiwiberry genotypes. By combining both investigations, we present a novel breeding tool for dioecious crops. A population of A. arguta seedlings was phenotyped for flower load traits, in particular the proportion of non-floral shoots, proportion of floral shoots, and average number of flowers per floral shoot. Quantitative trait locus (QTL) mapping was used to analyse the genetic basis of these traits. We identified putative QTLs on chromosome 3 associated with flower-load traits. A pleiotropic effect of the male-specific region of the Y chromosome (MSY) on chromosome 3 affecting flower load-related traits between female and male vines was observed in an A. arguta breeding population. Furthermore, we utilized Genomic Best Linear Unbiased Prediction (GBLUP) to predict breeding values for the quantitative traits by leveraging genomic data. This approach allowed us to identify and select superior genotypes. Our findings contribute to the understanding of flowering and fruiting dynamics in Actinidia species, providing insights for kiwiberry breeding programs aiming to improve yield through the utilization of genomic methods and trait mapping. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01476-7.
Collapse
Affiliation(s)
- Daniel Mertten
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142 New Zealand
- University of Potsdam, Institute for Biochemistry and Biology, 14476 Potsdam-Golm, Germany
| | - Catherine M. McKenzie
- The New Zealand Institute for Plant and Food Research Ltd, Te Puke, 3182 New Zealand
| | - Edwige J. F. Souleyre
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142 New Zealand
| | | | - Michael Lenhard
- University of Potsdam, Institute for Biochemistry and Biology, 14476 Potsdam-Golm, Germany
| | - Samantha Baldwin
- The New Zealand Institute for Plant and Food Research Ltd, Lincoln, 7608 New Zealand
| | | |
Collapse
|
3
|
TS A, Srivastava A, Tomar BS, Behera TK, Krishna H, Jain PK, Pandey R, Singh B, Gupta R, Mangal M. Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping. FRONTIERS IN PLANT SCIENCE 2023; 14:1232800. [PMID: 37692444 PMCID: PMC10491018 DOI: 10.3389/fpls.2023.1232800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F2 population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F2 population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions.
Collapse
Affiliation(s)
- Aruna TS
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhoopal Singh Tomar
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Tusar Kanti Behera
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Indian Council of Agricultural Research (ICAR), Varanasi, India
| | - Hari Krishna
- Division of Genetics, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Pradeep Kumar Jain
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhupinder Singh
- Division of Environment Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Ruchi Gupta
- Department of Computer Sciences, Jamia Milia Islamia, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| |
Collapse
|
4
|
Li P, Tan X, Liu R, Rahman FU, Jiang J, Sun L, Fan X, Liu J, Liu C, Zhang Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape ( Vitis vinifera L. × Vitis davidii Foex.) crossing. HORTICULTURE RESEARCH 2023; 10:uhad063. [PMID: 37249950 PMCID: PMC10208900 DOI: 10.1093/hr/uhad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is essential to reduce the regular use of chemical treatments. In recent years, Chinese grape species have gained more attention for grape breeding due to their high tolerance to various biotic and abiotic factors along with changing climatic conditions. In this study, we employed whole-genome resequencing (WGR) to genotype the parents of 'Manicure Finger' (Vitis vinifera, female) and '0940' (Vitis davidii, male), along with 101 F1 mapping population individuals, thereby constructing a linkage genetic map. The linkage map contained 9337 single-nucleotide polymorphism (SNP) markers with an average marker distance of 0.3 cM. After 3 years of phenotypic evaluation of the progeny for white rot resistance, we confirmed one stable quantitative trait locus (QTL) for white rot resistance on chromosome 3, explaining up to 17.9% of the phenotypic variation. For this locus, we used RNA-seq to detect candidate gene expression and identified PR1 as a candidate gene involved in white rot resistance. Finally, we demonstrated that recombinant PR1 protein could inhibit the growth of C. diplodiella and that overexpression of PR1 in susceptible V. vinifera increased grape resistance to the pathogen.
Collapse
Affiliation(s)
- Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | | | | | | |
Collapse
|
5
|
QTL associated with resistance to Stagonosporopsis citrulli in Citrullus amarus. Sci Rep 2022; 12:19628. [PMID: 36380003 PMCID: PMC9666438 DOI: 10.1038/s41598-022-23704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Gummy stem blight (GSB) is a fungal disease affecting cucurbit crops, including watermelon (Citrullus lanatus), leading to significant yield losses. The disease is caused by three Stagonosporopsis species, of which Stagonosporopsis citrulli is the most common in the southeastern United States. Currently no gummy stem blight-resistant watermelon cultivars are available to growers. In this study, QTL-seq in an interspecific population developed from Sugar Baby × PI 189225 (Citrullus amarus) identified QTL on chromosomes 2, 5, 9 and 11. A novel QTL on chromosome 5 (Qgsb5.2) associated with resistance to S. citrulli (PVE = 13.3%) was confirmed by genetic mapping. KASP marker assays were developed for selection of Qgsb5.2 to allow breeders to track the allele contributing resistance to GSB, reducing the need for laborious phenotyping. Pyramiding different GSB resistance QTL could be a useful strategy to develop GSB resistant watermelon cultivars.
Collapse
|
6
|
Mary L, Quere J, Latimier M, Rovillon GA, Hégaret H, Réveillon D, Le Gac M. Genetic association of toxin production in the dinoflagellate Alexandrium minutum. Microb Genom 2022; 8:mgen000879. [PMID: 36326655 PMCID: PMC9836089 DOI: 10.1099/mgen.0.000879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022] Open
Abstract
Dinoflagellates of the genus Alexandrium are responsible for harmful algal blooms and produce paralytic shellfish toxins (PSTs). Their very large and complex genomes make it challenging to identify the genes responsible for toxin synthesis. A family-based genomic association study was developed to determine the inheritance of toxin production in Alexandrium minutum and identify genomic regions linked to this production. We show that the ability to produce toxins is inheritable in a Mendelian way, while the heritability of the toxin profile is more complex. We developed the first dinoflagellate genetic linkage map. Using this map, several major results were obtained: 1. A genomic region related to the ability to produce toxins was identified. 2. This region does not contain any polymorphic sxt genes, known to be involved in toxin production in cyanobacteria. 3. The sxt genes, known to be present in a single cluster in cyanobacteria, are scattered on different linkage groups in A. minutum. 4. The expression of two sxt genes not assigned to any linkage group, sxtI and sxtG, may be regulated by the genomic region related to the ability to produce toxins. Our results provide new insights into the organization of toxicity-related genes in A. minutum, suggesting a dissociated genetic mechanism for the production of the different analogues and the ability to produce toxins. However, most of the newly identified genes remain unannotated. This study therefore proposes new candidate genes to be further explored to understand how dinoflagellates synthesize their toxins.
Collapse
Affiliation(s)
- Lou Mary
- Ifremer, DYNECO PELAGOS, 29280 Plouzané, France
- Ifremer, PHYTOX, Laboratoire METALG, F-44000 Nantes, France
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, 29280 Plouzané, France
| | | | | | | | - Hélène Hégaret
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, 29280 Plouzané, France
| | | | | |
Collapse
|
7
|
Shrestha S, Fu Y, Michael VN, Meru G. Whole Genome Re-sequencing and Bulk Segregant Analysis Reveals Chromosomal Location for Papaya Ringspot Virus W Resistance in Squash. FRONTIERS IN PLANT SCIENCE 2022; 13:848631. [PMID: 35665151 PMCID: PMC9161299 DOI: 10.3389/fpls.2022.848631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Squash (Cucurbita moschata) is among the most important cucurbit crops grown worldwide. Plant pathogen, Papaya ringspot virus W (PRSV-W) causes significant yield loss in commercial squash production globally. The development of virus-resistant cultivars can complement integrated disease management and mitigate losses due to viral infections. However, the genetic loci and molecular markers linked to PRSV-W resistance that could facilitate marker-assisted selection (MAS) for accelerated cultivar development are unknown. In this study, quantitative trait loci (QTL), molecular markers, and candidate genes associated with PRSV-W resistance in squash were identified in an F2 population (n = 118) derived from a cross between Nigerian Local accession (resistant) and Butterbush cultivar (susceptible). Whole genome re-sequencing-based bulked segregant analysis (QTLseq method; n = 10 for each bulk) and non-parametric interval mapping were used to identify a major QTL associated with PRSV-W resistance on chromosome 9 (QtlPRSV-C09) (p < 0.05) of C. moschata. QtlPRSV-C09 extended from 785,532 to 5,093,314 bp and harbored 12,245 SNPs among which 94 were high-effect variants. To validate QtlPRSV-C09, 13 SNP markers were assayed as Kompetitive allele-specific PCR (KASP) markers in the F2 population and tested for the association with PRSV-W resistance. Among these, two KASP markers (Ch09_2080834 and Ch09_5023865-1) showed significant association with PRSV-W resistance (p < 0.05). The two SNPs were located within exons of putative disease-resistant genes encoding the clathrin assembly family and actin cytoskeleton-regulatory complex proteins, which are implicated in disease resistance across plant species. The findings of this study will facilitate MAS for PRSV-W resistance in squash and allow further understanding of the functional mechanisms underlying potyvirus resistance in Cucurbita species.
Collapse
|
8
|
Pendergast TH, Qi P, Odeny DA, Dida MM, Devos KM. A high-density linkage map of finger millet provides QTL for blast resistance and other agronomic traits. THE PLANT GENOME 2022; 15:e20175. [PMID: 34904374 DOI: 10.1002/tpg2.20175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Finger millet [Eleusine coracana (L.) Gaertn.] is a critical subsistence crop in eastern Africa and southern Asia but has few genomic resources and modern breeding programs. To aid in the understanding of finger millet genomic organization and genes underlying disease resistance and agronomically important traits, we generated a F2:3 population from a cross between E. coracana (L.) Gaertn. subsp. coracana accession ACC 100007 and E. coracana (L.) Gaertn. subsp. africana , accession GBK 030647. Phenotypic data on morphology, yield, and blast (Magnaporthe oryzae) resistance traits were taken on a subset of the F2:3 population in a Kenyan field trial. The F2:3 population was genotyped via genotyping-by-sequencing (GBS) and the UGbS-Flex pipeline was used for sequence alignment, nucleotide polymorphism calling, and genetic map construction. An 18-linkage-group genetic map consisting of 5,422 markers was generated that enabled comparative genomic analyses with rice (Oryza sativa L.), foxtail millet [Setaria italica (L.) P. Beauv.], and sorghum [Sorghum bicolor (L.) Moench]. Notably, we identified conserved acrocentric homoeologous chromosomes (4A and 4B in finger millet) across all species. Significant quantitative trait loci (QTL) were discovered for flowering date, plant height, panicle number, and blast incidence and severity. Sixteen putative candidate genes that may underlie trait variation were identified. Seven LEUCINE-RICH REPEAT-CONTAINING PROTEIN genes, with homology to nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance proteins, were found on three chromosomes under blast resistance QTL. This high-marker-density genetic map provides an important tool for plant breeding programs and identifies genomic regions and genes of critical interest for agronomic traits and blast resistance.
Collapse
Affiliation(s)
- Thomas H Pendergast
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Peng Qi
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics-Eastern and Southern Africa, Nairobi, Kenya
| | - Mathews M Dida
- Dep. of Applied Sciences, Maseno Univ., Private Bag-40105, Maseno, Kenya
| | - Katrien M Devos
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Michael VN, Fu Y, Shrestha S, Meru G. A Novel QTL for Resistance to Phytophthora Crown Rot in Squash. PLANTS 2021; 10:plants10102115. [PMID: 34685924 PMCID: PMC8537320 DOI: 10.3390/plants10102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Phytophthora capsici Leonian causes significant yield losses in commercial squash (Cucurbita pepo) production worldwide. The deployment of resistant cultivars can complement integrated management practices for P. capsici, but resistant cultivars are currently unavailable for growers. Moderate resistance to Phytophthora crown rot in a selection of accession PI 181761 (C. pepo) (designated line #181761-36P) is controlled by three dominant genes (R4, R5 and R6). Introgression of these loci into elite germplasm through marker-assisted selection (MAS) can accelerate the release of new C. pepo cultivars resistant to crown rot, but these tools are currently unavailable. Here we describe the identification of a quantitative trait locus (QTL), molecular markers and candidate genes associated with crown rot resistance in #181761-36P. Five hundred and twenty-three SNP markers were genotyped in an F2 (n = 83) population derived from a cross between #181761-36P (R) and Table Queen (S) using targeted genotyping by sequencing. A linkage map (2068.96 cM) consisting of twenty-one linkage groups and an average density of 8.1 markers/cM was developed for the F2 population. The F2:3 families were phenotyped in the greenhouse with a virulent strain of P. capsica, using the spore-spray method. A single QTL (QtlPC-C13) was consistently detected on LG 13 (chromosome 13) across three experiments and explained 17.92-21.47% of phenotypic variation observed in the population. Nine candidate disease resistance gene homologs were found within the confidence interval of QtlPC-C13. Single nucleotide polymorphism (SNP) markers within these genes were converted into Kompetitive Allele Specific PCR (KASP) assays and tested for association with resistance in the F2 population. One SNP marker (C002686) was significantly associated with resistance to crown rot in the F2 population (p < 0.05). This marker is a potential target for MAS for crown rot resistance in C. pepo.
Collapse
|
10
|
Topcu Y, Sapkota M, Illa-Berenguer E, Nambeesan SU, van der Knaap E. Identification of blossom-end rot loci using joint QTL-seq and linkage-based QTL mapping in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2931-2945. [PMID: 34128088 PMCID: PMC8354943 DOI: 10.1007/s00122-021-03869-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 05/11/2023]
Abstract
Blossom-End Rot is Quantitatively Inherited and Maps to Four Loci in Tomato. Blossom-end rot (BER) is a devastating physiological disorder that affects tomato and other vegetables, resulting in significant crop losses. To date, most studies on BER have focused on the environmental factors that affect calcium translocation to the fruit; however, the genetic basis of this disorder remains unknown. To investigate the genetic basis of BER, two F2 and F3:4 populations along with a BC1 population that segregated for BER occurrence were evaluated in the greenhouse. Using the QTL-seq approach, quantitative trait loci (QTL) associated with BER Incidence were identified at the bottom of chromosome (ch) 3 and ch11. Additionally, linkage-based QTL mapping detected another QTL, BER3.1, on ch3 and BER4.1 on ch4. To fine map the QTLs identified by QTL-seq, recombinant screening was performed. BER3.2, the major BER QTL on ch3, was narrowed down from 5.68 to 1.58 Mbp with a 1.5-LOD support interval (SI) corresponding to 209 candidate genes. BER3.2 colocalizes with the fruit weight gene FW3.2/SlKLUH, an ortholog of cytochrome P450 KLUH in Arabidopsis. Further, BER11.1, the major BER QTL on ch11, was narrowed down from 3.99 to 1.13 Mbp with a 1.5-LOD SI interval comprising of 141 candidate genes. Taken together, our results identified and fine mapped the first loci for BER resistance in tomato that will facilitate marker-assistant breeding not only in tomato but also in many other vegetables suffering for BER.
Collapse
Affiliation(s)
- Yasin Topcu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Manoj Sapkota
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Eudald Illa-Berenguer
- Center for Applied Genetic Technologies Department, University of Georgia, Athens, GA, 30602, USA
| | | | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch. Sci Rep 2021; 11:10085. [PMID: 33980869 PMCID: PMC8115087 DOI: 10.1038/s41598-021-87829-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022] Open
Abstract
The fungus Parastagonospora nodorum is the causal agent of septoria nodorum leaf blotch (SNB) and glume blotch which are common in many wheat growing regions in the world. The disease is complex and could be explained by multiple interactions between necrotrophic effectors secreted by the pathogen and matching susceptibility genes in wheat. An Australian P. nodorum population was clustered into five groups with contrasting properties. This study was set to identify their pathogenicity profiles using a diverse wheat panel of 134 accessions which are insensitive to SnToxA and SnTox1 in both in vitro and in vivo conditions. SNB seedling resistance/susceptibility to five representative isolates from the five clusters, responses to crude culture-filtrates (CFs) of three isolates and sensitivity to SnTox3 semi-purified effector together with 11,455 SNP markers have been used for linkage disequilibrium (LD) and association analyses. While quantitative trait loci (QTL) on 1D, 2A, 2B, 4B, 5B, 6A, 6B, 7A, 7D chromosomes were consistently detected across isolates and conditions, distinct patterns and isolate specific QTL were also observed among these isolates. In this study, SnTox3–Snn3-B1 interaction for the first time in Australia and SnTox3–Snn3-D1 interaction for the first time in bread wheat were found active using wild-type isolates. These findings could be due to new SnTox3 haplotype/isoform and exotic CIMMYT/ICARDA and Vavilov germplasm used, respectively. This study could provide useful information for dissecting novel and different SNB disease components, helping to prioritise research targets and contributing valuable information on genetic loci/markers for marker-assisted selection in SNB resistance wheat breeding programme.
Collapse
|
12
|
Awata LAO, Ifie BE, Danquah E, Jumbo MB, Suresh LM, Gowda M, Marchelo-Dragga PW, Olsen MS, Shorinola O, Yao NK, Boddupalli PM, Tongoona PB. Introgression of Maize Lethal Necrosis Resistance Quantitative Trait Loci Into Susceptible Maize Populations and Validation of the Resistance Under Field Conditions in Naivasha, Kenya. FRONTIERS IN PLANT SCIENCE 2021; 12:649308. [PMID: 34040620 PMCID: PMC8143050 DOI: 10.3389/fpls.2021.649308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
Maize lethal necrosis (MLN), resulting from co-infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) can cause up to 100% yield losses in maize in Africa under serious disease conditions. Maize improvement through conventional backcross (BC) takes many generations but can significantly be shortened when molecular tools are utilized in the breeding process. We used a donor parent (KS23-6) to transfer quantitative trait loci (QTL) for resistance to MLN into nine adapted but MLN susceptible lines. Nurseries were established in Kiboko, Kenya during 2015-2017 seasons and BC3F2 progeny were developed using marker assisted backcrossing (MABC) approach. Six single nucleotide polymorphism (SNP) markers linked to QTL for resistance to MLN were used to genotype 2,400 BC3F2 lines using Kompetitive Allele Specific PCR (KASP) platform. We detected that two of the six QTL had major effects for resistance to MLN under artificial inoculation field conditions in 56 candidate BC3F2 lines. To confirm whether these two QTL are reproducible under different field conditions, the 56 BC3F2 lines including their parents were evaluated in replicated trials for two seasons under artificial MLN inoculations in Naivasha, Kenya in 2018. Strong association of genotype with phenotype was detected. Consequently, 19 superior BC3F2 lines with favorable alleles and showing improved levels of resistance to MLN under artificial field inoculation were identified. These elite lines represent superior genetic resources for improvement of maize hybrids for resistance to MLN. However, 20 BC3F2 lines were fixed for both KASP markers but were susceptible to MLN under field conditions, which could suggest weak linkage between the KASP markers and target genes. The validated two major QTL can be utilized to speed up the breeding process but additional loci need to be identified between the KASP markers and the resistance genes to strengthen the linkage.
Collapse
Affiliation(s)
- Luka A. O. Awata
- Directorate of Research, Ministry of Agriculture and Food Security, Juba, South Sudan
| | - Beatrice E. Ifie
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Eric Danquah
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - MacDonald Bright Jumbo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bulawayo, Zimbabwe
| | - L. Mahabaleswara Suresh
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Philip W. Marchelo-Dragga
- Department of Agricultural Sciences, College of Natural Resources and Environmental Studies, University of Juba, Juba, South Sudan
| | - Michael Scott Olsen
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Oluwaseyi Shorinola
- Biosciences eastern and central Africa (BecA) Hub, International Livestock Research Institute (ILRI), Nairobi, Kenya
- John Innes Centre, Norwich, United Kingdom
| | - Nasser Kouadio Yao
- Biosciences eastern and central Africa (BecA) Hub, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Prasanna M. Boddupalli
- International Maize and Wheat Improvement Center (CIMMYT), World Agroforestry Centre (ICRAF), Nairobi, Kenya
| | - Pangirayi B. Tongoona
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
13
|
Yaakub Z, Kamaruddin K, Singh R, Mustafa S, Marjuni M, Ting NC, Amiruddin MD, Leslie LET, Cheng-Li OL, Sritharan K, Nookiah R, Jansen J, Ong Abdullah M. An integrated linkage map of interspecific backcross 2 (BC 2) populations reveals QTLs associated with fatty acid composition and vegetative parameters influencing compactness in oil palm. BMC PLANT BIOLOGY 2020; 20:356. [PMID: 32727448 PMCID: PMC7391521 DOI: 10.1186/s12870-020-02563-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Molecular breeding has opened new avenues for crop improvement with the potential for faster progress. As oil palm is the major producer of vegetable oil in the world, its improvement, such as developing compact planting materials and altering its oils' fatty acid composition for wider application, is important. RESULTS This study sought to identify the QTLs associated with fatty acid composition and vegetative traits for compactness in the crop. It integrated two interspecific backcross two (BC2) mapping populations to improve the genetic resolution and evaluate the consistency of the QTLs identified. A total 1963 markers (1814 SNPs and 149 SSRs) spanning a total map length of 1793 cM were integrated into a consensus map. For the first time, some QTLs associated with vegetative parameters and carotene content were identified in interspecific hybrids, apart from those associated with fatty acid composition. The analysis identified 8, 3 and 8 genomic loci significantly associated with fatty acids, carotene content and compactness, respectively. CONCLUSIONS Major genomic region influencing the traits for compactness and fatty acid composition was identified in the same chromosomal region in the two populations using two methods for QTL detection. Several significant loci influencing compactness, carotene content and FAC were common to both populations, while others were specific to particular genetic backgrounds. It is hoped that the QTLs identified will be useful tools for marker-assisted selection and accelerate the identification of desirable genotypes for breeding.
Collapse
Affiliation(s)
- Zulkifli Yaakub
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Katialisa Kamaruddin
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Suzana Mustafa
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Marhalil Marjuni
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ngoot-Chin Ting
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Din Amiruddin
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Low Eng-Ti Leslie
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ooi Leslie Cheng-Li
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Kandha Sritharan
- United Plantations Bhd., Jendarata Estate, 36009, Teluk Intan, Perak, Malaysia
| | - Rajanaidu Nookiah
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Johannes Jansen
- Wageningen University and Research Centre, P.O. Box 100, Wageningen, 6700 AC, The Netherlands
| | - Meilina Ong Abdullah
- Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
14
|
Saxena RK, Molla J, Yadav P, Varshney RK. High resolution mapping of restoration of fertility (Rf) by combining large population and high density genetic map in pigeonpea [Cajanus cajan (L.) Millsp]. BMC Genomics 2020; 21:460. [PMID: 32620075 PMCID: PMC7333333 DOI: 10.1186/s12864-020-06859-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Background Restoration of fertility (Rf) is an important trait for pigeonpea hybrid breeding. Few coarse quantitative trait locus (QTL) studies conducted in the past identified QTLs with large confidence intervals on the genetic map and could not provide any information on possible genes responsible for Rf in pigeonpea. Therefore, a larger population comprising of 369 F2s derived from ICPA 2039 × ICPL 87119 was genotyped with high density Axiom Cajanus SNP Array with 56 K single nucleotide polymorphism (SNPs) for high resolution mapping of Rf. Results A genetic map with 4867 markers was developed and a total of four QTLs for Rf were identified. While one major effect QTL (qRf8.1) was co-localized with the QTL identified in two previous studies and its size was refined from 1.2 Mb to 0.41 Mb. Further analysis of qRf8.1 QTL with genome sequence provided 20 genes including two genes namely flowering locus protein T and 2-oxoglutarate/Fe (II)-dependent dioxygenases (2-ODDs) superfamily protein with known function in the restoration of fertility. Conclusion The qRf8.1 QTL and the potential candidate genes present in this QTL will be valuable for genomics-assisted breeding and identification of causal genes/nucleotides for the restoration of fertility in the hybrid breeding program of pigeonpea.
Collapse
Affiliation(s)
- Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| | - Johiruddin Molla
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.,Ghatal Rabindra Satabarsiki Mahavidyalay, Ghatal, Paschim Medinipur, 721212, India
| | - Pooja Yadav
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
15
|
Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Wacera W F, Omollo EA, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. PLANT & CELL PHYSIOLOGY 2020; 61:1262-1272. [PMID: 32353144 DOI: 10.1093/pcp/pcaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] grown locally by Japanese farmers is generically termed Takakibi, although its genetic diversity compared with geographically distant varieties or even within Takakibi lines remains unclear. To explore the genomic diversity and genetic traits controlling biomass and other physiological traits in Takakibi, we focused on a landrace, NOG, in this study. Admixture analysis of 460 sorghum accessions revealed that NOG belonged to the subgroup that represented Asian sorghums, and it was only distantly related to American/African accessions including BTx623. In an attempt to dissect major traits related to biomass, we generated a recombinant inbred line (RIL) from a cross between BTx623 and NOG, and we constructed a high-density linkage map based on 3,710 single-nucleotide polymorphisms obtained by restriction-site-associated DNA sequencing of 213 RIL individuals. Consequently, 13 fine quantitative trait loci (QTLs) were detected on chromosomes 2, 3, 6, 7, 8 and 9, which included five QTLs for days to heading, three for plant height (PH) and total shoot fresh weight and two for Brix. Furthermore, we identified two dominant loci for PH as being identical to the previously reported dw1 and dw3. Together, these results corroborate the diversified genome of Japanese Takakibi, while the RIL population and high-density linkage map generated in this study will be useful for dissecting other important traits in sorghum.
Collapse
Affiliation(s)
- Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8517, Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Fiona Wacera W
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Everlyne A Omollo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Michiharu Nakano
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Toshiaki Kozuka
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Makoto Kusaba
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
16
|
Sun L, Li S, Jiang J, Tang X, Fan X, Zhang Y, Liu J, Liu C. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC PLANT BIOLOGY 2020; 20:302. [PMID: 32605636 PMCID: PMC7325011 DOI: 10.1186/s12870-020-02517-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/23/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Berry color is an important trait in grapes and is mainly determined by the anthocyanin content and composition. To further explore the coloring mechanism of grape berries, the F1 population of Vitis vinifera 'Red Globe' × 'Muscat Hamburg' was used to map the color locus, and transcriptome analysis was performed to assist in screening candidate genes. RESULTS A total of 438,407 high-quality single-nucleotide polymorphisms (SNPs) were obtained from whole-genome resequencing (WGS) of the population, and 27,454 SNPs were selected to construct a high-density genetic map. The selected SNPs were clustered into 19 linkage groups (LGs) spanning a genetic distance of 1442.638 cM. Berry color was evaluated by color grade, chromatic aberration, total anthocyanin content and anthocyanin composition. The Pearson correlation coefficients of these phenotypes in 2017 and 2018 were significant at the 0.01 level. The major color locus of MYBA1 and MYBA2 on LG2 was identified, explaining between 26 and 63.6% of all phenotypic variance. Furthermore, 9 additional QTLs with smaller effects were detected on Chr2, Chr4, Chr6, Chr11 and Chr17. Combined with the gene annotation and RNA-seq data, multiple new candidate genes were selected from the above QTLs. CONCLUSION These results indicated that grape berry color is a quantitative trait controlled by a major color locus and multiple minor loci. Though the major color locus was consistent with previous studies, several minor QTLs and candidate genes associated with grape berry color and anthocyanin accumulation were identified in this study. And the specific regulatory mechanism still needs to be further explored.
Collapse
Affiliation(s)
- Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shenchang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaoping Tang
- Pomology Institute, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jihong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
17
|
Hernandez J, Del Blanco A, Filichkin T, Fisk S, Gallagher L, Helgerson L, Meints B, Mundt C, Steffenson B, Hayes P. A Genome-Wide Association Study of Resistance to Puccinia striiformis f. sp. hordei and P. graminis f. sp. tritici in Barley and Development of Resistant Germplasm. PHYTOPATHOLOGY 2020; 110:1082-1092. [PMID: 32023173 DOI: 10.1094/phyto-11-19-0415-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stripe rust (incited by Puccinia striiformis f. sp. hordei) and stem rust (incited by P. graminis f. sp. tritici) are two of the most important diseases affecting barley. Building on prior work involving the introgression of the resistance genes rpg4/Rpg5 into diverse genetic backgrounds and the discovery of additional quantitative trait locus (QTLs) for stem rust resistance, we generated an array of germplasm in which we mapped resistance to stripe rust and stem rust. Stem rust races TTKSK and QCCJB were used for resistance mapping at the seedling and adult plant stages, respectively. Resistance to stripe rust, at the adult plant stage, was determined by QTLs on chromosomes 1H, 4H, and 5H that were previously reported in the literature. The rpg4/Rpg5 complex was validated as a source of resistance to stem rust at the seedling stage. Some parental germplasm, selected as potentially resistant to stem rust or susceptible but having other positive attributes, showed resistance at the seedling stage, which appears to be allelic to rpg4/Rpg5. The rpg4/Rpg5 complex, and this new allele, were not sufficient for adult plant resistance to stem rust in one environment. A QTL on 5H, distinct from Rpg5 and a previously reported resistance QTL, was required for resistance at the adult plant stage in all environments. This QTL is coincident with the QTL for stripe rust resistance. Germplasm with mapped genes/QTLs conferring resistance to stripe and stem rust was identified and is available as a resource to the research and breeding communities.
Collapse
Affiliation(s)
- Javier Hernandez
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Alicia Del Blanco
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616
| | - Tanya Filichkin
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Scott Fisk
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Lynn Gallagher
- Department of Plant Sciences, University of California-Davis, Davis, CA 95616
| | - Laura Helgerson
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Brigid Meints
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| | - Chris Mundt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Patrick Hayes
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
18
|
Genomic Dissection of Anthracnose ( Colletotrichum sublineolum) Resistance Response in Sorghum Differential Line SC112-14. G3-GENES GENOMES GENETICS 2020; 10:1403-1412. [PMID: 32102832 PMCID: PMC7144069 DOI: 10.1534/g3.120.401121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sorghum production is expanding to warmer and more humid regions where its production is being limited by multiple fungal pathogens. Anthracnose, caused by Colletotrichum sublineolum, is one of the major diseases in these regions, where it can cause yield losses of both grain and biomass. In this study, 114 recombinant inbred lines (RILs) derived from resistant sorghum line SC112-14 were evaluated at four distinct geographic locations in the United States for response to anthracnose. A genome scan using a high-density linkage map of 3,838 single nucleotide polymorphisms (SNPs) detected two loci at 5.25 and 1.18 Mb on chromosomes 5 and 6, respectively, that explain up to 59% and 44% of the observed phenotypic variation. A bin-mapping approach using a subset of 31 highly informative RILs was employed to determine the disease response to inoculation with ten anthracnose pathotypes in the greenhouse. A genome scan showed that the 5.25 Mb region on chromosome 5 is associated with a resistance response to nine pathotypes. Five SNP markers were developed and used to fine map the locus on chromosome 5 by evaluating 1,500 segregating F2:3 progenies. Based on the genotypic and phenotypic analyses of 11 recombinants, the locus was narrowed down to a 470-kb genomic region. Following a genome-wide association study based on 574 accessions previously phenotyped and genotyped, the resistance locus was delimited to a 34-kb genomic interval with five candidate genes. All five candidate genes encode proteins associated with plant immune systems, suggesting they may act in synergy in the resistance response.
Collapse
|
19
|
Liu J, Yu H, Liu Y, Deng S, Liu Q, Liu B, Xu M. Genetic dissection of grain water content and dehydration rate related to mechanical harvest in maize. BMC PLANT BIOLOGY 2020; 20:118. [PMID: 32183696 PMCID: PMC7076969 DOI: 10.1186/s12870-020-2302-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/21/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND The low grain water content (GWC) at harvest is a prerequisite to mechanical harvesting in maize, or otherwise would cause massive broken kernels and increase drying costs. The GWC at harvest in turn depends on GWC at the physiological maturity (PM) stage and grain dehydration rate (GDR). Both GWC and GDR are very complex traits, governed by multiple quantitative trait loci (QTL) and easily influenced by environmental conditions. So far, a number of experiments have been conducted to reveal numbers of GWC and GDR QTL, however, very few QTL have been confirmed, and no QTL has been fine-mapped or even been cloned. RESULTS We demonstrated that GWCs after PM were positively correlated with GWC at PM, whereas negatively with GDRs after PM. With a recombinant inbred line (RIL) population, we identified totally 31 QTL related to GWC and 17 QTL related to GDR in three field trials. Seven GWC QTL were consistently detected in at least two of the three field trials, each of which could explain 6.92-24.78% of the total GWC variation. Similarly, one GDR QTL was consistently detected, accounting for 9.44-14.46% of the total GDR variation. Three major GWC QTL were found to overlap with three GDR QTL in bins 1.05/06, 2.06/07, and 3.05, respectively. One of the consistent GWC QTL, namely qGwc1.1, was fine-mapped from a 27.22 Mb to a 2.05 Mb region by using recombinant-derived progeny test. The qGwc1.1 acted in a semi-dominant manner to reduce GWC by 1.49-3.31%. CONCLUSIONS A number of consistent GWC and GDR QTL have been identified, and one of them, QTL-qGwc1.1, was successfully refined into a 2.05 Mb region. Hence, it is realistic to clone the genes underlying the GWC and GDR QTL and to make use of them in breeding of maize varieties with low GWC at harvest.
Collapse
Affiliation(s)
- Jianju Liu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 P. R. China
| | - Hui Yu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 P. R. China
| | - Yuanliang Liu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 P. R. China
| | - Suining Deng
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 P. R. China
| | - Qingcai Liu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 P. R. China
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018 P. R. China
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 P. R. China
| |
Collapse
|
20
|
Ollier M, Talle V, Brisset AL, Le Bihan Z, Duerr S, Lemmens M, Goudemand E, Robert O, Hilbert JL, Buerstmayr H. QTL mapping and successful introgression of the spring wheat-derived QTL Fhb1 for Fusarium head blight resistance in three European triticale populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:457-477. [PMID: 31960090 PMCID: PMC6985197 DOI: 10.1007/s00122-019-03476-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/07/2019] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE The spring wheat-derived QTL Fhb1 was successfully introgressed into triticale and resulted in significantly improved FHB resistance in the three triticale mapping populations. Fusarium head blight (FHB) is a major problem in cereal production particularly because of mycotoxin contaminations. Here we characterized the resistance to FHB in triticale breeding material harboring resistance factors from bread wheat. A highly FHB-resistant experimental line which derives from a triticale × wheat cross was crossed to several modern triticale cultivars. Three populations of recombinant inbred lines were generated and evaluated in field experiments for FHB resistance using spray inoculations during four seasons and were genotyped with genotyping-by-sequencing and SSR markers. FHB severity was assessed in the field by visual scorings and on the harvested grain samples using digital picture analysis for quantifying the whitened kernel surface (WKS). Four QTLs with major effects on FHB resistance were identified, mapping to chromosomes 2B, 3B, 5R, and 7A. Those QTLs were detectable with both Fusarium severity traits. Measuring of WKS allows easy and fast grain symptom quantification and appears as an effective scoring tool for FHB resistance. The QTL on 3B collocated with Fhb1, and the QTL on 5R with the dwarfing gene Ddw1. This is the first report demonstrating the successful introgression of Fhb1 into triticale. It comprises a significant step forward for enhancing FHB resistance in this crop.
Collapse
Affiliation(s)
- Marine Ollier
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria.
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-Food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, 59655, Villeneuve d'Ascq, France.
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France.
- Bayer Crop Science, Le petit Boissay, Toury, France.
| | - Vincent Talle
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Anne-Laure Brisset
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Zoé Le Bihan
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Simon Duerr
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
- Saatzucht Donau GmbH & Co KG, Breeding Station, Reichersberg, Austria
| | - Marc Lemmens
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Ellen Goudemand
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - Olivier Robert
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - Jean-Louis Hilbert
- EA 7394, USC INRA 1411, Institut Charles Viollette (ICV), Agro-Food and Biotechnology Research Institute, Université de Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, IFA-Tulln, Institute of Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, 3430, Tulln, Austria
| |
Collapse
|
21
|
Construction of a High-Density Genetic Map and Mapping of Firmness in Grapes ( Vitis vinifera L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2020; 21:ijms21030797. [PMID: 31991832 PMCID: PMC7037167 DOI: 10.3390/ijms21030797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.
Collapse
|
22
|
Teramoto S, Takayasu S, Kitomi Y, Arai-Sanoh Y, Tanabata T, Uga Y. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography. PLANT METHODS 2020; 16:66. [PMID: 32426023 PMCID: PMC7216661 DOI: 10.1186/s13007-020-00612-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/05/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND X-ray computed tomography (CT) allows us to visualize root system architecture (RSA) beneath the soil, non-destructively and in a three-dimensional (3-D) form. However, CT scanning, reconstruction processes, and root isolation from X-ray CT volumes, take considerable time. For genetic analyses, such as quantitative trait locus mapping, which require a large population size, a high-throughput RSA visualization method is required. RESULTS We have developed a high-throughput process flow for the 3-D visualization of rice (Oryza sativa) RSA (consisting of radicle and crown roots), using X-ray CT. The process flow includes use of a uniform particle size, calcined clay to reduce the possibility of visualizing non-root segments, use of a higher tube voltage and current in the X-ray CT scanning to increase root-to-soil contrast, and use of a 3-D median filter and edge detection algorithm to isolate root segments. Using high-performance computing technology, this analysis flow requires only 10 min (33 s, if a rough image is acceptable) for CT scanning and reconstruction, and 2 min for image processing, to visualize rice RSA. This reduced time allowed us to conduct the genetic analysis associated with 3-D RSA phenotyping. In 2-week-old seedlings, 85% and 100% of radicle and crown roots were detected, when 16 cm and 20 cm diameter pots were used, respectively. The X-ray dose per scan was estimated at < 0.09 Gy, which did not impede rice growth. Using the developed process flow, we were able to follow daily RSA development, i.e., 4-D RSA development, of an upland rice variety, over 3 weeks. CONCLUSIONS We developed a high-throughput process flow for 3-D rice RSA visualization by X-ray CT. The X-ray dose assay on plant growth has shown that this methodology could be applicable for 4-D RSA phenotyping. We named the RSA visualization method 'RSAvis3D' and are confident that it represents a potentially efficient application for 3-D RSA phenotyping of various plant species.
Collapse
Affiliation(s)
- Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | - Satoko Takayasu
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | - Yuka Kitomi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | - Yumiko Arai-Sanoh
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| | | | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518 Japan
| |
Collapse
|
23
|
Zhao Y, Su C. Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize. Sci Rep 2019; 9:16112. [PMID: 31695075 PMCID: PMC6834572 DOI: 10.1038/s41598-019-52222-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/15/2019] [Indexed: 01/26/2023] Open
Abstract
Quantitative trait loci (QTLs) mapped in different genetic populations are of great significance for marker-assisted breeding. In this study, an F2:3 population were developed from the crossing of two maize inbred lines SG-5 and SG-7 and applied to QTL mapping for seven yield-related traits. The seven traits included 100-kernel weight, ear length, ear diameter, cob diameter, kernel row number, ear weight, and grain weight per plant. Based on an ultra-high density linkage map, a total of thirty-three QTLs were detected for the seven studied traits with composite interval mapping (CIM) method, and fifty-four QTLs were indentified with genome-wide composite interval mapping (GCIM) methods. For these QTLs, Fourteen were both detected by CIM and GCIM methods. Besides, eight of the thirty QTLs detected by CIM were identical to those previously mapped using a F2 population (generating from the same cross as the mapping population in this study), and fifteen were identical to the reported QTLs in other recent studies. For the fifty-four QTLs detected by GCIM, five of them were consistent with the QTLs mapped in the F2 population of SG-5 × SG-7, and twenty one had been reported in other recent studies. The stable QTLs associated with grain weight were located on maize chromosomes 2, 5, 7, and 9. In addition, differentially expressed genes (DEGs) between SG-5 and SG-7 were obtained from the transcriptomic profiling of grain at different developmental stages and overlaid onto the stable QTLs intervals to predict candidate genes for grain weight in maize. In the physical intervals of confirmed QTLs qKW-7, qEW-9, qEW-10, qGWP-6, qGWP-8, qGWP-10, qGWP-11 and qGWP-12, there were 213 DEGs in total. Finally, eight genes were predicted as candidate genes for grain size/weight. In summary, the stable QTLs would be reliable and the candidate genes predicted would be benefit for maker assisted breeding or cloning.
Collapse
Affiliation(s)
- Yanming Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Chengfu Su
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
24
|
The utility of NBS-profiling for characterization of yellow rust resistance in an F6 durum wheat population. J Genet 2019. [DOI: 10.1007/s12041-019-1143-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Mohler V, Stadlmeier M. Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). J Appl Genet 2019; 60:291-300. [PMID: 31506777 DOI: 10.1007/s13353-019-00518-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 01/21/2023]
Abstract
Agriculture will benefit from a rigorous characterization of genes for adult plant resistance (APR) since this gene class was recognized to provide more durable protection from plant diseases. The present study reports the identification of APR loci to powdery mildew in German winter wheat cultivars Cortez and Atlantis. Cortez was previously shown to carry all-stage resistance gene Pm3e. To avoid interference of Pm3e in APR studies, line 6037 that lacked Pm3e but showed field resistance from doubled-haploid (DH) population Atlantis/Cortez was used in two backcrosses to Atlantis for the establishment of DH population 6037/Atlantis//Atlantis. APR was assessed in the greenhouse 10, 15, and 20 days after inoculation (dai) from the 4-leaf stage onwards and combined with single-nucleotide polymorphism data in a genome-wide association study (GWAS) and a linkage map-based quantitative trait loci (QTL) analysis. In GWAS, two QTL were detected: one on chromosome 1BL 10 dai, the other on chromosome 2BL 20 dai. In conventional QTL analysis, both QTL were detected with all three disease ratings: the QTL on chromosome 1BL explained a maximum of 35.2% of the phenotypic variation 10 dai, whereas the QTL on chromosome 2BL explained a maximum of 43.5% of the phenotypic variation 20 dai. Compared with GWAS, linkage map-based QTL analysis allowed following the dynamics of QTL action. The two large-effect QTL for APR to powdery mildew with dynamic gene action can be useful for the enhancement of wheat germplasm.
Collapse
Affiliation(s)
- Volker Mohler
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Am Gereuth 6, 85354, Freising, Germany.
| | - Melanie Stadlmeier
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture (LfL), Am Gereuth 6, 85354, Freising, Germany
| |
Collapse
|
26
|
Guo W, Lian T, Wang B, Guan J, Yuan D, Wang H, Safiul Azam FM, Wan X, Wang W, Liang Q, Wang H, Tu J, Zhang C, Jiang L. Genetic mapping of folate QTLs using a segregated population in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:675-690. [PMID: 30938052 DOI: 10.1111/jipb.12811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 05/06/2023]
Abstract
As essential B vitamin for humans, folates accumulation in edible parts of crops, such as maize kernels, is of great importance for human health. But its breeding is always limited by the prohibitive cost of folate profiling. The molecular breeding is a more executable and efficient way for folate fortification, but is limited by the molecular knowledge of folate regulation. Here we report the genetic mapping of folate quantitative trait loci (QTLs) using a segregated population crossed by two maize lines, one high in folate (GEMS31) and the other low in folate (DAN3130). Two folate QTLs on chromosome 5 were obtained by the combination of F2 whole-exome sequencing and F3 kernel-folate profiling. These two QTLs had been confirmed by bulk segregant analysis using F6 pooled DNA and F7 kernel-folate profiling, and were overlapped with QTLs identified by another segregated population. These two QTLs contributed 41.6% of phenotypic variation of 5-formyltetrahydrofolate, the most abundant storage form among folate derivatives in dry maize grains, in the GEMS31×DAN3130 population. Their fine mapping and functional analysis will reveal details of folate metabolism, and provide a basis for marker-assisted breeding aimed at the enrichment of folates in maize kernels.
Collapse
Affiliation(s)
- Wenzhu Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tong Lian
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Xing Wan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxing Tu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
27
|
Dracatos PM, Haghdoust R, Singh RP, Huerta Espino J, Barnes CW, Forrest K, Hayden M, Niks RE, Park RF, Singh D. High-Density Mapping of Triple Rust Resistance in Barley Using DArT-Seq Markers. FRONTIERS IN PLANT SCIENCE 2019; 10:467. [PMID: 31105717 PMCID: PMC6498947 DOI: 10.3389/fpls.2019.00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/28/2019] [Indexed: 05/31/2023]
Abstract
The recent availability of an assembled and annotated genome reference sequence for the diploid crop barley (Hordeum vulgare L.) provides new opportunities to study the genetic basis of agronomically important traits such as resistance to stripe [Puccinia striiformis f. sp. hordei (Psh)], leaf [P. hordei (Ph)], and stem [P. graminis f. sp. tritici (Pgt)] rust diseases. The European barley cultivar Pompadour is known to possess high levels of resistance to leaf rust, predominantly due to adult plant resistance (APR) gene Rph20. We developed a barley recombinant inbred line (RIL) population from a cross between Pompadour and the leaf rust and stripe rust susceptible selection Biosaline-19 (B-19), and genotyped this population using DArT-Seq genotyping by sequencing (GBS) markers. In the current study, we produced a high-density linkage map comprising 8,610 (SNP and in silico) markers spanning 5957.6 cM, with the aim of mapping loci for resistance to leaf rust, stem rust, and stripe rust. The RIL population was phenotyped in the field with Psh (Mexico and Ecuador) and Ph (Australia) and in the greenhouse at the seedling stage with Australian Ph and Pgt races, and at Wageningen University with a European variant of Psh race 24 (PshWUR). For Psh, we identified a consistent field QTL on chromosome 2H across all South American field sites and years. Two complementary resistance genes were mapped to chromosomes 1H and 4H at the seedling stage in response to PshWUR, likely to be the loci rpsEm1 and rpsEm2 previously reported from the cultivar Emir from which Pompadour was bred. For leaf rust, we determined that Rph20 in addition to two minor-effect QTL on 1H and 3H were effective at the seedling stage, whilst seedling resistance to stem rust was due to QTL on chromosomes 3H and 7H conferred by Pompadour and B-19, respectively.
Collapse
Affiliation(s)
- Peter M. Dracatos
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Rouja Haghdoust
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Campo Experimental Valle de México, INIFAP, Chapingo, Mexico
| | - Julio Huerta Espino
- International Maize and Wheat Improvement Center, Texcoco, Mexico
- Campo Experimental Valle de México, INIFAP, Chapingo, Mexico
| | - Charles W. Barnes
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, Australia
| | - Rients E. Niks
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Robert F. Park
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Davinder Singh
- Plant Breeding Institute Cobbitty, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Calleja-Rodriguez A, Li Z, Hallingbäck HR, Sillanpää MJ, Wu HX, Abrahamsson S, García-Gil MR. Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design. J Theor Biol 2019; 462:283-292. [PMID: 30423305 DOI: 10.1016/j.jtbi.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/17/2018] [Accepted: 11/09/2018] [Indexed: 11/28/2022]
Abstract
In forest tree breeding, family-based Quantitative Trait Loci (QTL) studies are valuable as methods to dissect the complexity of a trait and as a source of candidate genes. In the field of conifer research, our study contributes to the evaluation of phenotypic and predicted breeding values for the identification of QTL linked to complex traits in a three-generation pedigree population in Scots pine (Pinus sylvestris L.). A total of 11 470 open pollinated F2-progeny trees established at three different locations, were measured for growth and adaptive traits. Breeding values were predicted for their 360 mothers, originating from a single cross of two grand-parents. A multilevel LASSO association analysis was conducted to detect QTL using genotypes of the mothers with the corresponding phenotypes and Estimated Breeding Values (EBV). Different levels of genotype-by-environment (G × E) effects among sites at different years, were detected for survival and height. Moderate-to-low narrow sense heritabilities and EBV accuracies were found for all traits and all sites. We identified 18 AFLPs and 12 SNPs to be associated with QTL for one or more traits. 62 QTL were significant with percentages of variance explained ranging from 1.7 to 18.9%. In those cases where the same marker was associated to a phenotypic or an ebvQTL, the ebvQTL always explained higher proportion of the variance, maybe due to the more accurate nature of Estimated Breeding Values (EBV). Two SNP-QTL showed pleiotropic effects for traits related with hardiness, seed, cone and flower production. Furthermore, we detected several QTL with significant effects across multiple ages, which could be considered as strong candidate loci for early selection. The lack of reproducibility of some QTL detected across sites may be due to environmental heterogeneity reflected by the genotype- and QTL-by-environment effects.
Collapse
Affiliation(s)
- Ainhoa Calleja-Rodriguez
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå SE-901 83, Sweden; Skogforsk, Box 3, Sävar SE-91821, Sweden
| | - Zitong Li
- Melbourne Integrative Genomics and School of Mathematics and Statistics, the University of Melbourne, Parkville, Victoria 3010, Australia; Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki FI-00014, Finland
| | - Henrik R Hallingbäck
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå SE-901 83, Sweden; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Science, Uppsala SE-75007, Sweden
| | - Mikko J Sillanpää
- Department of Mathematical Sciences and Biocenter Oulu, University of Oulu, Oulu FI-90014, Finland
| | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå SE-901 83, Sweden
| | | | - Maria Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå SE-901 83, Sweden.
| |
Collapse
|
29
|
Klaassen MT, Bourke PM, Maliepaard C, Trindade LM. Multi-allelic QTL analysis of protein content in a bi-parental population of cultivated tetraploid potato. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2019; 215:14. [PMID: 30872859 PMCID: PMC6390886 DOI: 10.1007/s10681-018-2331-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/22/2018] [Indexed: 05/26/2023]
Abstract
Protein content is a key quality trait for the potato starch industry. The objective of this study was to identify allele-specific quantitative trait loci (QTLs) for tuber protein content in cultivated potato (Solanum tuberosum L.) at the tetraploid level. We analysed 496 full-sib F1 clones in a 3-year field trial to dissect the complex genetic architecture of soluble tuber protein content. Genotypic data from a 60K single nucleotide polymorphism (SNP) array was used for SNP dosage scoring, constructing homologue specific linkage maps and assembly of a dense integrated chromosomal linkage map. From the integrated map, probabilistic multi-locus identity-by-descent (IBD) haplotypes (alleles) were estimated and used to detect associations between the IBD haplotypes and the phenotypic trait values. Moderate levels of trait heritability were estimated between 40 and 74% that correspond with previous studies. Our contemporary naive analysis identified potential additive QTLs on chromosomes 2, 3, 5 (top arm) and 9 across the years. Moreover, cofactor QTL analysis identified two masked QTLs on chromosomes 1 and 5 (lower arm). The QTLs on chromosomes 2, 5 (lower arm) and 9 are reported here for the first time. The QTLs that we identified on chromosomes 1, 3 and 5 (top arm) show overlap with previous studies for protein content in potato. Collectively the naive QTLs explained 12 to 17% of the phenotypic variance. The underlying alleles of the QTLs provided both positive and negative effects on the phenotype. Our work uncovers the complex genetic architecture of this trait and describes potential breeding strategies for improvement. As protein has emerged as a high-value component from industrial potato starch production, the dissection of the genetic architecture and subsequent improvement of this trait by breeding has great economic and environmental relevance.
Collapse
Affiliation(s)
- Michiel T. Klaassen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Department of Applied Research, Aeres University of Applied Sciences, P.O. Box 374, 8250 AJ Dronten, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
30
|
Kante M, Rattunde HFW, Nébié B, Weltzien E, Haussmann BIG, Leiser WL. QTL mapping and validation of fertility restoration in West African sorghum A 1 cytoplasm and identification of a potential causative mutation for Rf 2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2397-2412. [PMID: 30132022 PMCID: PMC6208960 DOI: 10.1007/s00122-018-3161-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Key message Major A 1 cytoplasm fertility restoration loci, Rf 2 and Rf 5 , were found in the West African sorghum. A potential causative mutation for Rf 2 was identified. KASP markers were validated on independent material. To accelerate the identification and development of hybrid parental lines in West African (WA) sorghum, this study aimed to understand the genetics underlying the fertility restoration (Rf) in WA A1 cytoplasmic male sterility system and to develop markers for a routine use in WA breeding programs. We genotyped by sequencing three F2 populations to map the Rf quantitative trait loci (QTL), validated the molecular KASP markers developed from those QTL in two F2:3 populations, and assessed the most promising markers on a set of 95 R- and B-lines from WA breeding programs. Seven QTL were found across the three F2 populations. On chromosome SBI-05, we found a major fertility restorer locus (Rf5) for two populations with the same male parent, explaining 19 and 14% of the phenotypic variation in either population. Minor QTL were detected in these two populations on chromosomes SBI-02, SBI-03, SBI-04 and SBI-10. In the third population, we identified one major fertility restorer locus on chromosome SBI-02, Rf2, explaining 31% of the phenotypic variation. Pentatricopeptide repeat genes in the Rf2 QTL region were sequenced, and we detected in Sobic.002G057050 a missense mutation in the first exon, explaining 81% of the phenotypic variation in a F2:3 population and clearly separating B- from R-lines. The KASP marker developed from this mutation stands as a promising tool for routine use in WA breeding programs.
Collapse
Affiliation(s)
- Moctar Kante
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | | | - Baloua Nébié
- International Crops Research Institute for the Semi-Arid Tropics, BP 320, Bamako, Mali
| | - Eva Weltzien
- University of Wisconsin-Madison, Madison, WI, USA
| | - Bettina I G Haussmann
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
31
|
Santa JD, Berdugo-Cely J, Cely-Pardo L, Soto-Suárez M, Mosquera T, Galeano M. CH. QTL analysis reveals quantitative resistant loci for Phytophthora infestans and Tecia solanivora in tetraploid potato (Solanum tuberosum L.). PLoS One 2018; 13:e0199716. [PMID: 29979690 PMCID: PMC6034811 DOI: 10.1371/journal.pone.0199716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Late blight and Guatemalan potato tuber moth caused by Phytophthora infestans and Tecia solanivora, respectively, are major phytosanitary problems on potato crops in Colombia and Ecuador. Hence, the development of resistant cultivars is an alternative for their control. However, breeding initiatives for durable resistance using molecular tools are limited due to the genome complexity and high heterozygosity in autotetraploid potatoes. To contribute to a better understanding of the genetic basis underlying the resistance to P. infestans and T. solanivora in potato, the aim of this study was to identify QTLs for resistance to P. infestans and T. solanivora using a F1 tetraploid potato segregant population for both traits. Ninety-four individuals comprised this population. Parent genotypes and their progeny were genotyped using SOLCAP 12K potato array. Forty-five percent of the markers were polymorphic. A genetic linkage map was built with a length of 968.4 cM and 1,287 SNPs showing good distribution across the genome. Severity and incidence were evaluated in two crop cycles for two years. QTL analysis revealed six QTLs linked to P. infestans, four of these related to previous QTLs reported, and two novel QTLs (qrAUDPC-3 and qrAUDPC-8). Fifteen QTLs were linked to T. solanivora, being qIPC-6 and qOPA-6.1, and qIPC-10 and qIPC-10.1 stable in two different trials. This study is one of the first to identify QTLs for T. solanivora. As the population employed is a breeding population, results will contribute significantly to breeding programs to select resistant plant material, especially in countries where P. infestans and T. solanivora limit potato production.
Collapse
Affiliation(s)
- Juan David Santa
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), C.I. Tibaitatá, Cundinamarca, Colombia
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, sede Bogotá, Colombia
| | - Jhon Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), C.I. Tibaitatá, Cundinamarca, Colombia
| | - Liliana Cely-Pardo
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), C.I. Tibaitatá, Cundinamarca, Colombia
| | - Mauricio Soto-Suárez
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), C.I. Tibaitatá, Cundinamarca, Colombia
| | - Teresa Mosquera
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, sede Bogotá, Colombia
| | - Carlos H. Galeano M.
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), C.I. Palmira, Valle del Cauca, Colombia
| |
Collapse
|
32
|
Ivanizs L, Farkas A, Linc G, Molnár-Láng M, Molnár I. Molecular cytogenetic and morphological characterization of two wheat-barley translocation lines. PLoS One 2018; 13:e0198758. [PMID: 29889875 PMCID: PMC5995406 DOI: 10.1371/journal.pone.0198758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022] Open
Abstract
Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1-0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat.
Collapse
Affiliation(s)
- László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - Gabriella Linc
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Brunszvik u. 2, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc-Holice, Czech Republic
- * E-mail:
| |
Collapse
|
33
|
Ren T, Hu Y, Tang Y, Li C, Yan B, Ren Z, Tan F, Tang Z, Fu S, Li Z. Utilization of a Wheat55K SNP Array for Mapping of Major QTL for Temporal Expression of the Tiller Number. FRONTIERS IN PLANT SCIENCE 2018; 9:333. [PMID: 29599793 PMCID: PMC5862827 DOI: 10.3389/fpls.2018.00333] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/28/2018] [Indexed: 05/19/2023]
Abstract
Maximum tiller number and productive tiller number are important traits for wheat grain yield, but research involving the temporal expression of tiller number at different quantitative trait loci (QTL) levels is limited. In the present study, a population set of 371 recombined inbred lines derived from a cross between Chuan-Nong18 and T1208 was used to construct a high-density genetic map using a Wheat55K SNP Array and to perform dynamic QTL analysis of the tiller number at four growth stages. A high-density genetic map containing 11,583 SNP markers and 59 SSR markers that spanned 4,513.95 cM and was distributed across 21 wheat chromosomes was constructed. A total of 28 single environmental QTL were identified in the recombined inbred lines population, and among these, seven QTL were stable and used for multi-environmental and dynamic analysis. These QTL were mapped to chromosomes 2D, 4A, 4D, 5A, 5D, and 7D, respectively. Each QTL explained 1.63-21.22% of the observed phenotypic variation, with an additive effect from -20.51 to 11.59. Dynamic analysis showed that cqTN-2D.2 can be detected at four growth stages of tillering, explaining 4.92-17.16% of the observed phenotypic variations and spanning 13.71 Mb (AX-109283238-AX-110544009: 82189047-95895626) according to the physical location of the flanking markers. The effects of the stable QTL were validated in the recombined inbred lines population, and the beneficial alleles could be utilized in future marker-assisted selection. Several candidate genes for MTN and PTN were predicted. The results provide a better understanding of the QTL selectively expressing the control of tiller number and will facilitate future map-based cloning. 9.17% SNP markers showed best hits to the Chinese Spring contigs. It was indicated that Wheat55K Array was efficient and valid to construct a high-density wheat genetic map.
Collapse
Affiliation(s)
- Tianheng Ren
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yangshan Hu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yingzi Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Chunsheng Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Benju Yan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Zhenglong Ren
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feiquan Tan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhi Li
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
34
|
Rosen A, Hasan Y, Briggs W, Uptmoor R. Genome-Based Prediction of Time to Curd Induction in Cauliflower. FRONTIERS IN PLANT SCIENCE 2018; 9:78. [PMID: 29467774 PMCID: PMC5807883 DOI: 10.3389/fpls.2018.00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
The development of cauliflower (Brassica oleracea var. botrytis) is highly dependent on temperature due to vernalization requirements, which often causes delay and unevenness in maturity during months with warm temperatures. Integrating quantitative genetic analyses with phenology modeling was suggested to accelerate breeding strategies toward wide-adaptation cauliflower. The present study aims at establishing a genome-based model simulating the development of doubled haploid (DH) cauliflower lines to predict time to curd induction of DH lines not used for model parameterization and test hybrids derived from the bi-parental cross. Leaf appearance rate and the relation between temperature and thermal time to curd induction were examined in greenhouse trials on 180 DH lines at seven temperatures. Quantitative trait loci (QTL) analyses carried out on model parameters revealed ten QTL for leaf appearance rate (LAR), five for the slope and two for the intercept of linear temperature-response functions. Results of the QTL-based phenology model were compared to a genomic selection (GS) model. Model validation was carried out on data comprising four field trials with 72 independent DH lines, 160 hybrids derived from the parameterization set, and 34 hybrids derived from independent lines of the population. The QTL model resulted in a moderately accurate prediction of time to curd induction (R2 = 0.42-0.51) while the GS model generated slightly better results (R2 = 0.52-0.61). Predictions of time to curd induction of test hybrids from independent DH lines were less precise with R2 = 0.40 for the QTL and R2 = 0.48 for the GS model. Implementation of juvenile-to-adult phase transition is proposed for model improvement.
Collapse
Affiliation(s)
- Arne Rosen
- Faculty of Agriculture and Environmental Science, University of Rostock, Rostock, Germany
| | - Yaser Hasan
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
| | | | - Ralf Uptmoor
- Faculty of Agriculture and Environmental Science, University of Rostock, Rostock, Germany
| |
Collapse
|
35
|
Vatter T, Maurer A, Perovic D, Kopahnke D, Pillen K, Ordon F. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM). PLoS One 2018; 13:e0191666. [PMID: 29370232 PMCID: PMC5784946 DOI: 10.1371/journal.pone.0191666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.
Collapse
Affiliation(s)
- Thomas Vatter
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Doris Kopahnke
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Wang B, Liu H, Liu Z, Dong X, Guo J, Li W, Chen J, Gao C, Zhu Y, Zheng X, Chen Z, Chen J, Song W, Hauck A, Lai J. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC PLANT BIOLOGY 2018; 18:17. [PMID: 29347909 PMCID: PMC5774087 DOI: 10.1186/s12870-018-1233-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/14/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Plant Architecture Related Traits (PATs) are of great importance for maize breeding, and mainly controlled by minor effect quantitative trait loci (QTLs). However, cloning or even fine-mapping of minor effect QTLs is very difficult in maize. Theoretically, large population and high density genetic map can be helpful for increasing QTL mapping resolution and accuracy, but such a possibility have not been actually tested. RESULTS Here, we employed a genotyping-by-sequencing (GBS) strategy to construct a linkage map with 16,769 marker bins for 1021 recombinant inbred lines (RILs). Accurately mapping of well studied genes P1, pl1 and r1 underlying silk color demonstrated the map quality. After QTL analysis, a total of 51 loci were mapped for six PATs. Although all of them belong to minor effect alleles, the lengths of the QTL intervals, with a minimum and median of 1.03 and 3.40 Mb respectively, were remarkably reduced as compared with previous reports using smaller size of population or small number of markers. Several genes with known function in maize were shown to be overlapping with or close neighboring to these QTL peaks, including na1, td1, d3 for plant height, ra1 for tassel branch number, and zfl2 for tassel length. To further confirm our mapping results, a plant height QTL, qPH1a, was verified by an introgression lines (ILs). CONCLUSIONS We demonstrated a method for high resolution mapping of minor effect QTLs in maize, and the resulted comprehensive QTLs for PATs are valuable for maize molecular breeding in the future.
Collapse
Affiliation(s)
- Baobao Wang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Han Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhipeng Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jinjie Guo
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Wei Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jing Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Chi Gao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yanbin Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xinmei Zheng
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zongliang Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Andrew Hauck
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Kulwal PL. Trait Mapping Approaches Through Linkage Mapping in Plants. PLANT GENETICS AND MOLECULAR BIOLOGY 2018; 164:53-82. [DOI: 10.1007/10_2017_49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
38
|
Wang B, Zhu Y, Zhu J, Liu Z, Liu H, Dong X, Guo J, Li W, Chen J, Gao C, Zheng X, E L, Lai J, Zhao H, Song W. Identification and Fine-Mapping of a Major Maize Leaf Width QTL in a Re-sequenced Large Recombinant Inbred Lines Population. FRONTIERS IN PLANT SCIENCE 2018; 9:101. [PMID: 29487604 PMCID: PMC5816676 DOI: 10.3389/fpls.2018.00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/18/2018] [Indexed: 05/11/2023]
Abstract
Leaf width (LW) influences canopy architecture of population-cultured maize and can thus contribute to density breeding. In previous studies, almost all maize LW-related mutants have extreme effect on leaf development or accompanied unfavorable phenotypes. In addition, the identification of quantitative trait loci (QTLs) has been resolution-limited, with cloning and fine-mapping rarely performed. Here, we constructed a bin map for 670 recombinant inbred lines (RILs) using ∼1.2 billion 100-bp re-sequencing reads. QTL analysis of the LW trait directly narrowed the major effect QTL, qLW4, to a ∼270-kb interval. A fine-mapping population and near-isogenic lines (NILs) were quickly constructed using a key RIL harboring heterozygous genotypes across the qLW4 region. A recombinant-derived progeny testing strategy was subsequently used to further fine-map qLW4 to a 55-kb interval. Examination of NILs revealed that qLW4 has a completely dominant effect on LW, with no additional effect on leaf length. Candidate gene analysis suggested that this locus may be a novel LW controlling allele in maize. Our findings demonstrate the advantage of large-population high-density bin mapping, and suggest a strategy for efficiently fine-mapping or even cloning of QTLs. These results should also be helpful for further dissection of the genetic mechanism of LW variation, and benefit maize density breeding.
Collapse
|
39
|
Hu YS, Ren TH, Li Z, Tang YZ, Ren ZL, Yan BJ. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene 2017; 634:15-21. [PMID: 28867565 DOI: 10.1016/j.gene.2017.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Spike formation rate (SR), which is based on maximum tiller number per unit area and spike number per unit area, is an important yield-related trait in wheat. Increasing the spike formation rate reduces growth competition and wastage of photosynthate from ineffective tillers. Unfortunately, research studies involving quantitative trait locus (QTL) mapping for wheat spike formation rate are limited. In the present study, a set of 371 recombinant inbreed line (RIL) population, which were derived from 1BL/LRS wheat-rye translocation lines CN18 and T1208, was analysed by simple sequence repeat (SSR) markers. Genetic analysis showed that a stable and major QTL (QSR.sicau-4D) for spike formation rate was localized to chromosome 4D and explained 18.24% and 24.48% of the observed phenotypic variance in 2015 and 2016, respectively. This QTL was closely linked to SSR marker Xcfd23, and the genetic distance between the flank markers was 3.28cM. Furthermore, QSR.sicau-4D might be a novel pleiotropic QTL, which also controlled maximum tiller number per unit area (QMTN.sicau-4D) and tiller number during pre-winter per unit area (QTNW.sicau-4D). The marker Xcfd23 associated with SR may be utilized in marker-assisted selection in wheat breeding.
Collapse
Affiliation(s)
- Yang-Shan Hu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Tian-Heng Ren
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhi Li
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ying-Zi Tang
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zheng-Long Ren
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ben-Ju Yan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
40
|
Luo Z, Wang M, Long Y, Huang Y, Shi L, Zhang C, Liu X, Fitt BDL, Xiang J, Mason AS, Snowdon RJ, Liu P, Meng J, Zou J. Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1569-1585. [PMID: 28455767 PMCID: PMC5719798 DOI: 10.1007/s00122-017-2911-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/19/2017] [Indexed: 05/10/2023]
Abstract
A comprehensive linkage atlas for seed yield in rapeseed. Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.
Collapse
Affiliation(s)
- Ziliang Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Meng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongju Huang
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB UK
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bruce D. L. Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB UK
| | - Jinxia Xiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Peifa Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
41
|
Su C, Wang W, Gong S, Zuo J, Li S, Xu S. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize ( Zea mays) Using the Genotyping-by-Sequencing (GBS) Technology. FRONTIERS IN PLANT SCIENCE 2017; 8:706. [PMID: 28533786 PMCID: PMC5420586 DOI: 10.3389/fpls.2017.00706] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/18/2017] [Indexed: 05/09/2023]
Abstract
Increasing grain yield is the ultimate goal for maize breeding. High resolution quantitative trait loci (QTL) mapping can help us understand the molecular basis of phenotypic variation of yield and thus facilitate marker assisted breeding. The aim of this study is to use genotyping-by-sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of all F2 individuals from a cross between two varieties of maize that are in clear contrast in yield and related traits. A set of 199 F2 progeny derived from the cross of varieties SG-5 and SG-7 were generated and genotyped by GBS. A total of 1,046,524,604 reads with an average of 5,258,918 reads per F2 individual were generated. This number of reads represents an approximately 0.36-fold coverage of the maize reference genome Zea_mays.AGPv3.29 for each F2 individual. A total of 68,882 raw SNPs were discovered in the F2 population, which, after stringent filtering, led to a total of 29,927 high quality SNPs. Comparative analysis using these physically mapped marker loci revealed a higher degree of synteny with the reference genome. The SNP genotype data were utilized to construct an intra-specific genetic linkage map of maize consisting of 3,305 bins on 10 linkage groups spanning 2,236.66 cM at an average distance of 0.68 cM between consecutive markers. From this map, we identified 28 QTLs associated with yield traits (100-kernel weight, ear length, ear diameter, cob diameter, kernel row number, corn grains per row, ear weight, and grain weight per plant) using the composite interval mapping (CIM) method and 29 QTLs using the least absolute shrinkage selection operator (LASSO) method. QTLs identified by the CIM method account for 6.4% to 19.7% of the phenotypic variation. Small intervals of three QTLs (qCGR-1, qKW-2, and qGWP-4) contain several genes, including one gene (GRMZM2G139872) encoding the F-box protein, three genes (GRMZM2G180811, GRMZM5G828139, and GRMZM5G873194) encoding the WD40-repeat protein, and one gene (GRMZM2G019183) encoding the UDP-Glycosyltransferase. The work will not only help to understand the mechanisms that control yield traits of maize, but also provide a basis for marker-assisted selection and map-based cloning in further studies.
Collapse
Affiliation(s)
- Chengfu Su
- Department of Life Sciences, Liupanshui Normal UniversityLiupanshui, China
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, USA
| | - Wei Wang
- Department of Economic Crop, Agricultural Science Institute of Coastal Region of JiangsuYancheng, China
| | - Shunliang Gong
- Institute of Grain and Oil, Liupanshui Academy of Agricultural SciencesLiupanshui, China
| | - Jinghui Zuo
- Department of Life Sciences, Liupanshui Normal UniversityLiupanshui, China
| | - Shujiang Li
- Department of Life Sciences, Liupanshui Normal UniversityLiupanshui, China
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, USA
- *Correspondence: Shizhong Xu
| |
Collapse
|
42
|
Esvelt Klos K, Gordon T, Bregitzer P, Hayes P, Chen XM, Del Blanco IA, Fisk S, Bonman JM. Barley Stripe Rust Resistance QTL: Development and Validation of SNP Markers for Resistance to Puccinia striiformis f. sp. hordei. PHYTOPATHOLOGY 2016; 106:1344-1351. [PMID: 27213558 DOI: 10.1094/phyto-09-15-0225-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative trait loci (QTL) for barley stripe rust resistance were mapped in recombinant inbred lines (RIL) from a 'Lenetah' × 'Grannelose Zweizeilige' (GZ) cross. GZ is known for a major seedling resistance QTL on chromosome 4H but linked markers suitable for marker-assisted selection have not been developed. This study identified the 4H QTL (log of the likelihood [LOD] = 15.94 at 97.19 centimorgans [cM]), and additional QTL on chromosomes 4H and 6H (LOD = 5.39 at 72.7 cM and 4.24 at 34.46 cM, respectively). A QTL on chromosome 7H (LOD = 2.04 at 81.07 cM) was suggested. All resistance alleles were derived from GZ. Evaluations of adult plant response in Corvallis, OR in 2013 and 2015 provided evidence of QTL at the same positions. However, the minor QTL on 4H was not statistically significant in either location/year, while the 7H QTL was significant in both. The single-nucleotide polymorphism markers flanking the resistance QTL were validated in RIL from a '95SR316A' × GZ cross for their ability to predict seedling resistance. In 95SR316A × GZ, 91 to 92% of RIL with GZ alleles at the major 4H QTL and at least one other were resistant to moderate in reaction. In these populations, at least two QTL were required to transfer the barley stripe rust resistance from GZ.
Collapse
Affiliation(s)
- K Esvelt Klos
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - T Gordon
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - P Bregitzer
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - P Hayes
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - X M Chen
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - I A Del Blanco
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - S Fisk
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| | - J M Bonman
- First, second, third, and eighth authors: Agricultural Research Service, United States Department of Agriculture (USDA), Aberdeen, ID 83210; fourth and seventh authors: Department of Crop and Soil Science, Oregon State University, Corvallis 97331; fifth author: USDA Agricultural Research Service, Pullman, WA 99164; and sixth author: Department of Plant Sciences, University of California, Davis 95616
| |
Collapse
|
43
|
Roulin AC, Bourgeois Y, Stiefel U, Walser JC, Ebert D. A Photoreceptor Contributes to the Natural Variation of Diapause Induction inDaphnia magna. Mol Biol Evol 2016; 33:3194-3204. [DOI: 10.1093/molbev/msw200] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Shahinnia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S, Tilbrook J, Fleury D. Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC PLANT BIOLOGY 2016; 16:150. [PMID: 27378125 PMCID: PMC4932692 DOI: 10.1186/s12870-016-0838-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/21/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND In wheat, grain filling is closely related to flag leaf characteristics and function. Stomata are specialized leaf epidermal cells which regulate photosynthetic CO2 uptake and water loss by transpiration. Understanding the mechanisms controlling stomatal size, and their opening under drought, is critical to reduce plant water loss and maintain a high photosynthetic rate which ultimately leads to elevated yield. We applied a leaf imprinting method for rapid and non-destructive phenotyping to explore genetic variation and identify quantitative traits loci (QTL) for stomatal traits in wheat grown under greenhouse and field conditions. RESULTS The genetics of stomatal traits on the adaxial surface of the flag leaf was investigated using 146 double haploid lines derived from a cross between two Australian lines of Triticum aestivum, RAC875 and Kukri. The drought tolerant line RAC875 showed numerous small stomata in contrast to Kukri. Significant differences between the lines were observed for stomatal densitity and size related traits. A negative correlation was found between stomatal size and density, reflecting a compensatory relationship between these traits to maintain total pore area per unit leaf surface area. QTL were identified for stomatal traits on chromosomes 1A, 1B, 2B, and 7A under field and controlled conditions. Most importantly some of these loci overlap with QTL on chromosome 7A that control kernel number per spike, normalized difference vegetation index, harvest index and yield in the same population. CONCLUSIONS In this first study to decifer genetic relationships between wheat stomatal traits and yield in response to water deficit, no significant correlations were observed among yield and stomatal traits under field conditions. However we found some overlaps between QTL for stomatal traits and yield across environments. This suggested that stomatal traits could be an underlying mechanism increasing yield at specific loci and used as a proxy to track a target QTL in recombinant lines. This finding is a step-forward in understanding the function of these loci and identifying candidate genes to accelerate positional cloning of yield QTL in wheat under drought.
Collapse
Affiliation(s)
- Fahimeh Shahinnia
- />Present Address: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
| | - Julien Le Roy
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
- />University of Lille, CNRS, INRA, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Benjamin Laborde
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
- />Montpellier SupAgro, 2 place Viala, 34060 Montpellier Cedex 2, France
| | - Beata Sznajder
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
| | - Priyanka Kalambettu
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
| | - Saba Mahjourimajd
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
| | - Joanne Tilbrook
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
| | - Delphine Fleury
- />Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 Australia
| |
Collapse
|
45
|
Wang L, Xia Q, Zhang Y, Zhu X, Zhu X, Li D, Ni X, Gao Y, Xiang H, Wei X, Yu J, Quan Z, Zhang X. Updated sesame genome assembly and fine mapping of plant height and seed coat color QTLs using a new high-density genetic map. BMC Genomics 2016; 17:31. [PMID: 26732604 PMCID: PMC4702397 DOI: 10.1186/s12864-015-2316-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/15/2015] [Indexed: 12/23/2022] Open
Abstract
Background Sesame is an important high-quality oil seed crop. The sesame genome was de novo sequenced and assembled in 2014 (version 1.0); however, the number of anchored pseudomolecules was higher than the chromosome number (2n = 2x = 26) due to the lack of a high-density genetic map with 13 linkage groups. Results We resequenced a permanent population consisting of 430 recombinant inbred lines and constructed a genetic map to improve the sesame genome assembly. We successfully anchored 327 scaffolds onto 13 pseudomolecules. The new genome assembly (version 2.0) included 97.5 % of the scaffolds greater than 150 kb in size present in assembly version 1.0 and increased the total pseudomolecule length from 233.7 to 258.4 Mb with 94.3 % of the genome assembled and 97.2 % of the predicted gene models anchored. Based on the new genome assembly, a bin map including 1,522 bins spanning 1090.99 cM was generated and used to identified 41 quantitative trait loci (QTLs) for sesame plant height and 9 for seed coat color. The plant height-related QTLs explained 3–24 % the phenotypic variation (mean value, 8 %), and 29 of them were detected in at least two field trials. Two major loci (qPH-8.2 and qPH-3.3) that contributed 23 and 18 % of the plant height were located in 350 and 928-kb spaces on Chr8 and Chr3, respectively. qPH-3.3, is predicted to be responsible for the semi-dwarf sesame plant phenotype and contains 102 candidate genes. This is the first report of a sesame semi-dwarf locus and provides an interesting opportunity for a plant architecture study of the sesame. For the sesame seed coat color, the QTLs of the color spaces L*, a*, and b* were detected with contribution rates of 3–46 %. qSCb-4.1 contributed approximately 39 % of the b* value and was located on Chr4 in a 199.9-kb space. A list of 32 candidate genes for the locus, including a predicted black seed coat-related gene, was determined by screening the newly anchored genome. Conclusions This study offers a high-density genetic map and an improved assembly of the sesame genome. The number of linkage groups and pseudomolecules in this assembly equals the number of sesame chromosomes for the first time. The map and updated genome assembly are expected to serve as a platform for future comparative genomics and genetic studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2316-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Qiuju Xia
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xiaodong Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xiaofeng Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Xuemei Ni
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Yuan Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Haitao Xiang
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| | - Zhiwu Quan
- Shenzhen Engineering Laboratory of Crop Molecular Design Breeding, BGI-agro, 518083, Shenzhen, China.
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
46
|
Kamino LN, Singh D, Pallotta MA, Collins NC, Park RF. Mapping of seedling resistance in barley to Puccinia striiformis f. sp. pseudohordei. J Appl Genet 2015. [PMID: 26198458 DOI: 10.1007/s13353-015-0304-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The barley grass stripe rust (BGYR) pathogen Puccinia striiformis f. sp. pseudohordei was first detected in Australia in 1997. While studies have established that it is virulent on wild barley grass, and can infect several barley cultivars, the basis of genetic resistance to this pathogen in barley is largely unknown. Understanding the genetic basis of host resistance and ensuring the selection of germplasm with multiple resistance genes are important to mitigate the potential impact of BGYR in barley production. Genetic analysis of seedling resistance to BGYR in two barley doubled haploid populations, Amaji Nijo/WI2585 (AN/WI) and Galleon/Haruna Nijo (GL/HN), indicated that resistance is governed by several genes. Marker regression analysis of the seedling resistance data from the AN/WI population detected a major QTL, BGYR_WI1 (resistance contributed by WI2585 with the closest marker explaining 52 % of the total phenotypic effect) on chromosome 1HS, flanked by the loci Xabg59 and Xabc310b at map positions 0.0 and 6.9 cM, respectively. Similarly, a major QTL, BGYR_HN1, (resistance contributed by Haruna Nijo with the closest marker explaining 70 % of the total phenotypic effect) was detected in the GL/HN population and was mapped to 1HS, flanked by the loci Xbcd135 and XHOR1 at map positions 12.8 and 24.5 cM, respectively. In addition, several minor loci that provided resistance against BGYR were detected in both populations. While defined QTL intervals were large, the analysis nonetheless provides new information on sources of major QTL controlling resistance to BGYR.
Collapse
Affiliation(s)
- L N Kamino
- Plant Breeding Institute (PBI), The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - D Singh
- Plant Breeding Institute (PBI), The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia.
| | - M A Pallotta
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite campus, Urrbrae, South Australia, 5064, Australia
| | - N C Collins
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite campus, Urrbrae, South Australia, 5064, Australia
| | - R F Park
- Plant Breeding Institute (PBI), The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| |
Collapse
|
47
|
Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S. QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:965-84. [PMID: 25748113 DOI: 10.1007/s00122-015-2483-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/11/2015] [Indexed: 05/23/2023]
Abstract
The combined SSR-SNP map and 20 QTL for agronomic and quality traits will assist in marker assisted breeding as well as map-based cloning of key genes in linseed. Flax is an important nutraceutical crop mostly because it is a rich source of omega-3 fatty acids and antioxidant compounds. Canada is the largest producer and exporter of oilseed flax (or linseed), creating a growing need to improve crop productivity and quality. In this study, a genetic map was constructed based on selected 329 single nucleotide polymorphic markers and 362 simple sequence repeat markers using a recombinant inbred line population of 243 individuals from a cross between the Canadian varieties CDC Bethune and Macbeth. The genetic map consisted of 15 linkage groups comprising 691 markers with an average marker density of one marker every 1.9 cM. A total of 20 quantitative trait loci (QTL) were identified corresponding to 14 traits. Three QTL each for oleic acid and stearic acid, two QTL each for linoleic acid and iodine value and one each for palmitic acid, linolenic acid, oil content, seed protein, cell wall, straw weight, thousand seed weight, seeds per boll, yield and days to maturity were identified. The QTL for cell wall, straw weight, seeds per boll, yield and days to maturity all co-located on linkage group 4. Analysis of the candidate gene regions underlying the QTL identified proteins involved in cell wall and fibre synthesis, fatty acid biosynthesis as well as their metabolism and yield component traits. This study provides the foundation for assisting in map-based cloning of the QTL and marker assisted selection of a wide range of quality and agronomic traits in linseed and potentially fibre flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Mohammadi M, Blake TK, Budde AD, Chao S, Hayes PM, Horsley RD, Obert DE, Ullrich SE, Smith KP. A genome-wide association study of malting quality across eight U.S. barley breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:705-21. [PMID: 25666272 DOI: 10.1007/s00122-015-2465-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/17/2015] [Indexed: 05/18/2023]
Abstract
We report malt quality QTLs relevant to breeding with greater precision than previous mapping studies. The distribution of favorable alleles suggests strategies for marker-assisted breeding and germplasm exchange. This study leverages the breeding data of 1,862 barley breeding lines evaluated in 97 field trials for genome-wide association study of malting quality traits in barley. The mapping panel consisted of six-row and two-row advanced breeding lines from eight breeding populations established at six public breeding programs across the United States. A total of 4,976 grain samples were subjected to micro-malting analysis and mapping of nine quality traits was conducted with 3,072 SNP markers distributed throughout the genome. Association mapping was performed for individual breeding populations and for combined six-row and two-row populations. Only 16% of the QTL we report here had been detected in prior bi-parental mapping studies. Comparison of the analyses of the combined two-row and six-row panels identified only two QTL regions that were common to both. In total, 108 and 107 significant marker-trait associations were identified in all six-row and all two-row breeding programs, respectively. A total of 102 and 65 marker-trait associations were specific to individual six-row and two-row breeding programs, respectively indicating that most marker-trait associations were breeding population specific. Combining datasets from different breeding program resulted in both the loss of some QTL that were apparent in the analyses of individual programs and the discovery of new QTL not identified in individual programs. This suggests that simply increasing sample size by pooling samples with different breeding history does not necessarily increase the power to detect associations. The genetic architecture of malting quality and the distribution of favorable alleles suggest strategies for marker-assisted selection and germplasm exchange.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN, 55108-6026, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gutiérrez L, Germán S, Pereyra S, Hayes PM, Pérez CA, Capettini F, Locatelli A, Berberian NM, Falconi EE, Estrada R, Fros D, Gonza V, Altamirano H, Huerta-Espino J, Neyra E, Orjeda G, Sandoval-Islas S, Singh R, Turkington K, Castro AJ. Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:501-16. [PMID: 25548806 DOI: 10.1007/s00122-014-2448-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Multi-environment multi-QTL mixed models were used in a GWAS context to identify QTL for disease resistance. The use of mega-environments aided the interpretation of environment-specific and general QTL. Diseases represent a major constraint for barley (Hordeum vulgare L.) production in Latin America. Spot blotch (caused by Cochliobolus sativus), stripe rust (caused by Puccinia striiformis f.sp. hordei) and leaf rust (caused by Puccinia hordei) are three of the most important diseases that affect the crop in the region. Since fungicide application is not an economically or environmentally sound solution, the development of durably resistant varieties is a priority for breeding programs. Therefore, new resistance sources are needed. The objective of this work was to detect genomic regions associated with field level plant resistance to spot blotch, stripe rust, and leaf rust in Latin American germplasm. Disease severities measured in multi-environment trials across the Americas and 1,096 SNPs in a population of 360 genotypes were used to identify genomic regions associated with disease resistance. Optimized experimental design and spatial modeling were used in each trial to estimate genotypic means. Genome-Wide Association Mapping (GWAS) in each environment was used to detect Quantitative Trait Loci (QTL). All significant environment-specific QTL were subsequently included in a multi-environment-multi-QTL (MEMQ) model. Geographical origin and inflorescence type were the main determinants of population structure. Spot blotch severity was low to intermediate while leaf and stripe rust severity was high in all environments. Mega-environments were defined by locations for spot blotch and leaf rust. Significant marker-trait associations for spot blotch (9 QTL), leaf (6 QTL) and stripe rust (7 QTL) and both global and environment-specific QTL were detected that will be useful for future breeding efforts.
Collapse
Affiliation(s)
- Lucia Gutiérrez
- Departmento de Biometria, Estadistica y Computo, Facultad de Agronomía, Universidad de la República, Garzón 780, Montevideo, Uruguay,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fan Y, Shabala S, Ma Y, Xu R, Zhou M. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 2015; 16:43. [PMID: 25651931 PMCID: PMC4320823 DOI: 10.1186/s12864-015-1243-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/15/2015] [Indexed: 11/24/2022] Open
Abstract
Background Drought and salinity are two major abiotic stresses that severely limit barley production worldwide. Physiological and genetic complexity of these tolerance traits has significantly slowed the progress of developing stress-tolerant cultivars. Marker-assisted selection (MAS) may potentially overcome this problem. In the current research, seventy two double haploid (DH) lines from a cross between TX9425 (a Chinese landrace variety with superior drought and salinity tolerance) and a sensitive variety, Franklin were used to identify quantitative trait loci (QTL) for drought and salinity tolerance, based on a range of developmental and physiological traits. Results Two QTL for drought tolerance (leaf wilting under drought stress) and one QTL for salinity tolerance (plant survival under salt stress) were identified from this population. The QTL on 2H for drought tolerance determined 42% of phenotypic variation, based on three independent experiments. This QTL was closely linked with a gene controlling ear emergency. The QTL on 5H for drought tolerance was less affected by agronomic traits and can be effectively used in breeding programs. A candidate gene for this QTL on 5H was identified based on the draft barley genome sequence. The QTL for proline accumulation, under both drought and salinity stresses, were located on different positions to those for drought and salinity tolerance, indicating no relationship with plant tolerance to either of these stresses. Conclusions Using QTL mapping, the relationships between QTL for agronomic and physiological traits and plant drought and salinity tolerance were studied. A new QTL for drought tolerance which was not linked to any of the studied traits was identified. This QTL can be effectively used in breeding programs. It was also shown that proline accumulation under stresses was not necessarily linked with drought or salinity tolerance based on methods of phenotyping used in this experiment. The use of proline content in breeding programs can also be limited by the accuracy of phenotyping. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1243-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Fan
- University of Tasmania, P.O. Box 46, Kings Meadows, TAS 7249, Australia.
| | - Sergey Shabala
- University of Tasmania, P.O. Box 46, Kings Meadows, TAS 7249, Australia.
| | - Yanling Ma
- University of Tasmania, P.O. Box 46, Kings Meadows, TAS 7249, Australia.
| | - Rugen Xu
- Barley Research Institution of Yangzhou University, Yangzhou, 225009, China.
| | - Meixue Zhou
- University of Tasmania, P.O. Box 46, Kings Meadows, TAS 7249, Australia.
| |
Collapse
|