1
|
Singh H, Sekhon BS, Kumar P, Dhall RK, Devi R, Dhillon TS, Sharma S, Khar A, Yadav RK, Tomar BS, Ntanasi T, Sabatino L, Ntatsi G. Genetic Mechanisms for Hybrid Breeding in Vegetable Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2294. [PMID: 37375919 DOI: 10.3390/plants12122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
To address the complex challenges faced by our planet such as rapidly changing climate patterns, food and nutritional insecurities, and the escalating world population, the development of hybrid vegetable crops is imperative. Vegetable hybrids could effectively mitigate the above-mentioned fundamental challenges in numerous countries. Utilizing genetic mechanisms to create hybrids not only reduces costs but also holds significant practical implications, particularly in streamlining hybrid seed production. These mechanisms encompass self-incompatibility (SI), male sterility, and gynoecism. The present comprehensive review is primarily focused on the elucidation of fundamental processes associated with floral characteristics, the genetic regulation of floral traits, pollen biology, and development. Specific attention is given to the mechanisms for masculinizing and feminizing cucurbits to facilitate hybrid seed production as well as the hybridization approaches used in the biofortification of vegetable crops. Furthermore, this review provides valuable insights into recent biotechnological advancements and their future utilization for developing the genetic systems of major vegetable crops.
Collapse
Affiliation(s)
- Hira Singh
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Bhallan Singh Sekhon
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Pradeep Kumar
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Rajinder Kumar Dhall
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Ruma Devi
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Tarsem Singh Dhillon
- Department of Vegetable Science, Punjab Agriculture University, Ludhiana 141004, India
| | - Suman Sharma
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Anil Khar
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | | | | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, IeraOdos 75, 11855 Athens, Greece
| |
Collapse
|
2
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
3
|
Chen L, Ren W, Zhang B, Chen W, Fang Z, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Zhang Y. Organelle Comparative Genome Analysis Reveals Novel Alloplasmic Male Sterility with orf112 in Brassica oleracea L. Int J Mol Sci 2021; 22:ijms222413230. [PMID: 34948024 PMCID: PMC8703919 DOI: 10.3390/ijms222413230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
B. oleracea Ogura CMS is an alloplasmic male-sterile line introduced from radish by interspecific hybridization and protoplast fusion. The introduction of alien cytoplasm resulted in many undesirable traits, which affected the yield of hybrids. Therefore, it is necessary to identify the composition and reduce the content of alien cytoplasm in B. oleracea Ogura CMS. In the present study, we sequenced, assembled, and compared the organelle genomes of Ogura CMS cabbage and its maintainer line. The chloroplast genome of Ogura-type cabbage was completely derived from normal-type cabbage, whereas the mitochondrial genome was recombined from normal-type cabbage and Ogura-type radish. Nine unique regions derived from radish were identified in the mitochondrial genome of Ogura-type cabbage, and the total length of these nine regions was 35,618 bp, accounting for 13.84% of the mitochondrial genome. Using 32 alloplasmic markers designed according to the sequences of these nine regions, one novel sterile source with less alien cytoplasm was discovered among 305 materials and named Bel CMS. The size of the alien cytoplasm in Bel CMS was 21,587 bp, accounting for 8.93% of its mtDNA, which was much less than that in Ogura CMS. Most importantly, the sterility gene orf138 was replaced by orf112, which had a 78-bp deletion, in Bel CMS. Interestingly, Bel CMS cabbage also maintained 100% sterility, although orf112 had 26 fewer amino acids than orf138. Field phenotypic observation showed that Bel CMS was an excellent sterile source with stable 100% sterility and no withered buds at the early flowering stage, which could replace Ogura CMS in cabbage heterosis utilization.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wendi Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China; (L.C.); (W.R.); (B.Z.); (W.C.); (Z.F.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
- Correspondence:
| |
Collapse
|
4
|
Kim S, Kim S. An insertion mutation located on putative enhancer regions of the MYB26-like gene induces inhibition of anther dehiscence resulting in novel genic male sterility in radish ( Raphanus sativus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:67. [PMID: 37309318 PMCID: PMC10236041 DOI: 10.1007/s11032-021-01254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
A novel male-sterility trait was identified in a radish (Raphanus sativus L.) population. Although the size of male-sterile anthers was comparable to that of normal flowers, no pollen grain was observed during anther dehiscence. However, dissection of male-sterile anthers revealed an abundance of normal pollen grains. Analysis of segregating populations showed that a single recessive locus, designated RsMs1, conferred male sterility. Based on two radish draft genome sequences, molecular markers were developed to delimit the genomic region harboring the RsMs1. The region was narrowed down to approximately 24 kb after analyzing recombinants selected from 7511 individuals of a segregating population. Sequencing of the delimited region yielded six putative genes including four genes expressed in the floral tissue, and one gene with significant differential expression between male-fertile and male-sterile individuals of a segregating population. This differentially expressed gene was orthologous to the Arabidopsis MYB26 gene, which played a critical role in anther dehiscence. Excluding a synonymous single nucleotide polymorphism in exon3, no polymorphism involving coding and putative promoter regions was detected between alleles. A 955-bp insertion was identified 7.5 kb upstream of the recessive allele. Highly conserved motifs among four Brassicaceae species were identified around this insertion site, suggesting the presence of putative enhancer sequences. A functional marker was developed for genotyping of the RsMs1 based on the 955-bp insertion. A total of 120 PI accessions were analyzed using this marker, and 11 accessions were shown to carry the recessive rsms1 allele. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01254-9.
Collapse
Affiliation(s)
- Seongjun Kim
- Jeollanamdo Agricultural Research and Extension Service, Naju-si, 58213 Republic of Korea
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
5
|
Lin S, Su S, Jin L, Peng R, Sun D, Ji H, Yu Y, Xu J. Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (Brassica rapa ssp. rapifera) via high-throughput sequencing and degradome analysis. PLoS One 2020; 15:e0236829. [PMID: 32730367 PMCID: PMC7392268 DOI: 10.1371/journal.pone.0236829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait in angiosperms caused by perturbations in nucleus-mitochondrion interactions that suppress the production of functional pollen. MicroRNAs (miRNAs) are small non-coding RNAs that act as regulatory molecules of transcriptional or post-transcriptional gene silencing in plants. The discovery of miRNAs and their possible implications in CMS induction provides clues for the intricacies and complexity of this phenomenon. Previously, we characterized an Ogura-CMS line of turnip (Brassica rapa ssp. rapifera) that displays distinct impaired anther development with defective microspore production and premature tapetum degeneration. In the present study, high-throughput sequencing was employed for a genome-wide investigation of miRNAs. Six small RNA libraries of inflorescences collected from the Ogura-CMS line and its maintainer fertile (MF) line of turnip were constructed. A total of 120 pre-miRNAs corresponding to 89 mature miRNAs were identified, including 87 conversed miRNAs and 33 novel miRNAs. Among these miRNAs, the expression of 10 differentially expressed mature miRNAs originating from 12 pre-miRNAs was shown to have changed by more than two-fold between inflorescences of the Ogura-CMS line and inflorescences of the MF line, including 8 down- and 2 up-regulated miRNAs. The expression profiles of the differentially expressed miRNAs were confirmed by stem-loop quantitative real-time PCR. In addition, to identify the targets of the identified miRNAs, a degradome analysis was performed. A total of 22 targets of 25 miRNAs and 17 targets of 28 miRNAs were identified as being involved in the reproductive development for Ogura-CMS and MF lines of turnip, respectively. Negative correlations of expression patterns between partial miRNAs and their targets were detected. Some of these identified targets, such as squamosa promoter-binding-like transcription factor family proteins, auxin response factors and pentatricopeptide repeat-containing proteins, were previously reported to be involved in reproductive development in plants. Taken together, our results can help improve the understanding of miRNA-mediated regulatory pathways that might be involved in CMS occurrence in turnip.
Collapse
Affiliation(s)
- Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shiwen Su
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Youjian Yu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin’an, China
| | - Jian Xu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| |
Collapse
|
6
|
Mitochondrial Genome Sequencing Reveals orf463a May Induce Male Sterility in NWB Cytoplasm of Radish. Genes (Basel) 2020; 11:genes11010074. [PMID: 31936663 PMCID: PMC7017215 DOI: 10.3390/genes11010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Radish (Raphanus sativus L.) is an important root vegetable worldwide. The development of F1 hybrids, which are extensively used for commercial radish production, relies on cytoplasmic male sterility (CMS). To identify candidate genes responsible for CMS in NWB cytoplasm, we sequenced the normal and NWB CMS radish mitochondrial genomes via next-generation sequencing. A comparative analysis revealed 18 syntenic blocks and 11 unique regions in the NWB CMS mitogenome. A detailed examination indicated that orf463a was the most likely causal factor for male sterility in NWB cytoplasm. Interestingly, orf463a was identical to orf463, which is responsible for CMS in Dongbu cytoplasmic and genic male sterility (DCGMS) radish. Moreover, only structural variations were detected between the NWB CMS and DCGMS mitochondrial genomes, with no nucleotide polymorphisms (SNPs) or meaningful indels. Further analyses revealed these two mitochondrial genomes are coexisting isomeric forms belonging to the same mitotype. orf463a was more highly expressed in flower buds than in vegetative organs and its expression was differentially regulated in the presence of restorer of fertility (Rf) genes. orf463a was confirmed to originate from Raphanus raphanistrum. In this study, we identified a candidate gene responsible for the CMS in NWB cytoplasm and clarified the relationship between NWB CMS and DCGMS.
Collapse
|
7
|
Singh S, Dey SS, Bhatia R, Kumar R, Behera TK. Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. PLANT REPRODUCTION 2019; 32:231-256. [PMID: 31053901 DOI: 10.1007/s00497-019-00371-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Overview of the current status of GMS and CMS systems available in Brassica vegetables, their molecular mechanism, wild sources of sterile cytoplasm and exploitation of male sterility in hybrid breeding. The predominantly herbaceous family Brassicaceae (crucifers or mustard family) encompasses over 3700 species, and many of them are scientifically and economically important. The genus Brassica is an economically important genus within the tribe Brassicaceae that comprises important vegetable, oilseed and fodder crops. Brassica vegetables display strong hybrid vigor, and heterosis breeding is the integral part in their improvement. Commercial production of F1 hybrid seeds in Brassica vegetables requires an effective male sterility system. Among the available male sterility systems, cytoplasmic male sterility (CMS) is the most widely exploited in Brassica vegetables. This system is maternally inherited and studied intensively. A limited number of reports about the genic male sterility (GMS) are available in Brassica vegetables. The GMS system is reported to be dominant, recessive and trirecessive in nature in different species. In this review, we discuss the available male sterility systems in Brassica vegetables and their potential use in hybrid breeding. The molecular mechanism of mt-CMS and causal mitochondrial genes of CMS has been discussed in detail. Finally, the exploitation of male sterility system in heterosis breeding of Brassica vegetables, future prospects and need for further understanding of these systems are highlighted.
Collapse
Affiliation(s)
- Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Raj Kumar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| |
Collapse
|
8
|
Mei S, Liu T, Wang Z. Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.). Int J Mol Sci 2016; 17:E42. [PMID: 26751440 PMCID: PMC4730287 DOI: 10.3390/ijms17010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO) groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs), indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR) proteins, heat shock transcription factors (HSFs) and heat shock proteins (HSPs), are discussed. The transcriptome dataset and comparative analysis will provide an important resource for further understanding anther development, the CMS mechanism and to improve molecular breeding in radish.
Collapse
Affiliation(s)
- Shiyong Mei
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zhiwei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Yamagishi H, Bhat SR. Cytoplasmic male sterility in Brassicaceae crops. BREEDING SCIENCE 2014; 64:38-47. [PMID: 24987289 PMCID: PMC4031109 DOI: 10.1270/jsbbs.64.38] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/05/2013] [Indexed: 05/20/2023]
Abstract
Brassicaceae crops display strong hybrid vigor, and have long been subject to F1 hybrid breeding. Because the most reliable system of F1 seed production is based on cytoplasmic male sterility (CMS), various types of CMS have been developed and adopted in practice to breed Brassicaceae oil seed and vegetable crops. CMS is a maternally inherited trait encoded in the mitochondrial genome, and the male sterile phenotype arises as a result of interaction of a mitochondrial CMS gene and a nuclear fertility restoring (Rf) gene. Therefore, CMS has been intensively investigated for gaining basic insights into molecular aspects of nuclear-mitochondrial genome interactions and for practical applications in plant breeding. Several CMS genes have been identified by molecular genetic studies, including Ogura CMS from Japanese radish, which is the most extensively studied and most widely used. In this review, we discuss Ogura CMS, and other CMS systems, and the causal mitochondrial genes for CMS. Studies on nuclear Rf genes and the cytoplasmic effects of alien cytoplasm on general crop performance are also reviewed. Finally, some of the unresolved questions about CMS are highlighted.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo, Kita, Kyoto 603-8555,
Japan
- Corresponding author (e-mail: )
| | - Shripad R. Bhat
- National Research Centre of Plant Biotechnology,
New Delhi 10012,
India
| |
Collapse
|
10
|
Wang ZW, Wang C, Gao L, Mei SY, Zhou Y, Xiang CP, Wang T. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): a case of overdominance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2041-2048. [PMID: 23630327 PMCID: PMC3638831 DOI: 10.1093/jxb/ert065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The practice of hybridization has greatly contributed to the increase in crop productivity. A major component that exploits heterosis in crops is the cytoplasmic male sterility (CMS)/nucleus-controlled fertility restoration (Rf) system. Through positional cloning, it is shown that heterozygous alleles (RsRf3-1/RsRf3-2) encoding pentatricopeptide repeat (PPR) proteins are responsible for restoring fertility to cytoplasmic male-sterile radish (Raphanus sativus L.). Furthermore, it was found that heterozygous alleles (RsRf3-1/RsRf3-2) show higher expression and RNA polymerase II occupancy in the CMS cytoplasmic background compared with their homozygous alleles (RsRf3-1/RsRf3-1 or RsRf3-2/RsRf3-2). These data provide new insights into the molecular mechanism of fertility restoration to cytoplasmic male-sterile plants and illustrate a case of overdominance.
Collapse
Affiliation(s)
- Zhi Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chuan Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Shi Yong Mei
- Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chang Ping Xiang
- Key Laboratory of Ministry of Education for Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| |
Collapse
|
11
|
Tsutsui K, Jeong BH, Ito Y, Bang SW, Kaneko Y. Production and characterization of an alloplasmic and monosomic addition line of Brassica rapa carrying the cytoplasm and one chromosome of Moricandia arvensis. BREEDING SCIENCE 2011; 61:373-379. [PMID: 23136474 PMCID: PMC3406767 DOI: 10.1270/jsbbs.61.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/19/2011] [Indexed: 05/29/2023]
Abstract
Intergeneric hybridization was performed between Moricandia arvensis and four inbred lines of Brassica rapa following embryo rescue. Three F(1) hybrid plants were developed from three cross combinations of M. arvensis × B. rapa, and amphidiploids were synthesized by colchicine treatment. Six BC(1) plants were generated from a single cross combination of amphidipolid × B. rapa 'Ko1-303' through embryo rescue. One BC(2) and three BC(3) plants were obtained from successive backcrossing with B. rapa 'Ko1-303' employing embryo rescue. Alloplasmic and monosomic addition lines of B. rapa (Allo-MALs, 2n = 21) were obtained from backcrossed progeny of three BC(3) plants (2n = 21, 22 and 23) without embryo rescue. An alloplasmic line of B. rapa (2n = 20) degenerated before floliation on 1/2 MS medium due to severe chlorosis. Allo-MALs of B. rapa (2n = 21) showed stable male sterility without any abnormal traits in vegetative growth and female fertility. Molecular analyses revealed that the same chromosome and cytoplasm of M. arvensis had been added to each Allo-MAL of B. rapa. This Allo-MAL of B. rapa may be useful material for producing cytoplasmic male sterile lines of B. rapa.
Collapse
Affiliation(s)
- Kota Tsutsui
- Laboratory of Plant Breeding, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Bum Hee Jeong
- National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Yukiko Ito
- Laboratory of Plant Breeding, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Sang Woo Bang
- Laboratory of Plant Breeding, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| | - Yukio Kaneko
- Laboratory of Plant Breeding, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
12
|
Lee YP, Kim S, Lim H, Ahn Y, Sung SK. Identification of mitochondrial genome rearrangements unique to novel cytoplasmic male sterility in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:719-28. [PMID: 19034407 DOI: 10.1007/s00122-008-0932-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/05/2008] [Indexed: 05/23/2023]
Abstract
A novel cytoplasmic male-sterility (CMS) radish (Raphanus sativus L.) and its associated mitotype (DCGMS) were previously identified; however, no mtDNA fragments flanking the atp6 gene were found in the DCGMS mitotype. Unlike three other mitotypes in this study, a unique mtDNA organization, atp6-nad3-rps12, was found to be the major mtDNA structure associated with this mitotype. This organization may have arisen from short repeat sequence-mediated recombination events. The short repeat clusters involved in the mtDNA rearrangement around the atp6 gene also exist as repetitive sequences in the complete mitochondrial genomes of other members of the Brassicaceae family, including rapeseed and Arabidopsis. These sequences do not exist as repetitive elements in the mtDNA of tobacco, sugar beet, or rice. While studying the regions flanking atp6, we identified a truncated atp6 mtDNA fragment which consists of the 5' part of the atp6 gene linked to an unidentified sequence. This mtDNA structure was present in all mitotypes; however, a single nucleotide insertion mutation leading to a frame-shift was identified only in the DCGMS mitotype. Although this truncated atp6 organization was transcribed, there was no significantly different expression between male-sterile and fertile segregating individuals from the BC(1)F(1) population originating from a cross between male-sterile and restorer parents. Comprehensive survey of the single base-pair insertion showed that it was maternally inherited and unique to the DCGMS mitotype. Therefore, this single nucleotide polymorphism (SNP) in the coding sequence of the mtDNA will be a useful molecular marker for the detection of the DCGMS mitotype.
Collapse
Affiliation(s)
- Young-Pyo Lee
- Biotech Research Center, Dongbu Advanced Research Institute, Dongbu HiTek Co., Ltd, Daejeon 305-708, South Korea
| | | | | | | | | |
Collapse
|
13
|
Lee YP, Park S, Lim C, Kim H, Lim H, Ahn Y, Sung SK, Yoon MK, Kim S. Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:905-13. [PMID: 18597066 DOI: 10.1007/s00122-008-0830-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 06/11/2008] [Indexed: 05/18/2023]
Abstract
A male-sterile (MS) radish (Raphanus sativus L.) was found in an accession collected from Uzbekistan. Unlike Ogura MS radishes in which no pollen grain is typically visible during anthesis, a small number of pollen grains stuck together in the dehiscing anthers was observed in the newly identified MS radish. Fluorescein diacetate tests and scanning electron micrographs showed that pollen grains in the new MS radish were severely deformed and non-viable. Cytological examination of pollen development stages showed a clear difference in the defective stage from that seen in Ogura male-sterility. Reciprocal cross-pollination with diverse male-fertile lines indicated that pollen grains of the new MS radish were completely sterile, and the female organs were fully fertile. When the new MS radish and Ogura MS lines were cross-pollinated with a set of eight breeding lines, all F1 progeny originating from crosses with the new MS radish were male-sterile. In contrast, most of the F1 progeny resulting from crosses with Ogura MS lines were male-fertile. These results demonstrated that factors associated with induction of the newly identified male-sterility are different from those of Ogura male-sterility. The lack of restorer lines for the newly identified male-sterility led us to predict that it might be a complete cytoplasmic male-sterility without restorer-of-fertility genes in nuclear genomes. However, cross-pollination with more diverse radish germplasm identified one accession introduced from Russia that could completely restore fertility, proving the existence of restorer-of-fertility gene(s) for the new male-sterility. Meanwhile, the PCR amplification profile of molecular markers for the classification of radish mitochondrial genome types revealed that the new MS radish contained a novel mitotype.
Collapse
Affiliation(s)
- Young-Pyo Lee
- Biotech Research Center, Dongbu Advanced Research Institute, Dongbu HiTek Co. Ltd, Daejeon 305-708, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang ZW, Zhang YJ, Xiang CP, Mei SY, Zhou Y, Chen GP, Wang T. A new fertility restorer locus linked closely to the Rfo locus for cytoplasmic male sterility in radish. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:313-20. [PMID: 18542910 DOI: 10.1007/s00122-008-0776-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 04/12/2008] [Indexed: 05/11/2023]
Abstract
In this study, we have investigated a new fertility restorer (Rf) locus for cytoplasmic male sterility (CMS) in radish. We have obtained a CMS-Rf system consisting of sterile line '9802A1', maintainer line '9802B1' and restorer line '9802H'. F(1) plants from cross between sterile line '9802A1' and restorer line '9802H' were all male fertile, self pollination of F(1) plants produced an F(2) segregating population consisting of 600 individuals. The segregating population was found to fit a segregation ratio 3:1 for male fertile and sterile types, indicating that male fertility is restored by a single dominant gene (termed Rfo2) in the CMS-Rf system. Based on the DNA sequence of Rfo/Rfk1 (AJ535623), just one full length gene in the sterile line '9802A1', in the restorer line '9802H' and in the male fertile line '2006H', was cloned, respectively. The three sequences correspond to the same gene with two alleles: Rfob in '9802H' and rfob in '9802A1' and '2006H'. These two alleles differ from Rfo/Rfk1 and rfk1 (AJ535624) alleles by two synonymous base substitutions, respectively. Based on the differences between the Rfob and rfob genes, one PCR-based marker was developed, and designated Marker 1, which is identical to the corresponding region of Rfob by sequence analysis. In the F(2) segregating population described above, the Marker 1 was present in 5 sterile plants and in 453 fertile plants, absent in 4 fertile plants and in 138 sterile plants, and was found to fit a segregation ratio 3:1 indicating that Rfob was single copy in '9802H'. Linkage analysis showed that the Rfo2 locus for our CMS-Rf system was distant from the Rfo locus by about 1.6 cM. The sterile line '9802A1' was pollinated by the male fertile line '2006H' and the resulting F(1) plants were all male fertile. These results indicated that the male fertility of radish CMS can be restored by a new Rf locus, which linked tightly to the Rfo locus.
Collapse
Affiliation(s)
- Zhi Wei Wang
- Wuhan Botanical Garden/Wuhan Institute of Botany, The Chinese Academy of Sciences, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Wan Z, Jing B, Tu J, Ma C, Shen J, Yi B, Wen J, Huang T, Wang X, Fu T. Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:355-362. [PMID: 18034224 DOI: 10.1007/s00122-007-0673-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/27/2007] [Indexed: 05/25/2023]
Abstract
A novel cytoplasmic male sterility (CMS) was identified in Brassica juncea, named as hau CMS (00-6-102A). Subsequently, the male sterility was transferred to B. napus by interspecific hybridization. The hau CMS has stable male sterility. Flowers on the A line are absolutely male sterile, and seeds harvested from the line following pollinations with the maintainer gave rise to 100% sterile progeny. The anthers in CMS plants are replaced by thickened petal-like structures and pollen grains were not detected. In contrast, in other CMS systems viz. pol, nap, tour, and ogu, anthers are formed but do not produce viable pollen. The sterility of hau CMS initiates at the stage of stamen primordium polarization, which is much earlier compared with the other four CMS systems. We have successfully transferred hau CMS from B. juncea to B. napus. Restorer lines for pol, ogu, nap, and tour CMS systems were found to be ineffective to restore fertility in hau CMS. Sixteen out of 40 combinations of mitochondrial probe/enzyme used for RFLP analysis distinguished the hau CMS system from the other four systems. Among these sixteen combinations, five ones alone could distinguish the five CMS systems from each other. The evidence from genetic, morphological, cytological and molecular studies confirmed that the hau CMS system is a novel CMS system.
Collapse
Affiliation(s)
- Zhengjie Wan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|