1
|
Antanynienė R, Šikšnianienė JB, Stanys V, Frercks B. Fingerprinting of Plum ( Prunus domestica) Genotypes in Lithuania Using SSR Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:1538. [PMID: 37050164 PMCID: PMC10097231 DOI: 10.3390/plants12071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
This study's aim was to evaluate the genetic diversity of European plum (Prunus domestica) cultivars and hybrids in Lithuania using SSR markers. In total, 107 plum genotypes (including 68 European plum cultivars and 39 hybrids) from the genetic resources collection of the Institute of Horticulture of the Lithuanian Research Centre for Agriculture and Forestry (LRCAF IH) were evaluated using nine microsatellite markers (SSRs) previously published and suggested by the European Cooperative Programme for Plant Genetic Resources (ECPGR). Up to six alleles per locus with each primer pair were generated for some genotypes due to the hexaploidy of plums. The number of alleles in each primer ranged from 18 to 30, with an average of 24.33. The highest number of alleles was generated with the PacA33 primer pair (30). The most informative primer, according to the PIC value, was BPPCT007. Sixty-two unique alleles (representing 39.5% of all polymorphic alleles) have been detected in the plum germplasm developed in Lithuania. According to UPGMA cluster analysis, 58 European plum genotypes were separated into eight groups without any relation to fruit color or shape. By genetic diversity (UPGMA) and structure (Bayesian) analysis, European plum hybrids were grouped into clusters according to their pedigree.
Collapse
|
2
|
Pu T, Zhao ZN, Yu X. The complete chloroplast genome of Crataegus scabrifolia (Franch.) Rehd (Rosaceae), a medicinal and edible plant in Southwest China. Mitochondrial DNA B Resour 2023; 8:81-85. [PMID: 36643811 PMCID: PMC9833407 DOI: 10.1080/23802359.2022.2160668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Crataegus scabrifolia (Franch.) Rehd is a medicinal and edible plant in Southwest China. The chloroplast genome of C. scabrifolia was analyzed by high-throughput sequencing technology, and its genetic relationship to related species was discussed. The chloroplast genome is 159,637 bp long, with two inverted repeat (IR) regions (26,384 bp each) that separate a large single-copy (LSC) region (87,730 bp) and a small single-copy (SSC) region (19,139 bp). A total of 127 genes were annotated, including 83 protein-coding genes, 8 rRNA genes, and 36 tRNA genes. The phylogenetic tree shows that C. hupehensis is closely related to C. scabrifolia with strong bootstrap support.
Collapse
Affiliation(s)
- Tian Pu
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Zhen-Ning Zhao
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Xiao Yu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China,CONTACT Xiao Yu School of Landscape Architecture, Southwest Forestry University, 300 Bailong temple, Qingyun Street, Kunming, 650224China
| |
Collapse
|
3
|
Phylogenomic analysis and development of molecular markers for the determination of twelve plum cultivars (Prunus, Rosaceae). BMC Genomics 2022; 23:745. [PMID: 36348277 PMCID: PMC9644608 DOI: 10.1186/s12864-022-08965-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background Plums are one of the most important economic crops of the Rosaceae family and are produced all over the world. China has many local varieties, but the genomic information is limited for genetic studies. Here, we first sequenced, assembled, and analyzed the plastomes of twelve plum cultivars and developed molecular markers to distinguish them. Results The twelve plastomes of plum cultivars have a circular structure of 157,863–157,952 bp containing a large single-copy region (LSC) of 86,109–86,287 bp, a small copy region (SSC) of 18,927–19,031 bp, and two inverted repeats (IR) of 26,353–26,387 bp each. The plastomes of plum cultivars encode 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. We detected 50, 54, 54, 53, 53, 50, 54, 54, 54, 49, 50, 54 SSRs in the twelve analyzed varieties, respectively. For repeat sequences, we identified 553 tandem repeats, 204 direct repeats, and 270 palindromic repeats. We also analyzed the expansion/contraction of IR regions. The genes rpl22, rps19, rpl2, ycf1, ndhF, and the trnH span on or near the boundary of IR and single-copy regions. Phylogenetic analysis showed that the twelve cultivars were clustered with the P. salicina and P. domestica. We developed eight markers LZ01 to LZ08 based on whole plastomes and nuclear genes and validated them successfully with six repetitions. Conclusions The results obtained here could fill in the blanks of the plastomes of these twelve plum cultivars and provide a wider perspective based on the basis of the plastomes of Prunus to the molecular identification and phylogenetic construction accurately. The analysis from this study provides an important and valuable resource for studying the genetic basis for agronomic and adaptive differentiation of the Prunus species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08965-z.
Collapse
|
4
|
Wu X, Luo D, Zhang Y, Yang C, Crabbe MJC, Zhang T, Li G. Comparative Genomic and Phylogenetic Analysis of Chloroplast Genomes of Hawthorn (Crataegus spp.) in Southwest China. Front Genet 2022; 13:900357. [PMID: 35860470 PMCID: PMC9289535 DOI: 10.3389/fgene.2022.900357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
The hawthorns (Crataegus spp.) are widely distributed and famous for their edible and medicinal values. There are ∼18 species and seven varieties of hawthorn in China distributed throughout the country. We now report the chloroplast genome sequences from C. scabrifolia, C. chungtienensis and C. oresbia, from the southwest of China and compare them with the previously released six species in Crataegus and four species in Rosaceae. The chloroplast genome structure of Crataegus is typical and can be divided into four parts. The genome sizes are between 159,654 and 159,898bp. The three newly sequenced chloroplast genomes encode 132 genes, including 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Comparative analysis of the chloroplast genomes revealed six divergent hotspot regions, including ndhA, rps16-trnQ-UUG, ndhF-rpl32, rps16-psbK, trnR-UCU-atpA and rpl32-trnL-UAG. According to the correlation and co-occurrence analysis of repeats with indels and SNPs, the relationship between them cannot be ignored. The phylogenetic tree constructed based on the complete chloroplast genome and intergenic region sequences indicated that C. scabrifolia has a different origin from C. chungtienensis and C. oresbia. We support the placement of C. hupehensis, C. cuneata, C. scabrifolia in C. subg. Crataegus and C. kansuensis, C. oresbia, C. kansuensis in C. subg. Sanguineae. In addition, based on the morphology, geographic distribution and phylogenetic relationships of C. chungtienensis and C. oresbia, we speculate that these two species may be the same species. In conclusion, this study has enriched the chloroplast genome resources of Crataegus and provided valuable information for the phylogeny and species identification of this genus.
Collapse
Affiliation(s)
- Xien Wu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dengli Luo
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingmin Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Congwei Yang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - M. James C. Crabbe
- Wolfson College, Oxford University, Oxford, United Kingdom
- Institute of Biomedical and Environmental Science and Technology, School of Life Sciences, University of Bedfordshire, Luton, United Kingdom
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Ticao Zhang, ; Guodong Li,
| | - Guodong Li
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Ticao Zhang, ; Guodong Li,
| |
Collapse
|
5
|
Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island. Genes (Basel) 2022; 13:genes13050728. [PMID: 35627113 PMCID: PMC9141645 DOI: 10.3390/genes13050728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022] Open
Abstract
Cotoneaster is a taxonomically and ornamentally important genus in the family Rosaceae; however, phylogenetic relationships among its species are complicated owing to insufficient morphological diagnostic characteristics and hybridization associated with polyploidy and apomixis. In this study, we sequenced the complete plastomes of seven Cotoneaster species (C. dielsianus, C. hebephyllus, C. integerrimus, C. mongolicus, C. multiflorus, C. submultiflorus, and C. tenuipes) and included the available complete plastomes in a phylogenetic analysis to determine the origin of C. wilsonii, which is endemic to Ulleung Island, Korea. Furthermore, based on 15 representative lineages within the genus, we carried out the first comparative analysis of Cotoneaster plastid genomes to gain an insight into their molecular evolution. The plastomes were highly conserved, with sizes ranging from 159,595 bp (C. tenuipes) to 160,016 bp (C. hebephyllus), and had a GC content of 36.6%. The frequency of codon usage showed similar patterns among the 15 Cotoneaster species, and 24 of the 35 protein-coding genes were predicted to undergo RNA editing. Eight of the 76 common protein-coding genes, including ccsA, matK, ndhD, ndhF, ndhK, petA, rbcL, and rpl16, were positively selected, implying their potential roles in adaptation and speciation. Of the 35 protein-coding genes, 24 genes (15 photosynthesis-related, seven self-replications, and three others) were found to harbor RNA editing sites. Furthermore, several mutation hotspots were identified, including trnG-UCC/trnR-UCU/atpA and trnT-UGU/trnL-UAA. Maximum likelihood analysis based on 57 representative plastomes of Cotoneaster and two Heteromeles plastomes as outgroups revealed two major lineages within the genus, which roughly correspond to two subgenera, Chaenopetalum and Cotoneaster. The Ulleung Island endemic, C. wilsonii, shared its most recent common ancestor with two species, C. schantungensis and C. zabelii, suggesting its potential origin from geographically close members of the subgenus Cotoneaster, section Integerrimi.
Collapse
|
6
|
The complete chloroplast genome sequence of Rubus hirsutus Thunb. and a comparative analysis within Rubus species. Genetica 2021; 149:299-311. [PMID: 34546501 DOI: 10.1007/s10709-021-00131-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Rubus hirsutus is a type of tonifying kidney-essence herb that belongs to the Rosaceae family, and has been commonly used to treat multiple diseases, such as polyuria, impotence, and infertility. In this study, we determined the complete chloroplast sequence of R. hirsutus and conduced a comparative analysis within the genus Rubus. The assembled chloroplast (cp.) genome is 156,380 bp in length with a GC content of 37.0% and shares a conserved quadripartite structure within the other cp. genomes in this genus. A total of 132 unique genes were annotated in the cp. genome of R. hirsutus, which contained 87 protein-coding genes, 37 tRNAs, and eight rRNAs. Seventeen duplicated genes were identified in the inverted repeats region. Furthermore, 70 simple sequence repeats and 35 long repeats were detected in total in the R. hirsutus chloroplast genome. Eight mutational hotspots were identified in the cp. genome of this species with higher nucleotide variations in non-coding regions than those of coding regions. Furthermore, the gene order, codon usage, and repeat sequence distribution were highly consistent in Rubus according to the results of a comparative analysis. A phylogenetic analysis indicated that there was a sister relationship between R. hirsutus and R. chingii. Overall, the complete chloroplast genome of R. hirsutus and the comparative analysis will help to further the evolutionary study, conservation, phylogenetic reconstruction, and development of molecular barcodes for the genus Rubus.
Collapse
|
7
|
Xu G, Xu W. Complete chloroplast genomes of Chinese wild-growing Vitis species: molecular structures and comparative and adaptive radiation analysis. PROTOPLASMA 2021; 258:559-571. [PMID: 33230625 DOI: 10.1007/s00709-020-01585-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
As a basalmost family of Vitaceae, Chinese wild Vitis species offer key insights into the demographic history of grapes. In this study, we obtained 10 complete chloroplast (cp) genomes from Chinese wild-growing Vitis species based on our whole genome re-sequencing data. These chloroplast genomes ranged from 160,838 to 232,020 bp in size and exhibited typical quadripartite structures. Comparative analyses revealed that inverted repeat (IR) regions are especially abundant and contribute to cp genome arrangements. Phylogenetic analysis of the whole Vitis cp genomes supported three clearly partitioned main origins, in keeping with their geographic distributions, among which East Asian species from China were found to be sister species with Eurasian Vitis species but exhibited significant divergence from the North American group. Two well-supported subgroups were observed within the Chinese wild-growing Vitis species. Among these species, Vitis piasezkii and Vitis betulifolia were closely related species, exhibiting a support rate of 100%. The molecular clock-based divergence time suggested that the earliest split subspecies was Vitis pseudoreticulata, which further indicated that the origin and initial gene pool are located in southern China (the habitat of V. pseudoreticulata is located in the region). Coincidentally, the divergence time was during the Pleistocene period (2.6-0.1 Ma). Due to glacial/interglacial temperature fluctuations, cold-adapted subspecies, e.g., Vitis amurensis, could re-colonize new habitats. Our results may help to elucidate the adaptive radiation of Chinese wild Vitis species in different environments.
Collapse
Affiliation(s)
- Guangya Xu
- School of Agronomy, Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China
| | - Weirong Xu
- School of Food & Wine, Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China.
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan, 750021, Ningxia, People's Republic of China.
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, China.
- Chinese Wine Industry Technology Institute, Yinchuan, 750021, China.
| |
Collapse
|
8
|
Yang J, Chiang YC, Hsu TW, Kim SH, Pak JH, Kim SC. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci Rep 2021; 11:1152. [PMID: 33441744 PMCID: PMC7806662 DOI: 10.1038/s41598-020-80143-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Genus Rubus represents the second largest genus of the family Rosaceae in Taiwan, with 41 currently recognized species across three subgenera (Chamaebatus, Idaoeobatus, and Malochobatus). Despite previous morphological and cytological studies, little is known regarding the overall phylogenetic relationships among the Rubus species in Taiwan, and their relationships to congeneric species in continental China. We characterized eight complete plastomes of Taiwan endemic Rubus species: subg. Idaeobatus (R. glandulosopunctatus, R. incanus, R. parviaraliifolius, R rubroangustifolius, R. taitoensis, and R. taiwanicolus) and subg. Malachobatus (R. kawakamii and R. laciniastostipulatus) to determine their phylogenetic relationships. The plastomes were highly conserved and the size of the complete plastome sequences ranged from 155,566 to 156,236 bp. The overall GC content ranged from 37.0 to 37.3%. The frequency of codon usage showed similar patterns among species, and 29 of the 73 common protein-coding genes were positively selected. The comparative phylogenomic analysis identified four highly variable intergenic regions (rps16/trnQ, petA/psbJ, rpl32/trnL-UAG, and trnT-UGU/trnL-UAA). Phylogenetic analysis of 31 representative complete plastomes within the family Rosaceae revealed three major lineages within Rubus in Taiwan. However, overall phylogenetic relationships among endemic species require broader taxon sampling to gain new insights into infrageneric relationships and their plastome evolution.
Collapse
Affiliation(s)
- JiYoung Yang
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tsai-Wen Hsu
- Taiwan Endemic Species Research Institute, 1 Mingshen East Road, Chichi Township, Nantou, 55244, Taiwan
| | - Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae-Hong Pak
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
9
|
Yao J, Zhao F, Xu Y, Zhao K, Quan H, Su Y, Hao P, Liu J, Yu B, Yao M, Ma X, Liao Z, Lan X. Complete Chloroplast Genome Sequencing and Phylogenetic Analysis of Two Dracocephalum Plants. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4374801. [PMID: 33457408 PMCID: PMC7787725 DOI: 10.1155/2020/4374801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022]
Abstract
Dracocephalum tanguticum and Dracocephalum moldavica are important herbs from Lamiaceae and have great medicinal value. We used the Illumina sequencing technology to sequence the complete chloroplast genome of D. tanguticum and D. moldavica and then conducted de novo assembly. The two chloroplast genomes have a typical quadripartite structure, with the gene's lengths of 82,221 bp and 81,450 bp, large single-copy region's (LSC) lengths of 82,221 bp and 81,450 bp, and small single-copy region's (SSC) lengths of 17,363 bp and 17,066 bp, inverted repeat region's (IR) lengths of 51,370 bp and 51,352 bp, respectively. The GC content of the two chloroplast genomes was 37.80% and 37.83%, respectively. The chloroplast genomes of the two plants encode 133 and 132 genes, respectively, among which there are 88 and 87 protein-coding genes, respectively, as well as 37 tRNA genes and 8 rRNA genes. Among them, the rps2 gene is unique to D. tanguticum, which is not found in D. moldavica. Through SSR analysis, we also found 6 mutation hotspot regions, which can be used as molecular markers for taxonomic studies. Phylogenetic analysis showed that Dracocephalum was more closely related to Mentha.
Collapse
Affiliation(s)
- Junjun Yao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Fangyu Zhao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Yuanjiang Xu
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Kaihui Zhao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Hong Quan
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
- Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Yanjie Su
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Peiyu Hao
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Jiang Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Benxia Yu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Min Yao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaojing Ma
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, Jiangxi 330029, China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing Engineering and Technology Research Center for Sweetpotato, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Center, Tibetan Collaborative Innovation Center of Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, China
- Jiangxi Institute for Drug Control, NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, Jiangxi 330029, China
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, Chongqing Engineering and Technology Research Center for Sweetpotato, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Yang J, Takayama K, Pak JH, Kim SC. Comparison of the Whole-Plastome Sequence between the Bonin Islands Endemic Rubus boninensis and Its Close Relative, Rubus trifidus (Rosaceae), in the Southern Korean Peninsula. Genes (Basel) 2019; 10:E774. [PMID: 31581648 PMCID: PMC6826710 DOI: 10.3390/genes10100774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/03/2022] Open
Abstract
Rubus boninensis is a rare endemic species found on the Bonin Islands with a very restricted distribution. It is morphologically most closely related to Rubus trifidus, occurring widely in the southern Korean peninsula and Japan. This species pair provides a good example of anagenetic speciation on an oceanic island in the northwestern Pacific Ocean-R. trifidus as a continental progenitor and R. boninensis as an insular derivative species. In this study, we firstly characterized the complete plastome of R. boninensis and R. trifidus and compared this species pair to another anagenetically derived species pair (R. takesimensis-R. crataegifolius). The complete plastome of R. trifidus was 155,823 base pairs (bp) long, slightly longer (16 bp) than that of R. boninensis (155,807 bp). No structural or content rearrangements were found between the species pair. Eleven hotspot regions, including trnH/psbA, were identified between R. trifidus and R. boninensis. Phylogenetic analysis of 19 representative plastomes within the family Rosaceae suggested sister relationships between R. trifidus and R. boninensis, and between R. crataegifolius and R. takesimensis. The plastome resources generated by the present study will help elucidate plastome evolution and resolve phylogenetic relationships within highly complex and reticulated lineages of the genus Rubus.
Collapse
Affiliation(s)
- JiYoung Yang
- Department of Biology, Research Institute for Dok-do and Ulleung-do Island, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea.
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Jae-Hong Pak
- Department of Biology, Research Institute for Dok-do and Ulleung-do Island, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Gyeongsangbuk-do 41566, Korea.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
11
|
Xue S, Shi T, Luo W, Ni X, Iqbal S, Ni Z, Huang X, Yao D, Shen Z, Gao Z. Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. HORTICULTURE RESEARCH 2019; 6:89. [PMID: 31666958 PMCID: PMC6804877 DOI: 10.1038/s41438-019-0171-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 05/24/2023]
Abstract
Prunus mume Sieb. et Zucc., P. armeniaca L., and P. salicina L. are economically important fruit trees in temperate regions. These species are taxonomically perplexing because of shared interspecific morphological traits and variation, which are mainly attributed to hybridization. The chloroplast is cytoplasmically inherited and often used for evolutionary studies. We sequenced the complete chloroplast genomes of P. mume, P. armeniaca, and P. salicina using Illumina sequencing followed by de novo assembly. The three chloroplast genomes exhibit a typical quadripartite structure with conserved genome arrangement, structure, and moderate divergence. The lengths of the genomes are 157,815, 157,797, and 157,916 bp, respectively. The length of the large single-copy region (LSC) region is 86,113, 86,283, and 86,122 bp, and the length of the SSC region is 18,916, 18,734, and 19,028 bp; the IR region is 26,393, 26,390, and 26,383 bp, respectively. Each of the three chloroplast genomes encodes 133 genes, including 94 protein-coding, 31 tRNA, and eight rRNA genes. Differential gene analysis for the three species revealed that trnY-ATA is a unique gene in P. armeniaca; in contrast, the gene trnI-TAT is only present in P. mume and P. salicina, though the position of the gene in these chloroplast genomes differs. Further comparative analysis of the complete chloroplast genome sequences revealed that the ORF genes and the sequences of linked regions rps16 and atpA, atpH and atpI, trnc-GCA and psbD, ycf3 and atpB, and rpL32 and ndhD are significantly different and may be used as molecular markers in taxonomic studies. Phylogenetic evolution analysis of the three species suggests that P. mume has a closer genetic relationship to P. armeniaca than to P. salicina.
Collapse
Affiliation(s)
- Song Xue
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Wenjie Luo
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Xiaopeng Ni
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Xiao Huang
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dan Yao
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhijun Shen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
12
|
Zhao K, Zhou Y, Zheng Y, Chen B, Ziling W. The chloroplast genome of Prunus dielsiana (Rosaceae). Mitochondrial DNA B Resour 2019; 4:4033-4034. [PMID: 33366304 PMCID: PMC7707654 DOI: 10.1080/23802359.2019.1688723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Kai Zhao
- College of Life Science, Fujian Normal University, Fuzhou, PR China
| | - Yuzhen Zhou
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yan Zheng
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Bin Chen
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Wei Ziling
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
13
|
Lin M, Qi X, Chen J, Sun L, Zhong Y, Fang J, Hu C. The complete chloroplast genome sequence of Actinidia arguta using the PacBio RS II platform. PLoS One 2018; 13:e0197393. [PMID: 29795601 PMCID: PMC5968424 DOI: 10.1371/journal.pone.0197393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
Actinidia arguta is the most basal species in a phylogenetically and economically important genus in the family Actinidiaceae. To better understand the molecular basis of the Actinidia arguta chloroplast (cp), we sequenced the complete cp genome from A. arguta using Illumina and PacBio RS II sequencing technologies. The cp genome from A. arguta was 157,611 bp in length and composed of a pair of 24,232 bp inverted repeats (IRs) separated by a 20,463 bp small single copy region (SSC) and an 88,684 bp large single copy region (LSC). Overall, the cp genome contained 113 unique genes. The cp genomes from A. arguta and three other Actinidia species from GenBank were subjected to a comparative analysis. Indel mutation events and high frequencies of base substitution were identified, and the accD and ycf2 genes showed a high degree of variation within Actinidia. Forty-seven simple sequence repeats (SSRs) and 155 repetitive structures were identified, further demonstrating the rapid evolution in Actinidia. The cp genome analysis and the identification of variable loci provide vital information for understanding the evolution and function of the chloroplast and for characterizing Actinidia population genetics.
Collapse
Affiliation(s)
- Miaomiao Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Leiming Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou, China
- * E-mail: (JF); (CH)
| | - Chungen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Hua Zhong Agricultural University, Wuhan, China
- * E-mail: (JF); (CH)
| |
Collapse
|
14
|
The complete plastome sequence of Rubus takesimensis endemic to Ulleung Island, Korea: Insights into molecular evolution of anagenetically derived species in Rubus (Rosaceae). Gene 2018; 668:221-228. [PMID: 29787822 DOI: 10.1016/j.gene.2018.05.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Previous phylogenetic studies have suggested that Rubus takesimensis (Rosaceae), which is endemic to Ulleung Island, Korea, is closely related to R. crataegifolius, which is broadly distributed across East Asia. A recent phylogeographic study also suggested the possible polyphyletic origins of R. takesimensis from multiple source populations of its continental progenitor R. crataegifolius in China, Japan, Korea, and the Russian Far East. However, even though the progenitor-derivative relationship between R. crataegifolius and R. takesimensis has been established, little is known about the chloroplast genome (i.e., plastome) evolution of anagenetically derived species on oceanic islands and their continental progenitor species. In the present study, we characterized the complete plastome of R. takesimensis and compared it to those of R. crataegifolius and four other Rubus species. The R. takesimensis plastome was 155,760 base pairs (bp) long, a total of 46 bp longer than the plastome of R. crataegifolius (28 from LSC and 18 from SSC). No structural or content rearrangements were found between the species pairs. Four highly variable intergenic regions (rpl32/trnL, rps4/trnT, trnT/trnL, and psbZ/trnG) were identified between R. takesimensis and R. crataegifolius. Compared to the plastomes of other congeneric species (R. corchorifolius, R. fockeanus, and R. niveus), six highly variable intergenic regions (ndhC/psaC, rps16/trnQ, trnK/rps16, trnL/trnF, trnM/atpE, and trnQ/psbK) were also identified. A total of 116 simple sequence repeats (SSRs), including 48 mononucleotide, 64 dinucleotide, and four trinucleotide repeat motifs were characterized in R. takesimensis. The plastome resources generated by the present study will help to elucidate plastome evolution within the genus and to resolve phylogenetic relationships within highly complex and reticulated lineages. Phylogenetic analysis supported both the monophyly of Rubus and the sister relationship between R. crataegifolius and R. takesimensis.
Collapse
|
15
|
Amar MH, Magdy M, Zhou H, Wang L, Han Y. The complete chloroplast genome of Amygdalus mira (Rosaceae) a threatened wild Chinese peach. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0934-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Li Z, Long H, Zhang L, Liu Z, Cao H, Shi M, Tan X. The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms. Sci Rep 2017; 7:1869. [PMID: 28500291 PMCID: PMC5431841 DOI: 10.1038/s41598-017-02076-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/27/2017] [Indexed: 11/11/2022] Open
Abstract
Tung tree (Vernicia fordii) is an economically important tree widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized its genome using PacBio RS II sequencing platforms. The chloroplast genome was sequenced with 161,528 bp in length, composed with one pair of inverted repeats (IRs) of 26,819 bp, which were separated by one small single copy (SSC; 18,758 bp) and one large single copy (LSC; 89,132 bp). The genome contains 114 genes, coding for 81 protein, four ribosomal RNAs and 29 transfer RNAs. An expansion with integration of an additional rps19 gene in the IR regions was identified. Compared to the chloroplast genome of Jatropha curcas, a species from the same family, the tung tree chloroplast genome is distinct with 85 single nucleotide polymorphisms (SNPs) and 82 indels. Phylogenetic analysis suggests that V. fordii is a sister species with J. curcas within the Eurosids I. The nucleotide sequence provides vital molecular information for understanding the biology of this important oil tree.
Collapse
Affiliation(s)
- Ze Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.,Cooperative Innovation Center of Cultivation and Utilization for Non-Wood Forest Trees of Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.,Cooperative Innovation Center of Cultivation and Utilization for Non-Wood Forest Trees of Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.,Cooperative Innovation Center of Cultivation and Utilization for Non-Wood Forest Trees of Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Zhiming Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.,Cooperative Innovation Center of Cultivation and Utilization for Non-Wood Forest Trees of Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.,Department of Biology, Eastern New Mexico University, Portales, New Mexico, 88130, USA
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, 70124, USA
| | - Mingwang Shi
- Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China. .,Cooperative Innovation Center of Cultivation and Utilization for Non-Wood Forest Trees of Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| |
Collapse
|
17
|
Microsatellite variations and population structure in an on-farm collection of Japanese apricot (Prunus mume Sieb. et Zucc.). BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Sonibare MA, Asiedu R, Albach DC. Genetic diversity of Dioscorea dumetorum (Kunth) Pax using Amplified Fragment Length Polymorphisms (AFLP) and cpDNA. BIOCHEM SYST ECOL 2010. [DOI: 10.1016/j.bse.2010.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|