1
|
Li S, Wang M, Lee J. Phytochemical profiling of soybean genotypes using GC-MS and UHPLC-DAD/MS. PLoS One 2024; 19:e0308489. [PMID: 39146325 PMCID: PMC11326653 DOI: 10.1371/journal.pone.0308489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024] Open
Abstract
Soybean is one of the most economically important crops worldwide. However, soybean yield can be substantially decreased by many diseases. Soybean genotypes could have different reactions to pathogen infection. As a first step toward investigating the biochemical basis of soybean resistance and susceptibility to disease, phytochemicals in the seeds of 52 soybean genotypes previously reported to have different reactions to diseases of soybean rust (SBR), Phomopsis seed decay (PSD), and purple seed stain (PSS) were analyzed. Using GC-MS, a total of 46 compounds were tentatively identified which included 11 chemical groups. Among those, the major group was esters, followed by carboxylic acid, ketone, and sugar moieties. Compounds having reported antioxidant, anti-microbial, and anti-inflammatory activities were also identified. UHPLC-DAD/MS analysis indicated that there were five major isoflavone components presented in the samples, including daidzin, glycitin, genistin, malonyldaidzin, and malonylglycitin. Isoflavones have been reported to play an important role in defense from plant pathogens. Although there was variance in the isoflavone content among soybean genotypes, those with the SBR resistance Rpp6 gene (PI 567102B, PI 567104B, PI 567129) consistently exhibited the highest concentrations of daidzin, glycitin, genistin, and malonyldaidzin. The SBR resistant genotype, PI 230970 (Rpp2) had the greatest amount of genistin. The SBR resistant genotype, PI 200456 (Rpp5) resistant genotype uniquely contained glycitein, a compound that was absent in the other 51 genotypes examined. A PSD-resistant genotype PI 424324B had nearly four times the amount of stigmasterol as PI 556625, which was susceptible to SBR, PSD, and PSS in our previous tests. Results of this study provide useful information for further investigation of the biochemical basis of soybean resistance to diseases. The results may also aid in selection of soybean lines for breeding for resistance to soybean rust and other diseases.
Collapse
Affiliation(s)
- Shuxian Li
- United States Department of Agriculture, Agricultural Research Service (USDA, ARS), Crop Genetics Research Unit, Stoneville, Mississippi, United States of America
| | - Mei Wang
- USDA, ARS, Natural Products Utilization Research Unit, University of Mississippi, University, Mississippi, United States of America
| | - Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi, United States of America
| |
Collapse
|
2
|
Aoyagi LN, Ferreira EGC, da Silva DCG, Dos Santos AB, Avelino BB, Lopes-Caitar VS, de Oliveira MF, Abdelnoor RV, de Souto ER, Arias CA, Belzile F, Marcelino-Guimarães FC. Allelic variability in the Rpp1 locus conferring resistance to Asian soybean rust revealed by genome-wide association. BMC PLANT BIOLOGY 2024; 24:743. [PMID: 39095733 PMCID: PMC11297723 DOI: 10.1186/s12870-024-05454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.
Collapse
Affiliation(s)
- Luciano Nobuhiro Aoyagi
- National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
- Maringá State University (UEM), Colombo Avenue, No. 5790, Maringá, PR, Brazil
| | | | - Danielle C Gregorio da Silva
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Bruna Barbosa Avelino
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | | | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Francismar C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil.
| |
Collapse
|
3
|
Chicowski AS, Bredow M, Utiyama AS, Marcelino-Guimarães FC, Whitham SA. Soybean-Phakopsora pachyrhizi interactions: towards the development of next-generation disease-resistant plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:296-315. [PMID: 37883664 PMCID: PMC10826999 DOI: 10.1111/pbi.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Soybean rust (SBR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is a devastating foliar disease threatening soybean production. To date, no commercial cultivars conferring durable resistance to SBR are available. The development of long-lasting SBR resistance has been hindered by the lack of understanding of this complex pathosystem, encompassing challenges posed by intricate genetic structures in both the host and pathogen, leading to a gap in the knowledge of gene-for-gene interactions between soybean and P. pachyrhizi. In this review, we focus on recent advancements and emerging technologies that can be used to improve our understanding of the P. pachyrhizi-soybean molecular interactions. We further explore approaches used to combat SBR, including conventional breeding, transgenic approaches and RNA interference, and how advances in our understanding of plant immune networks, the availability of new molecular tools, and the recent sequencing of the P. pachyrhizi genome could be used to aid in the development of better genetic resistance against SBR. Lastly, we discuss the research gaps of this pathosystem and how new technologies can be used to shed light on these questions and to develop durable next-generation SBR-resistant soybean plants.
Collapse
Affiliation(s)
- Aline Sartor Chicowski
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Alice Satiko Utiyama
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Londrina, Paraná, Brazil
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Hossain MM, Sultana F, Yesmin L, Rubayet MT, Abdullah HM, Siddique SS, Bhuiyan MAB, Yamanaka N. Understanding Phakopsora pachyrhizi in soybean: comprehensive insights, threats, and interventions from the Asian perspective. Front Microbiol 2024; 14:1304205. [PMID: 38274768 PMCID: PMC10808435 DOI: 10.3389/fmicb.2023.1304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Soybean (Glycine max L.) is an important crop in Asia, accounting for 17% of global soybean cultivation. However, this crop faces formidable challenges from the devastating foliar disease, Asian Soybean Rust (ASR), caused by Phakopsora pachyrhizi, a biotrophic fungus with a broad host range, causing substantial yield losses (10-100%) in Asia. This comprehensive review consolidates knowledge on ASR, encompassing its impact, historical perspectives, genetic diversity, epidemic drivers, early detection, risk assessment, and sustainable management strategies of ASR in the region. ASR has expanded globally from Asia, reaching Africa and Americas, driven by wind-dispersed urediniospores. Genetic diversity studies reveal the complexity of P. pachyrhizi, with distinct populations exhibiting varying virulence patterns. Factors affecting ASR epidemics in Asia include host susceptibility, landscape connectivity, climate, and environmental conditions. Understanding the interplay of these factors is essential for early intervention and control of ASR in soybean fields. Effectively managing ASR can exploit the utilization of diverse intervention strategies, encompassing disease forecasting, automated early detection, disease resistance, fungicide application, and biological control. A pivotal aspect of successful, sustainable disease management lies in reducing the ASR pathogen virulence and preventing it from developing fungicide resistance, while the highpoint of effectiveness in disease control is attained through a synergistic approach, integrating various strategies. In summary, this comprehensive review provides insights into multifaceted approaches that contribute to the development of sustainable and economically impactful soybean production in the face of the persistent threat of ASR in Asia.
Collapse
Affiliation(s)
- Md. Motaher Hossain
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Farjana Sultana
- College of Agricultural Sciences, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Laboni Yesmin
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Tanbir Rubayet
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hasan M. Abdullah
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Shaikh Sharmin Siddique
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Abdullahil Baki Bhuiyan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Naoki Yamanaka
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Li S, Smith JR. Phenotypic Evaluation of Soybean Genotypes for Their Reaction to a Mississippi Isolate of Phakopsora pachyrhizi Causing Soybean Rust. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091797. [PMID: 37176856 PMCID: PMC10181004 DOI: 10.3390/plants12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Soybean rust (SBR) caused by Phakopsora pachyrhizi Syd. and P. Syd. is one of the most important foliar diseases of soybean. SBR has the potential to cause major economic damage to global and U.S. soybean production. Analysis of reactions of soybean genotypes to P. pachyrhizi is an important step towards breeding for resistance to SBR. Fifty-four diverse soybean genotypes with both known and unknown Rpp resistance genes were tested for their reactions to a Mississippi P. pachyrhizi isolate. PI 567102B (Rpp6) had a near-immune reaction with the lowest disease severity score and no sporulation. Among seventeen genotypes with resistant or incomplete resistant reddish-brown (RB) reactions, eight are improved breeding lines that are available to researchers through material transfer agreements (MTAs). Thirty-six genotypes had the susceptible TAN reaction. Four soybean lines (RN06-32-1(7-b, GC 00138-29, G01-PR16, and GC 84051-9-1) had RB reactions and significantly lower SBR severity and sporulation than three of the six resistant checks, PI 230970 (Rpp2), PI 462312 (Rpp3), and PI 459025B (Rpp4). G01-PR16 is a publicly released germplasm. This research provides new information about reactions of different soybean genotypes to a midsouthern USA isolate of P. pachyrhizi and thereby aids in breeding for resistance to SBR.
Collapse
Affiliation(s)
- Shuxian Li
- United States Department of Agriculture, Agricultural Research Service (USDA, ARS), Crop Genetics Research Unit, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - James R Smith
- United States Department of Agriculture, Agricultural Research Service (USDA, ARS), Crop Genetics Research Unit, 141 Experiment Station Road, Stoneville, MS 38776, USA
| |
Collapse
|
6
|
Wei W, Wu X, Garcia A, McCoppin N, Viana JPG, Murad PS, Walker DR, Hartman GL, Domier LL, Hudson ME, Clough SJ. An NBS-LRR protein in the Rpp1 locus negates the dominance of Rpp1-mediated resistance against Phakopsora pachyrhizi in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:915-933. [PMID: 36424366 DOI: 10.1111/tpj.16038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The soybean Rpp1 locus confers resistance to Phakopsora pachyrhizi, causal agent of rust, and resistance is usually dominant over susceptibility. However, dominance of Rpp1-mediated resistance is lost when a resistant genotype (Rpp1 or Rpp1b) is crossed with susceptible line TMG06_0011, and the mechanism of this dominant susceptibility (DS) is unknown. Sequencing the Rpp1 region reveals that the TMG06_0011 Rpp1 locus has a single nucleotide-binding site leucine-rich repeat (NBS-LRR) gene (DS-R), whereas resistant PI 594760B (Rpp1b) is similar to PI 200492 (Rpp1) and has three NBS-LRR resistance gene candidates. Evidence that DS-R is the cause of DS was reflected in virus-induced gene silencing of DS-R in Rpp1b/DS-R or Rpp1/DS-R heterozygous plants with resistance partially restored. In heterozygous Rpp1b/DS-R plants, expression of Rpp1b candidate genes was not significantly altered, indicating no effect of DS-R on transcription. Physical interaction of the DS-R protein with candidate Rpp1b resistance proteins was supported by yeast two-hybrid studies and in silico modeling. Thus, we conclude that suppression of resistance most likely does not occur at the transcript level, but instead probably at the protein level, possibly with Rpp1 function inhibited by binding to the DS-R protein. The DS-R gene was found in other soybean lines, with an estimated allele frequency of 6% in a diverse population, and also found in wild soybean (Glycine soja). The identification of a dominant susceptible NBS-LRR gene provides insight into the behavior of NBS-LRR proteins and serves as a reminder to breeders that the dominance of an R gene can be influenced by a susceptibility allele.
Collapse
Affiliation(s)
- Wei Wei
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Xing Wu
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Ave # 266, New Haven, CT, 06511, USA
| | - Alexandre Garcia
- Tropical Melhoramento e Genética, LTDA, Rodovia Celso Garcia Cid, Km 87, Cambé, PR, CEP: 86183-600, Brazil
| | - Nancy McCoppin
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - João Paulo Gomes Viana
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Praerona S Murad
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - David R Walker
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois, 1102 S Goodwin Ave, Urbana, IL, 61801, USA
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, US Department of Agriculture, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Barros LG, Avelino BB, da Silva DCG, Ferreira EGC, Castanho FM, Ferreira ME, Lopes-Caitar VS, Marin SRR, Arias CAA, de O. N. Lopes I, Abdelnoor RV, Marcelino-Guimarães FC. Mapping of a soybean rust resistance in PI 594756 at the Rpp1 locus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:12. [PMID: 37313128 PMCID: PMC10248603 DOI: 10.1007/s11032-023-01358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/31/2023] [Indexed: 06/15/2023]
Abstract
Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, is the main disease affecting soybean in Brazil. This study aimed at investigating and mapping the resistance of the PI 594756 to P. pachyrhizi, by using Bulked Segregant Analysis (BSA). The PI 594756 and the susceptible PI 594891 were crossed and the resulting F2 and F2:3 populations (208 and 1770 plants, respectively) were tested against ASR. Also, these PIs and differential varieties were tested against a panel of monosporic isolates. Plants presenting tan lesions were classified as susceptible (S) while plants presenting reddish-brown (RB) lesions were classified as resistant. DNA bulks were genotyped with Infinium BeadChips and the genomic region identified was further analyzed in the F2 individuals with target GBS (tGBS). PI 594,56 presented a unique resistance profile compared to the differential varieties. The resistance was monogenic dominant; however, it was classified as incompletely dominant when quantitatively studied. Genetic and QTL mapping placed the PI 594756 gene between the genomic region located at 55,863,741 and 56,123,516 bp of chromosome 18. This position is slightly upstream mapping positions of Rpp1 (PI 200492) and Rpp1-b (PI 594538A). Finally, we performed a haplotype analysis in a whole genomic sequencing-SNP database composed of Brazilian historical germplasm and sources of Rpp genes. We found SNPs that successfully differentiated the new PI 594756 allele from Rpp1 and Rpp1-b sources. The haplotype identified can be used as a tool for marker-assisted selection (MAS). Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01358-4.
Collapse
Affiliation(s)
- Luciane G. Barros
- Department of General Biology, State University of Londrina (UEL), Londrina, Paraná Brazil
| | - Bruna B. Avelino
- Department of General Biology, State University of Londrina (UEL), Londrina, Paraná Brazil
| | - Danielle C. G. da Silva
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Soybean, Londrina, Paraná Brazil
| | - Everton G. C. Ferreira
- Department of General Biology, State University of Londrina (UEL), Londrina, Paraná Brazil
| | - Fernanda M. Castanho
- Department of General Biology, State University of Londrina (UEL), Londrina, Paraná Brazil
| | - Marcio E. Ferreira
- Brazilian Agricultural Research Coorporation, Embrapa Genetic Resources and Biotechnology, Brasilia, Distrito Federal Brazil
| | - Valeria S. Lopes-Caitar
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Soybean, Londrina, Paraná Brazil
| | - Silvana R. R. Marin
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Soybean, Londrina, Paraná Brazil
| | - Carlos A. A. Arias
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Soybean, Londrina, Paraná Brazil
| | - Ivani de O. N. Lopes
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Soybean, Londrina, Paraná Brazil
| | - Ricardo V. Abdelnoor
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Soybean, Londrina, Paraná Brazil
| | | |
Collapse
|
8
|
Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar. Genes (Basel) 2022; 14:genes14010019. [PMID: 36672760 PMCID: PMC9858275 DOI: 10.3390/genes14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Soybean rust (SBR) caused by the fungus Phakopsora pachyrhizi is an important folia disease of soybean (Glycine max). In this study, we identified QTLs controlling SBR in Chiang Mai 5 (CM5), an SBR-resistant cultivar developed by induced mutation breeding. A recombinant inbred line (RIL) population of 108 lines developed from a cross between Sukhothai 2 (SKT2, a susceptible cultivar) and CM5 was evaluated for SBR resistance under field conditions in Thailand. QTL analysis for the resistance in the RIL population identified a single QTL, qSBR18.1, for resistance. qSBR18.1 was mapped to a 212-kb region on chromosome 18 between simple sequence repeat markers Satt288 and sc21_3420 and accounted for 21.31-35.09% depending on the traits evaluated for resistance. The qSBR18.1 interval overlapped with genomic regions containing resistance to P. pachyrhizi 4 (Rpp4), a locus for SBR resistance. Three tightly linked genes, Glyma.18G226250, Glyma.18G226300, and Glyma.18G226500, each encoding leucine-rich repeat-containing protein, were identified as candidate genes for SBR resistance at the qSRB18.1. The qSBR18.1 would be useful for breeding of SBR resistance.
Collapse
|
9
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
10
|
Molecular Breeding to Overcome Biotic Stresses in Soybean: Update. PLANTS 2022; 11:plants11151967. [PMID: 35956444 PMCID: PMC9370206 DOI: 10.3390/plants11151967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Soybean (Glycine max (L.) Merr.) is an important leguminous crop and biotic stresses are a global concern for soybean growers. In recent decades, significant development has been carried outtowards identification of the diseases caused by pathogens, sources of resistance and determination of loci conferring resistance to different diseases on linkage maps of soybean. Host-plant resistance is generally accepted as the bestsolution because of its role in the management of environmental and economic conditions of farmers owing to low input in terms of chemicals. The main objectives of soybean crop improvement are based on the identification of sources of resistance or tolerance against various biotic as well as abiotic stresses and utilization of these sources for further hybridization and transgenic processes for development of new cultivars for stress management. The focus of the present review is to summarize genetic aspects of various diseases caused by pathogens in soybean and molecular breeding research work conducted to date.
Collapse
|
11
|
Ratnaparkhe MB, Marmat N, Kumawat G, Shivakumar M, Kamble VG, Nataraj V, Ramesh SV, Deshmukh MP, Singh AK, Sonah H, Deshmukh RK, Prasad M, Chand S, Gupta S. Whole Genome Re-sequencing of Soybean Accession EC241780 Providing Genomic Landscape of Candidate Genes Involved in Rust Resistance. Curr Genomics 2020; 21:504-511. [PMID: 33214766 PMCID: PMC7604744 DOI: 10.2174/1389202921999200601142258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In this study, whole genome re-sequencing of rust resistant soybean genotype EC241780 was performed to understand the genomic landscape involved in the resistance mechanism. METHODS A total of 374 million raw reads were obtained with paired-end sequencing performed with Illumina HiSeq 2500 instrument, out of which 287.3 million high quality reads were mapped to Williams 82 reference genome. Comparative sequence analysis of EC241780 with rust susceptible cultivars Williams 82 and JS 335 was performed to identify sequence variation and to prioritise the candidate genes. RESULTS Comparative analysis indicates that genotype EC241780 has high sequence similarity with rust resistant genotype PI 200492 and the resistance in EC241780 is conferred by the Rpp1 locus. Based on the sequence variations and functional annotations, three genes Glyma18G51715, Glyma18G51741 and Glyma18G51765 encoding for NBS-LRR family protein were identified as the most prominent candidate for Rpp1 locus. CONCLUSION The study provides insights of genome-wide sequence variation more particularly at Rpp1 loci which will help to develop rust resistant soybean cultivars through efficient exploration of the genomic resource.
Collapse
Affiliation(s)
- Milind Balkrishna Ratnaparkhe
- Address correspondence to this author at the ICAR-Indian Institute of Soybean Research (ICAR-IISR), Khandwa Road, Indore-452001 (M.P.) India; Cell: 8878600360/ 8989616095; Tel: +91-731-2437923; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Paul C, Motter HZ, Walker DR. Reactions of Soybean Germplasm Accessions to Six Phakopsora pachyrhizi Isolates from the United States. PLANT DISEASE 2020; 104:1087-1095. [PMID: 32031475 DOI: 10.1094/pdis-09-18-1704-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean rust, caused by Phakopsora pachyrhizi Syd. & P. Syd., is one of the most economically important foliar diseases of soybean. Resistant cultivars could reduce yield losses and management costs but considerable pathogenic diversity exists among populations of the fungus; thus, resistance to a range of pathotypes is essential. Seedling and detached-leaf assays were conducted to characterize the resistance of 55 soybean plant introductions (PIs) to six purified isolates of P. pachyrhizi originating from the southern United States. In the greenhouse resistance assays, the differentials Hyuuga (PI 506764) and PI 471904 and accessions PI 224268, PI 567025A, PI 567039, PI 567046A, and DT 2000 (PI 635999) were resistant to all six isolates, including Florida isolates from 2011 and 2012 that were able to defeat resistance conditioned by the Rpp1 through Rpp4 genes. Twenty-six other PIs were resistant to four or five of the six isolates. In the detached-leaf assays, eight accessions developed reddish-brown reactions to all six isolates, with an average of only 0.23 to 0.55 uredinia/lesion. These included Hyuuga, DT 2000, two differentials with a resistance allele at the Rpp5 locus, and accessions PI 224268, PI 423960B, PI 567025A, and PI 567046A. Many of the resistant accessions have subsequently been reported to have a resistance allele at the Rpp3 locus, and two others have resistance genes at the Rpp4 or Rpp6 locus. This study provided new information about resistance reaction phenotypes that can be useful for understanding mechanisms of resistance, which Rpp genes and alleles could be combined to obtain broader and more durable rust resistance in soybean cultivars, and pathotype diversity among the six isolates used.
Collapse
Affiliation(s)
- Chandra Paul
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Hélder Z Motter
- Department of Plant Pathology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - David R Walker
- United States Department of Agriculture-Agricultural Research Service Soybean/Maize Germplasm, Pathology and Genetics Research Unit, and Department of Crop Sciences, University of Illinois at Urbana-Champaign
| |
Collapse
|
13
|
Pedley KF, Pandey AK, Ruck A, Lincoln LM, Whitham SA, Graham MA. Rpp1 Encodes a ULP1-NBS-LRR Protein That Controls Immunity to Phakopsora pachyrhizi in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:120-133. [PMID: 30303765 DOI: 10.1094/mpmi-07-18-0198-fi] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phakopsora pachyrhizi is the causal agent of Asian soybean rust. Susceptible soybean plants infected by virulent isolates of P. pachyrhizi are characterized by tan-colored lesions and erumpent uredinia on the leaf surface. Germplasm screening and genetic analyses have led to the identification of seven loci, Rpp1 to Rpp7, that provide varying degrees of resistance to P. pachyrhizi (Rpp). Two genes, Rpp1 and Rpp1b, map to the same region on soybean chromosome 18. Rpp1 is unique among the Rpp genes in that it confers an immune response (IR) to avirulent P. pachyrhizi isolates. The IR is characterized by a lack of visible symptoms, whereas resistance provided by Rpp1b to Rpp7 results in red-brown foliar lesions. Rpp1 maps to a region spanning approximately 150 kb on chromosome 18 between markers Sct_187 and Sat_064 in L85-2378 (Rpp1), an isoline developed from Williams 82 and PI 200492 (Rpp1). To identify Rpp1, we constructed a bacterial artificial chromosome library from soybean accession PI 200492. Sequencing of the Rpp1 locus identified three homologous nucleotide binding site-leucine rich repeat (NBS-LRR) candidate resistance genes between Sct_187 and Sat_064. Each candidate gene is also predicted to encode an N-terminal ubiquitin-like protease 1 (ULP1) domain. Cosilencing of the Rpp1 candidates abrogated the immune response in the Rpp1 resistant soybean accession PI 200492, indicating that Rpp1 is a ULP1-NBS-LRR protein and plays a key role in the IR.
Collapse
Affiliation(s)
- Kerry F Pedley
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Ajay K Pandey
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Amy Ruck
- 1 United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702, U.S.A
| | - Lori M Lincoln
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| | - Steven A Whitham
- 3 Iowa State University, Department of Plant Pathology and Microbiology, Ames, IA 50011, U.S.A
| | - Michelle A Graham
- 2 USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, U.S.A.; and
| |
Collapse
|
14
|
Childs SP, King ZR, Walker DR, Harris DK, Pedley KF, Buck JW, Boerma HR, Li Z. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:27-41. [PMID: 28980046 DOI: 10.1007/s00122-017-2983-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/14/2017] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE A novel Rpp gene from PI 605823 for resistance to Phakopsora pachyrhizi was mapped on chromosome 19. Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & P. Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance conditioned by resistance to P. pachyrhizi (Rpp) genes has been found in numerous soybean accessions, and at least 10 Rpp genes or alleles have been mapped to six genetic loci. Identifying additional disease-resistance genes will facilitate development of soybean cultivars with durable resistance. PI 605823, a plant introduction from Vietnam, was previously identified as resistant to US populations of P. pachyrhizi in greenhouse and field trials. In this study, bulked segregant analysis using an F2 population derived from 'Williams 82' × PI 605823 identified a genomic region associated with resistance to P. pachyrhizi isolate GA12, which had been collected in the US State of Georgia in 2012. To further map the resistance locus, linkage mapping was carried out using single-nucleotide polymorphism markers and phenotypic data from greenhouse assays with an F2:3 population derived from Williams 82 × PI 605823 and an F4:5 population derived from '5601T' × PI 605823. A novel resistance gene, Rpp7, was mapped to a 154-kb interval (Gm19: 39,462,291-39,616,643 Glyma.Wm82.a2) on chromosome 19 that is different from the genomic locations of any previously reported Rpp genes. This new gene could be incorporated into elite breeding lines to help provide more durable resistance to soybean rust.
Collapse
Affiliation(s)
- Silas P Childs
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Zachary R King
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - David R Walker
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Urbana, IL, USA.
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Donna K Harris
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Kerry F Pedley
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Ft. Detrick, Frederick, MD, USA
| | - James W Buck
- Department of Plant Pathology, University of Georgia, Griffin, GA, USA
| | - H Roger Boerma
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA
| | - Zenglu Li
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Vuong TD, Walker DR, Nguyen BT, Nguyen TT, Dinh HX, Hyten DL, Cregan PB, Sleper DA, Lee JD, Shannon JG, Nguyen HT. Molecular Characterization of Resistance to Soybean Rust (Phakopsora pachyrhizi Syd. & Syd.) in Soybean Cultivar DT 2000 (PI 635999). PLoS One 2016; 11:e0164493. [PMID: 27935940 PMCID: PMC5147787 DOI: 10.1371/journal.pone.0164493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Resistance to soybean rust (SBR), caused by Phakopsora pachyrhizi Syd. & Syd., has been identified in many soybean germplasm accessions and is conferred by either dominant or recessive genes that have been mapped to six independent loci (Rpp1 -Rpp6), but No U.S. cultivars are resistant to SBR. The cultivar DT 2000 (PI 635999) has resistance to P. pachyrhizi isolates and field populations from the United States as well as Vietnam. A F6:7 recombinant inbred line (RIL) population derived from Williams 82 × DT 2000 was used to identify genomic regions associated with resistance to SBR in the field in Ha Noi, Vietnam, and in Quincy, Florida, in 2008. Bulked segregant analysis (BSA) was conducted using the soybean single nucleotide polymorphism (SNP) USLP 1.0 panel along with simple sequence repeat (SSR) markers to detect regions of the genome associated with resistance. BSA identified four BARC_SNP markers near the Rpp3 locus on chromosome (Chr.) 6. Genetic analysis identified an additional genomic region around the Rpp4 locus on Chr. 18 that was significantly associated with variation in the area under disease progress curve (AUDPC) values and sporulation in Vietnam. Molecular markers tightly linked to the DT 2000 resistance alleles on Chrs. 6 and 18 will be useful for marker-assisted selection and backcrossing in order to pyramid these genes with other available SBR resistance genes to develop new varieties with enhanced and durable resistance to SBR.
Collapse
Affiliation(s)
- Tri D. Vuong
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - David R. Walker
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, USDA-ARS, and Department of Crop Sciences, University of Illinois, Urbana, Illinois,United States of America
| | - Binh T. Nguyen
- Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | | | - Hoan X. Dinh
- Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - David L. Hyten
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - Perry B. Cregan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland, United States of America
| | - David A. Sleper
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jeong D. Lee
- Division of Plant Sciences, University of Missouri, Portageville, Missouri, United States of America
| | - James G. Shannon
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
16
|
Paul C, Frederick RD, Hill CB, Hartman GL, Walker DR. Comparison of Pathogenic Variation among Phakopsora pachyrhizi Isolates Collected from the United States and International Locations, and Identification of Soybean Genotypes Resistant to the U.S. Isolates. PLANT DISEASE 2015; 99:1059-1069. [PMID: 30695939 DOI: 10.1094/pdis-09-14-0989-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A major constraint in breeding for resistance to soybean rust has been the virulence diversity in Phakopsora pachyrhizi populations. In greenhouse experiments, reactions of 18 soybean genotypes to 24 U.S. isolates from 2007 and 2008 and 4 foreign isolates were compared. Reactions of four differentials (Rpp1 to Rpp4) to these U.S. isolates were also compared with reactions to nine foreign isolates and three U.S. isolates from 2004. Principal component analysis (PCA) of the reaction types grouped the U.S. isolates into a single virulence group, whereas each of the foreign isolates had a unique virulence pattern. In another experiment, reactions of 11 differentials to the 24 U.S. isolates were compared and significant interactions (P < 0.001) were found between the isolates and host genotypes for rust severity and uredinia densities. PCA of these two measures of disease placed the 24 isolates into seven or six aggressiveness groups, respectively. In a third experiment, evaluation of 20 soybean genotypes for resistance to the previously established aggressive groups identified 10 genotypes resistant to isolates representing most of the groups. This study confirmed the pathogenic diversity in P. pachyrhizi populations and identified soybean germplasm with resistance to representative U.S. isolates that can be used in breeding.
Collapse
Affiliation(s)
- C Paul
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | - R D Frederick
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702
| | - C B Hill
- Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - G L Hartman
- USDA-ARS Soybean/Maize Germplasm, Pathology and Genetics Research Unit, and Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - D R Walker
- USDA-ARS Soybean/Maize Germplasm, Pathology and Genetics Research Unit, and Department of Crop Sciences, University of Illinois at Urbana-Champaign
| |
Collapse
|
17
|
Kelly HY, Dufault NS, Walker DR, Isard SA, Schneider RW, Giesler LJ, Wright DL, Marois JJ, Hartman GL. From Select Agent to an Established Pathogen: The Response to Phakopsora pachyrhizi (Soybean Rust) in North America. PHYTOPATHOLOGY 2015; 105:905-16. [PMID: 25775102 DOI: 10.1094/phyto-02-15-0054-fi] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pathogen causing soybean rust, Phakopsora pachyrhizi, was first described in Japan in 1902. The disease was important in the Eastern Hemisphere for many decades before the fungus was reported in Hawaii in 1994, which was followed by reports from countries in Africa and South America. In 2004, P. pachyrhizi was confirmed in Louisiana, making it the first report in the continental United States. Based on yield losses from countries in Asia, Africa, and South America, it was clear that this pathogen could have a major economic impact on the yield of 30 million ha of soybean in the United States. The response by agencies within the United States Department of Agriculture, industry, soybean check-off boards, and universities was immediate and complex. The impacts of some of these activities are detailed in this review. The net result has been that the once dreaded disease, which caused substantial losses in other parts of the world, is now better understood and effectively managed in the United States. The disease continues to be monitored yearly for changes in spatial and temporal distribution so that soybean growers can continue to benefit by knowing where soybean rust is occurring during the growing season.
Collapse
Affiliation(s)
- Heather Y Kelly
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - Nicholas S Dufault
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - David R Walker
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - Scott A Isard
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - Raymond W Schneider
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - Loren J Giesler
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - David L Wright
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - James J Marois
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| | - Glen L Hartman
- First author: Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, University of Tennessee, Jackson 38301; second author: Department of Plant Pathology, University of Florida, Gainesville 32611; third and ninth authors: United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801; fourth author: Departments of Plant Pathology and Meteorology, Pennsylvania State University, University Park 16802; fifth author: Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803; sixth author: Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln 68182; seventh author: Department of Agronomy, North Florida Research and Education Center (NFREC), University of Florida, Quincy 32351; and eighth author: Department of Plant Pathology, NFREC, University of Florida, Quincy 32351 and Gainesville 32611
| |
Collapse
|
18
|
Chen H, Zhao S, Yang Z, Sha A, Wan Q, Zhang C, Chen L, Yuan S, Qiu D, Chen S, Shan Z, Zhou XA. Genetic analysis and molecular mapping of resistance gene to Phakopsora pachyrhizi in soybean germplasm SX6907. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:733-43. [PMID: 25673142 DOI: 10.1007/s00122-015-2468-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE In this study, Rpp6907, a novel resistance gene/allele to Phakopsora pachyrhizi in soybean, was mapped in a 111.9-kb region, including three NBS-LRR type predicted genes, on chromosome 18. Soybean rust caused by Phakopsora pachyrhizi Sydow has been reported in numerous soybean-growing regions worldwide. The development of rust-resistant varieties is the most economical and environmentally safe method to control the disease. The Chinese soybean germplasm SX6907 is resistant to P. pachyrhizi and exhibits immune reaction compared with the known Rpp genes. These characteristics suggest that SX6907 may carry at least one novel Rpp gene/allele. Three F2 populations from the crosses of SX6907 (resistant) and Tianlong 1, Zhongdou40, and Pudou11 (susceptible) were used to map the Rpp gene. Three resistance responses (immune, red-brown, and tan-colored lesion) were observed from the F2 individuals. The segregation follows a ratio of 1(resistance):2(heterozygous):1(susceptible), indicating that the resistance in SX6907 is controlled by a single incomplete dominant gene (designated as Rpp6907). Results showed that Rpp6907 was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by simple sequence repeat (SSR) markers SSR24 and SSR40 at a distance of 111.9 kb. Among the ten genes marked within this 111.9-kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950, and Glyma18g51960) are nucleotide-binding site and leucine-rich repeat-type genes. These genes may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on resistance spectrum analysis and mapping results, we inferred that Rpp6907 is a novel gene different from Rpp1 in PI 200492, PI 561356, PI 587880A, PI 587886, and PI 594538A, or a new Rpp1-b allele.
Collapse
Affiliation(s)
- Haifeng Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu N, Kim M, King ZR, Harris DK, Buck JW, Li Z, Diers BW. Fine mapping of the Asian soybean rust resistance gene Rpp2 from soybean PI 230970. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:387-96. [PMID: 25504467 DOI: 10.1007/s00122-014-2438-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE Asian soybean rust (ASR) resistance gene Rpp2 has been fine mapped into a 188.1 kb interval on Glyma.Wm82.a2, which contains a series of plant resistance ( R ) genes. Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrihizi Syd. & P. Syd., is a serious disease in major soybean [Glycine max (L.) Merr.] production countries worldwide and causes yield losses up to 75 %. Defining the exact chromosomal position of ASR resistance genes is critical for improving the effectiveness of marker-assisted selection (MAS) for resistance and for cloning these genes. The objective of this study was to fine map the ASR resistance gene Rpp2 from the plant introduction (PI) 230970. Rpp2 was previously mapped within a 12.9-cM interval on soybean chromosome 16. The fine mapping was initiated by identifying recombination events in F2 and F3 plants using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers that flank the gene. Seventeen recombinant plants were identified and then tested with additional genetic markers saturating the gene region to localize the positions of each recombination. The progeny of these selected plants were tested for resistance to ASR and with SSR markers resulting in the mapping of Rpp2 to a 188.1 kb interval on the Williams 82 reference genome (Glyma.Wm82.a2). Twelve genes including ten toll/interleukin-1 receptor (TIR)-nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes were predicted to exist in this interval on the Glyma.Wm82.a2.v1 gene model map. Eight of these ten genes were homologous to the Arabidopsis TIR-NBS-LRR gene AT5G17680.1. The identified SSR and SNP markers close to Rpp2 and the candidate gene information presented in this study will be significant resources for MAS and gene cloning research.
Collapse
Affiliation(s)
- Neil Yu
- Department of Crop Sciences, University of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Llongueras JP, Nair S, Salas-Leiva D, Schwarzbach AE. Comparing DNA extraction methods for analysis of botanical materials found in anti-diabetic supplements. Mol Biotechnol 2013; 53:249-56. [PMID: 22403012 DOI: 10.1007/s12033-012-9520-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comparative performance evaluation of DNA extraction methods from anti-diabetic botanical supplements using various commercial kits was conducted, to determine which produces the best quality DNA suitable for PCR amplification, sequencing and species identification. All plant materials involved were of suboptimal quality showing various levels of degradation and therefore representing real conditions for testing herbal supplements. Eight different DNA extraction methods were used to isolate genomic DNA from 13 medicinal plant products. Two methods for evaluation, DNA concentration measurements that included absorbance ratios as well as PCR amplifiability, were used to determine quantity and quality of extracted DNA. We found that neither DNA concentrations nor commonly used UV absorbance ratio measurements at A(260)/A(280) between 1.7 and 1.9 are suitable for globally predicting PCR success in these plant samples, and that PCR amplifiablity itself was the best indicator of extracted product quality. However, our results suggest that A(260)/A(280) ratios below about 1.3 and above 2.3 indicated a DNA quality too poor to amplify. Therefore, A(260)/A(280) measurements are not useful to identify samples that likely will amplify but can be used to exclude samples that likely will not amplify reducing the cost for unnecessarily subjecting samples to PCR. The two Nucleospin(®) plant II kit extraction methods produced the most pure and amplifiable genomic DNA extracts. Our results suggest that there are clear, discernable differences between extraction methods for low quality plant samples in terms of producing contamination-free, high-quality genomic DNA to be used for further analysis.
Collapse
Affiliation(s)
- Jose P Llongueras
- Department of Biomedicine, The University of Texas at Brownsville, Brownsville, TX 78520, USA
| | | | | | | |
Collapse
|
21
|
Kim KS, Unfried JR, Hyten DL, Frederick RD, Hartman GL, Nelson RL, Song Q, Diers BW. Molecular mapping of soybean rust resistance in soybean accession PI 561356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1339-52. [PMID: 22837016 DOI: 10.1007/s00122-012-1932-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/28/2012] [Indexed: 05/08/2023]
Abstract
Soybean rust (SBR), caused by Phakopsora pachyrhizi Sydow, is one of the most economically important and destructive diseases of soybean [Glycine max (L.) Merr.] and the discovery of novel SBR resistance genes is needed because of virulence diversity in the pathogen. The objectives of this research were to map SBR resistance in plant introduction (PI) 561356 and to identify single nucleotide polymorphism (SNP) haplotypes within the region on soybean chromosome 18 where the SBR resistance gene Rpp1 maps. One-hundred F(2:3) lines derived from a cross between PI 561356 and the susceptible experimental line LD02-4485 were genotyped with genetic markers and phenotyped for resistance to P. pachyrhizi isolate ZM01-1. The segregation ratio of reddish brown versus tan lesion type in the population supported that resistance was controlled by a single dominant gene. The gene was mapped to a 1-cM region on soybean chromosome 18 corresponding to the same interval as Rpp1. A haplotype analysis of diverse germplasm across a 213-kb interval that included Rpp1 revealed 21 distinct haplotypes of which 4 were present among 5 SBR resistance sources that have a resistance gene in the Rpp1 region. Four major North American soybean ancestors belong to the same SNP haplotype as PI 561356 and seven belong to the same haplotype as PI 594538A, the Rpp1-b source. There were no North American soybean ancestors belonging to the SNP haplotypes found in PI 200492, the source of Rpp1, or PI 587886 and PI 587880A, additional sources with SBR resistance mapping to the Rpp1 region.
Collapse
Affiliation(s)
- Ki-Seung Kim
- Department of Crop Science, University of Illinois, 1101 W. Peabody Drive, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Freire M, Le M, Oliveira LD, Pitkin J, Segers G, Concibido V, Baley G, Hartman G, Upchurch G, Pedley K, Stacey G. Genetic Diversity and Origins of Phakopsora pachyrhizi Isolates in the United States. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajppaj.2012.52.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Li S, Smith JR, Ray JD, Frederick RD. Identification of a new soybean rust resistance gene in PI 567102B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:133-42. [PMID: 22374138 DOI: 10.1007/s00122-012-1821-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/05/2012] [Indexed: 05/23/2023]
Abstract
Soybean rust (SBR) caused by Phakopsora pachyrhizi Syd. and P. Syd. is one of the most economically important diseases of soybean (Glycine max (L.) Merr.). Durable resistance to P. pachyrhizi is the most effective long-term strategy to control SBR. The objective of this study was to investigate the genetics of resistance to P. pachyrhizi in soybean accession PI 567102B. This accession was previously identified as resistant to SBR in Paraguay and to P. pachyrhizi isolates from seven states in the USA (Alabama, Florida, Georgia, Louisiana, Mississippi, South Carolina, and Texas). Analysis of two independent populations, one in which F(2) phenotypes were inferred from F(2)-derived F(3) (F(2:3)) families and the other in which F(2) plants had phenotypes measured directly, showed that the resistance in PI 567102B was controlled by a single dominant gene. Two different isolates (MS06-1 and LA04-1) at different locations (Stoneville, MS and Ft. Detrick, MD) were used to independently assay the two populations. Linkage analysis of both populations indicated that the resistance locus was located on chromosome 18 (formerly linkage group G), but at a different location than either Rpp1 or Rpp4, which were previously mapped to this linkage group. Therefore, the SBR resistance in PI 567102B appeared to be conditioned by a previously unreported locus, with an underlying single dominant gene inferred. We propose this gene to be designated Rpp6. Incorporating Rpp6 into improved soybean cultivars may have wide benefits as PI 567102B has been shown to provide resistance to P. pachyrhizi isolates from Paraguay and the US.
Collapse
Affiliation(s)
- Shuxian Li
- USDA-ARS, Crop Genetics Research Unit, Stoneville, MS 38776, USA.
| | | | | | | |
Collapse
|
24
|
Pandey AK, Yang C, Zhang C, Graham MA, Horstman HD, Lee Y, Zabotina OA, Hill JH, Pedley KF, Whitham SA. Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:194-206. [PMID: 20977308 DOI: 10.1094/mpmi-08-10-0187] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Asian soybean rust is an aggressive foliar disease caused by the obligate biotrophic fungus Phakopsora pachyrhizi. On susceptible plants, the pathogen penetrates and colonizes leaf tissue, resulting in the formation of necrotic lesions and the development of numerous uredinia. The soybean Rpp2 gene confers resistance to specific isolates of P. pachyrhizi. Rpp2-mediated resistance limits the growth of the pathogen and is characterized by the formation of reddish-brown lesions and few uredinia. Using virus-induced gene silencing, we screened 140 candidate genes to identify those that play a role in Rpp2 resistance toward P. pachyrhizi. Candidate genes included putative orthologs to known defense-signaling genes, transcription factors, and genes previously found to be upregulated during the Rpp2 resistance response. We identified 11 genes that compromised Rpp2-mediated resistance when silenced, including GmEDS1, GmNPR1, GmPAD4, GmPAL1, five predicted transcription factors, an O-methyl transferase, and a cytochrome P450 monooxygenase. Together, our results provide new insight into the signaling and biochemical pathways required for resistance against P. pachyrhizi.
Collapse
Affiliation(s)
- Ajay K Pandey
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service (USDA-ARS), 1301 Ditto Avenue, Ft. Detrick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tran LSP, Mochida K. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 2010; 10:447-62. [PMID: 20582712 DOI: 10.1007/s10142-010-0178-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/01/2010] [Accepted: 06/16/2010] [Indexed: 01/07/2023]
Abstract
Global soybean production is frequently impacted by various stresses, including both abiotic and biotic stresses. To develop soybean plants with enhanced tolerance to different stressors, functional genomics of soybean and a comprehensive understanding of available biotechnological resources and approaches are essential. In this review, we will discuss recent advances in soybean functional genomics which provide unprecedented opportunities to understand global patterns of gene expression, gene regulatory networks, various physiological, biochemical, and metabolic pathways as well as their association with the development of specific phenotypes. Soybean functional genomics, therefore, will ultimately enable us to develop new soybean varieties with improved productivity under adverse conditions by genetic engineering.
Collapse
|