1
|
Wu X, Gong D, Xia F, Dai C, Zhang X, Gao X, Wang S, Qu X, Sun Y, Liu G. A two-step mutation process in the double WS1 homologs drives the evolution of burley tobacco, a special chlorophyll-deficient mutant with abnormal chloroplast development. PLANTA 2019; 251:10. [PMID: 31776784 DOI: 10.1007/s00425-019-03312-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
MAIN CONCLUSION The functional homologs WS1A and WS1B, identified by map-based cloning, control the burley character by affecting chloroplast development in tobacco, contributing to gene isolation and genetic improvement in polyploid crops. Burley represents a special type of tobacco (Nicotiana tabacum L.) cultivar that is characterized by a white stem with a high degree of chlorophyll deficiency. Although important progress in the research of burley tobacco has been made, the molecular mechanisms underlying this character remain unclear. Here, on the basis of our previous genetic analyses and preliminary mapping results, we isolated the White Stem 1A (WS1A) and WS1B genes using a map-based cloning approach. WS1A and WS1B are functional homologs with completely identical biological functions and highly similar expression patterns that control the burley character in tobacco. WS1A and WS1B are derived from Nicotiana sylvestris and Nicotiana tomentosiformis, the diploid ancestors of Nicotiana tabacum, respectively. The two genes encode zinc metalloproteases of the M50 family that are highly homologous to the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) protein of Arabidopsis and the Lutescent 2 (L2) protein of tomato. Transmission electron microscopic examinations indicated that WS1A and WS1B are involved in the development of chloroplasts by controlling the formation of thylakoid membranes, very similar to that observed for EGY1 and L2. The genotyping of historical tobacco varieties revealed that a two-step mutation process occurred in WS1A and WS1B during the evolution of burley tobacco. We also discussed the strategy for gene map-based cloning in polyploid plants with complex genomes. This study will facilitate the identification of agronomically important genes in tobacco and other polyploid crops and provide insights into crop improvement via molecular approaches.
Collapse
Affiliation(s)
- Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Daping Gong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xingwei Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Shaomei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xu Qu
- Qingdao Tobacco Seed Co., Ltd, Qingdao, 266101, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
2
|
Bovet L, Cheval C, Hilfiker A, Battey J, Langlet D, Broye H, Schwaar J, Ozelley P, Lang G, Bakaher N, Laparra H, Goepfert S. Asparagine Synthesis During Tobacco Leaf Curing. PLANTS 2019; 8:plants8110492. [PMID: 31718005 PMCID: PMC6918383 DOI: 10.3390/plants8110492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Senescence is a genetically controlled mechanism that modifies leaf chemistry. This involves significant changes in the accumulation of carbon- and nitrogen-containing compounds, including asparagine through the activity of asparagine synthetases. These enzymes are required for nitrogen re-assimilation and remobilization in plants; however, their mechanisms are not fully understood. Here, we report how leaf curing—a senescence-induced process that allows tobacco leaves to dry out—modifies the asparagine metabolism. We show that leaf curing strongly alters the concentration of the four main amino acids, asparagine, glutamine, aspartate, and glutamate. We demonstrate that detached tobacco leaf or stalk curing has a different impact on the expression of asparagine synthetase genes and accumulation of asparagine. Additionally, we characterize the main asparagine synthetases involved in the production of asparagine during curing. The expression of ASN1 and ASN5 genes is upregulated during curing. The ASN1-RNAi and ASN5-RNAi tobacco plant lines display significant alterations in the accumulation of asparagine, glutamine, and aspartate relative to wild-type plants. These results support the idea that ASN1 and ASN5 are key regulators of asparagine metabolism during leaf curing.
Collapse
|
3
|
Wang X, Yang S, Chen Y, Zhang S, Zhao Q, Li M, Gao Y, Yang L, Bennetzen JL. Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genomics 2018; 19:500. [PMID: 29945549 PMCID: PMC6020451 DOI: 10.1186/s12864-018-4878-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/18/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Simple sequence repeats (SSRs) are tandem repeats of DNA that have been used to develop robust genetic markers. These molecular markers are powerful tools for basic and applied studies such as molecular breeding. In the model plants in Nicotiana genus e.g. N. benthamiana, a comprehensive assessment of SSR content has become possible now because several Nicotiana genomes have been sequenced. We conducted a genome-wide SSR characterization and marker development across seven Nicotiana genomes. RESULTS Here, we initially characterized 2,483,032 SSRs (repeat units of 1-10 bp) from seven genomic sequences of Nicotiana and developed SSR markers using the GMATA® software package. Of investigated repeat units, mono-, di- and tri-nucleotide SSRs account for 98% of all SSRs in Nicotiana. More complex SSR motifs, although rare, are highly variable between Nicotiana genomes. A total of 1,224,048 non-redundant Nicotiana (NIX) markers were developed, of which 99.98% are novel. An efficient and uniform genotyping protocol for NIX markers was developed and validated. We created a web-based database of NIX marker information including amplicon sizes of alleles in each genome for downloading and online analysis. CONCLUSIONS The present work constitutes the first deep characterization of SSRs in seven genomes of Nicotiana, and the development of NIX markers for these SSRs. Our online marker database and an efficient genotyping protocol facilitate the application of these markers. The NIX markers greatly expand Nicotiana marker resources, thus providing a useful tool for future research and breeding. We demonstrate a novel protocol for SSR marker development and utilization at the whole genome scale that can be applied to any lineage of organisms. The Tobacco Markers & Primers Database (TMPD) is available at http://biodb.sdau.edu.cn/tmpd/index.html.
Collapse
Affiliation(s)
- Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Shuai Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Yongdui Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223 People’s Republic of China
| | - Shumeng Zhang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Qingshi Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
| | - Meng Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
| | - Yulong Gao
- Tobacco Breeding Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021 Yunnan China
| | - Long Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Jeffrey L. Bennetzen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201 People’s Republic of China
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
4
|
Comparative Oligo-FISH Mapping: An Efficient and Powerful Methodology To Reveal Karyotypic and Chromosomal Evolution. Genetics 2017; 208:513-523. [PMID: 29242292 DOI: 10.1534/genetics.117.300344] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022] Open
Abstract
Developing the karyotype of a eukaryotic species relies on identification of individual chromosomes, which has been a major challenge for most nonmodel plant and animal species. We developed a novel chromosome identification system by selecting and labeling oligonucleotides (oligos) located in specific regions on every chromosome. We selected a set of 54,672 oligos (45 nt) based on single copy DNA sequences in the potato genome. These oligos generated 26 distinct FISH signals that can be used as a "bar code" or "banding pattern" to uniquely label each of the 12 chromosomes from both diploid and polyploid (4× and 6×) potato species. Remarkably, the same bar code can be used to identify the 12 homeologous chromosomes among distantly related Solanum species, including tomato and eggplant. Accurate karyotypes based on individually identified chromosomes were established in six Solanum species that have diverged for >15 MY. These six species have maintained a similar karyotype; however, modifications to the FISH signal bar code led to the discovery of two reciprocal chromosomal translocations in Solanum etuberosum and S. caripense We also validated these translocations by oligo-based chromosome painting. We demonstrate that the oligo-based FISH techniques are powerful new tools for chromosome identification and karyotyping research, especially for nonmodel plant species.
Collapse
|
5
|
Wang D, Wang S, Chao J, Wu X, Sun Y, Li F, Lv J, Gao X, Liu G, Wang Y. Morphological phenotyping and genetic analyses of a new chemical-mutagenized population of tobacco (Nicotiana tabacum L.). PLANTA 2017; 246:149-163. [PMID: 28401357 DOI: 10.1007/s00425-017-2690-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION A novel tobacco mutant library was constructed, screened, and characterized as a crucial genetic resource for functional genomics and applied research. A comprehensive mutant library is a fundamental resource for investigating gene functions, especially after the completion of genome sequencing. A new tobacco mutant population induced by ethyl methane sulfonate mutagenesis was developed for functional genomics applications. We isolated 1607 mutant lines and 8610 mutant plants with altered morphological phenotypes from 5513 independent M2 families that consisted of 69,531 M2 plants. The 2196 mutations of abnormal phenotypes in the M2 putative mutants were classified into four groups with 17 major categories and 51 subcategories. More than 60% of the abnormal phenotypes observed fell within the five major categories including plant height, leaf shape, leaf surface, leaf color, and flowering time. The 465 M2 mutants exhibited multiple phenotypes, and 1054 of the 2196 mutations were pleiotropic. Verification of the phenotypes in advanced generations indicated that 70.63% of the M3 lines, 84.87% of the M4 lines, and 95.75% of the M5 lines could transmit original mutant phenotypes of the corresponding M2, M3, and M4 mutant plants. Along with the increased generation of mutants, the ratios of lines inheriting OMPs increased and lines with emerging novel mutant phenotypes decreased. Genetic analyses of 18 stably heritable mutants showed that two mutants were double recessive, five were monogenic recessive, eight presented monogenic dominant inheritance, and three presented semi-dominant inheritance. The pleiotropy pattern, saturability evaluation, research prospects of genome, and phenome of the mutant populations were also discussed. Simultaneously, this novel mutant library provided a fundamental resource for investigating gene functions in tobacco.
Collapse
Affiliation(s)
- Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Shaomei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xinru Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Fengxia Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Xiaoming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Yuanying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Keyuanjingsi Road, Laoshan District, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
6
|
Tong Z, Xiao B, Jiao F, Fang D, Zeng J, Wu X, Chen X, Yang J, Li Y. Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco. BREEDING SCIENCE 2016; 66:381-90. [PMID: 27436948 PMCID: PMC4902457 DOI: 10.1270/jsbbs.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/31/2016] [Indexed: 05/28/2023]
Abstract
Tobacco (Nicotiana tabacum L.), particularly flue-cured tobacco, is one of the most economically important nonfood crops and is also an important model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping, and breeding. Simple sequence repeats (SSR) are one of the most widely-used molecular markers, having significant advantages including that they are generally co-dominant, easy to use, abundant in eukaryotic organisms, and produce highly reproducible results. In this study, based on the genome sequence data of flue-cured tobacco (K326), we developed a total of 13,645 mostly novel SSR markers, which were working in a set of eighteen tobacco varieties of four different types. A mapping population of 213 backcross (BC1) individuals, which were derived from an intra-type cross between two flue-cured tobacco varieties, Y3 and K326, was selected for mapping. Based on the newly developed SSR markers as well as published SSR markers, we constructed a genetic map consisting of 626 SSR loci distributed across 24 linkage groups and covering a total length of 1120.45 cM with an average distance of 1.79 cM between adjacent markers, which is the highest density map of flue-cured tobacco till date.
Collapse
|
7
|
Villano C, Miraglia V, Iorizzo M, Aversano R, Carputo D. Combined Use of Molecular Markers and High-Resolution Melting (HRM) to Assess Chromosome Dosage in Potato Hybrids. J Hered 2015; 107:187-92. [PMID: 26663623 DOI: 10.1093/jhered/esv094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/06/2015] [Indexed: 11/14/2022] Open
Abstract
In plants, the most widely used cytological techniques to assess parental genome contributions are based on in situ hybridization (FISH and GISH), but they are time-consuming and need specific expertise and equipment. Recent advances in genomics and molecular biology have made PCR-based markers a straightforward, affordable technique for chromosome typing. Here, we describe the development of a molecular assay that uses single-copy conserved ortholog set II (COSII)-based single nucleotide polymorphisms (SNPs) and the high-resolution melting (HRM) technique to assess the chromosome dosage of interspecific hybrids between a Solanum phureja-S. tuberosum diploid (2n = 2x = 24) hybrid and its wild relative S. commersonii. Screening and analysis of 45 COSII marker sequences allowed S. commersonii-specific SNPs to be identified for all 12 chromosomes. Combining the HRM technique with the establishment of synthetic DNA hybrids, SNP markers were successfully used to predict the expected parental chromosome ratio of 5 interspecific triploid hybrids. These results demonstrate the ability of this strategy to distinguish diverged genomes from each other, and to estimate chromosome dosage. The method could potentially be applied to any species as a tool to assess paternal to maternal ratios in the framework of a breeding program or following transformation techniques.
Collapse
Affiliation(s)
- Clizia Villano
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| | - Valeria Miraglia
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| | - Massimo Iorizzo
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| | - Riccardo Aversano
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo).
| | - Domenico Carputo
- From the Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy (Villano, Miraglia, Aversano, and Carputo); and Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081 (Iorizzo)
| |
Collapse
|
8
|
Wang X, Bennetzen JL. Current status and prospects for the study of Nicotiana genomics, genetics, and nicotine biosynthesis genes. Mol Genet Genomics 2015; 290:11-21. [PMID: 25582664 DOI: 10.1007/s00438-015-0989-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
Abstract
Nicotiana, a member of the Solanaceae family, is one of the most important research model plants, and of high agricultural and economic value worldwide. To better understand the substantial and rapid research progress with Nicotiana in recent years, its genomics, genetics, and nicotine gene studies are summarized, with useful web links. Several important genetic maps, including a high-density map of N. tabacum consisting of ~2,000 markers published in 2012, provide tools for genetics research. Four whole genome sequences are from allotetraploid species, including N. benthamiana in 2012, and three N. tabacum cultivars (TN90, K326, and BX) in 2014. Three whole genome sequences are from diploids, including progenitors N. sylvestris and N. tomentosiformis in 2013 and N. otophora in 2014. These and additional studies provide numerous insights into genome evolution after polyploidization, including changes in gene composition and transcriptome expression in N. tabacum. The major genes involved in the nicotine biosynthetic pathway have been identified and the genetic basis of the differences in nicotine levels among Nicotiana species has been revealed. In addition, other progress on chloroplast, mitochondrial, and NCBI-registered projects on Nicotiana are discussed. The challenges and prospects for genomic, genetic and application research are addressed. Hence, this review provides important resources and guidance for current and future research and application in Nicotiana.
Collapse
Affiliation(s)
- Xuewen Wang
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, People's Republic of China,
| | | |
Collapse
|
9
|
Jeong YM, Chung WH, Chung H, Kim N, Park BS, Lim KB, Yu HJ, Mun JH. Comparative analysis of the radish genome based on a conserved ortholog set (COS) of Brassica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1975-1989. [PMID: 25056003 DOI: 10.1007/s00122-014-2354-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
This manuscript provides a Brassica conserved ortholog set (COS) that can be used as diagnostic cross-species markers as well as tools for genetic mapping and genome comparison of the Brassicaceae. A conserved ortholog set (COS) is a collection of genes that are conserved in both sequence and copy number between closely related genomes. COS is a useful resource for developing gene-based markers and is suitable for comparative genome mapping. We developed a COS for Brassica based on proteome comparisons of Arabidopsis thaliana, B. rapa, and B. oleracea to establish a basis for comparative genome analysis of crop species in the Brassicaceae. A total of 1,194 conserved orthologous single-copy genes were identified from the genomes based on whole-genome BLASTP analysis. Gene ontology analysis showed that most of them encoded proteins with unknown function and chloroplast-related genes were enriched. In addition, 152 Brassica COS primer sets were applied to 16 crop and wild species of the Brassicaceae and 57.9-92.8 % of them were successfully amplified across the species representing that a Brassica COS can be used as diagnostic cross-species markers of diverse Brassica species. We constructed a genetic map of Raphanus sativus by analyzing the segregation of 322 COS genes in an F2 population (93 individuals) of Korean cultivars (WK10039 × WK10024). Comparative genome analysis based on the COS genes showed conserved genome structures between R. sativus and B. rapa with lineage-specific rearrangement and fractionation of triplicated subgenome blocks indicating close evolutionary relationship and differentiation of the genomes. The Brassica COS developed in this study will play an important role in genetic, genomic, and breeding studies of crop Brassicaceae species.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 2014; 5:3833. [PMID: 24807620 PMCID: PMC4024737 DOI: 10.1038/ncomms4833] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
The allotetraploid plant Nicotiana tabacum (common tobacco) is a major crop species and a model organism, for which only very fragmented genomic sequences are currently available. Here we report high-quality draft genomes for three main tobacco varieties. These genomes show both the low divergence of tobacco from its ancestors and microsynteny with other Solanaceae species. We identify over 90,000 gene models and determine the ancestral origin of tobacco mosaic virus and potyvirus disease resistance in tobacco. We anticipate that the draft genomes will strengthen the use of N. tabacum as a versatile model organism for functional genomics and biotechnology applications.
Collapse
Affiliation(s)
- Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - James N.D. Battey
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Adrian Willig
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
- Present address: 25b Quai Charles-Page, CH-1205 Genève, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Manuel C. Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| | - Nikolai V. Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchatel, Switzerland
| |
Collapse
|
11
|
Abstract
Knowledge of the nature and extent of karyotypic differences between species provides insight into the evolutionary history of the genomes in question and, in the case of closely related species, the potential for genetic exchange between taxa. We constructed high-density genetic maps of the silverleaf sunflower (Helianthus argophyllus) and Algodones Dune sunflower (H. niveus ssp. tephrodes) genomes and compared them to a consensus map of cultivated sunflower (H. annuus) to identify chromosomal rearrangements between species. The genetic maps of H. argophyllus and H. niveus ssp. tephrodes included 17 linkage groups each and spanned 1337 and 1478 cM, respectively. Comparative analyses revealed greater divergence between H. annuus and H. niveus ssp. tephrodes (13 inverted segments, 18 translocated segments) than between H. annuus and H. argophyllus (10 inverted segments, 8 translocated segments), consistent with their known phylogenetic relationships. Marker order was conserved across much of the genome, with 83 and 64% of the H. argophyllus and H. niveus ssp. tephrodes genomes, respectively, being syntenic with H. annuus. Population genomic analyses between H. annuus and H. argophyllus, which are sympatric across a portion of the natural range of H. annuus, revealed significantly elevated genetic structure in rearranged portions of the genome, indicating that such rearrangements are associated with restricted gene flow between these two species.
Collapse
|
12
|
Sierro N, Battey JND, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 2013; 14:R60. [PMID: 23773524 PMCID: PMC3707018 DOI: 10.1186/gb-2013-14-6-r60] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/10/2013] [Accepted: 06/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nicotiana sylvestris and Nicotiana tomentosiformis are members of the Solanaceae family that includes tomato, potato, eggplant and pepper. These two Nicotiana species originate from South America and exhibit different alkaloid and diterpenoid production. N. sylvestris is cultivated largely as an ornamental plant and it has been used as a diploid model system for studies of terpenoid production, plastid engineering, and resistance to biotic and abiotic stress. N. sylvestris and N. tomentosiformis are considered to be modern descendants of the maternal and paternal donors that formed Nicotiana tabacum about 200,000 years ago through interspecific hybridization. Here we report the first genome-wide analysis of these two Nicotiana species. RESULTS Draft genomes of N. sylvestris and N. tomentosiformis were assembled to 82.9% and 71.6% of their expected size respectively, with N50 sizes of about 80 kb. The repeat content was 72-75%, with a higher proportion of retrotransposons and copia-like long terminal repeats in N. tomentosiformis. The transcriptome assemblies showed that 44,000-53,000 transcripts were expressed in the roots, leaves or flowers. The key genes involved in terpenoid metabolism, alkaloid metabolism and heavy metal transport showed differential expression in the leaves, roots and flowers of N. sylvestris and N. tomentosiformis. CONCLUSIONS The reference genomes of N. sylvestris and N. tomentosiformis represent a significant contribution to the SOL100 initiative because, as members of the Nicotiana genus of Solanaceae, they strengthen the value of the already existing resources by providing additional comparative information, thereby helping to improve our understanding of plant metabolism and evolution.
Collapse
Affiliation(s)
- Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - James ND Battey
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| |
Collapse
|
13
|
Lindqvist-Kreuze H, Cho K, Portal L, Rodríguez F, Simon R, Mueller LA, Spooner DM, Bonierbale M. Linking the potato genome to the conserved ortholog set (COS) markers. BMC Genet 2013; 14:51. [PMID: 23758607 PMCID: PMC3691714 DOI: 10.1186/1471-2156-14-51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conserved ortholog set (COS) markers are an important functional genomics resource that has greatly improved orthology detection in Asterid species. A comprehensive list of these markers is available at Sol Genomics Network (http://solgenomics.net/) and many of these have been placed on the genetic maps of a number of solanaceous species. RESULTS We amplified over 300 COS markers from eight potato accessions involving two diploid landraces of Solanum tuberosum Andigenum group (formerly classified as S. goniocalyx, S. phureja), and a dihaploid clone derived from a modern tetraploid cultivar of S. tuberosum and the wild species S. berthaultii, S. chomatophilum, and S. paucissectum. By BLASTn (Basic Local Alignment Search Tool of the NCBI, National Center for Biotechnology Information) algorithm we mapped the DNA sequences of these markers into the potato genome sequence. Additionally, we mapped a subset of these markers genetically in potato and present a comparison between the physical and genetic locations of these markers in potato and in comparison with the genetic location in tomato. We found that most of the COS markers are single-copy in the reference genome of potato and that the genetic location in tomato and physical location in potato sequence are mostly in agreement. However, we did find some COS markers that are present in multiple copies and those that map in unexpected locations. Sequence comparisons between species show that some of these markers may be paralogs. CONCLUSIONS The sequence-based physical map becomes helpful in identification of markers for traits of interest thereby reducing the number of markers to be tested for applications like marker assisted selection, diversity, and phylogenetic studies.
Collapse
|
14
|
Shirasawa K, Hirakawa H. DNA marker applications to molecular genetics and genomics in tomato. BREEDING SCIENCE 2013; 63:21-30. [PMID: 23641178 PMCID: PMC3621441 DOI: 10.1270/jsbbs.63.21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/23/2012] [Indexed: 05/23/2023]
Abstract
Tomato is an important crop and regarded as an experimental model of the Solanaceae family and of fruiting plants in general. To enhance breeding efficiency and advance the field of genetics, tomato has been subjected to DNA marker studies as one of the earliest targets in plants. The developed DNA markers have been applied to the construction of genetic linkage maps and the resultant maps have contributed to quantitative trait locus (QTL) and gene mappings for agronomically important traits, as well as to comparative genomics of Solanaceae. The recently released whole genome sequences of tomato enable us to develop large numbers of DNA markers comparatively easily, and even promote new genotyping methods without DNA markers. In addition, databases for genomes, DNA markers, genetic linkage maps and other omics data, e.g., transcriptome, proteome, metabolome and phenome information, will provide useful information for molecular breeding in tomatoes. The use of DNA marker technologies in conjunction with new breeding techniques will promise to advance tomato breeding.
Collapse
|
15
|
Liu H, Guo X, Wu J, Chen GB, Ying Y. Development of universal genetic markers based on single-copy orthologous (COSII) genes in Poaceae. PLANT CELL REPORTS 2013; 32:379-388. [PMID: 23233129 DOI: 10.1007/s00299-012-1371-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/15/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE : We develop a set of universal genetic markers based on single-copy orthologous (COSII) genes in Poaceae. Being evolutionary conserved, single-copy orthologous (COSII) genes are particularly useful in comparative mapping and phylogenetic investigation among species. In this study, we identified 2,684 COSII genes based on five sequenced Poaceae genomes including rice, maize, sorghum, foxtail millet, and brachypodium, and then developed 1,072 COSII markers whose transferability and polymorphism among five bamboo species were further evaluated with 46 pairs of randomly selected primers. 91.3 % of the 46 primers obtained clear amplification in at least one bamboo species, and 65.2 % of them produced polymorphism in more than one species. We also used 42 of them to construct the phylogeny for the five bamboo species, and it might reflect more precise evolutionary relationship than the one based on the vegetative morphology. The results indicated a promising prospect of applying these markers to the investigation of genetic diversity and the classification of Poaceae. To ease and facilitate access of the information of common interest to readers, a web-based database of the COSII markers is provided ( http://www.sicau.edu.cn/web/yms/PCOSWeb/PCOS.html ).
Collapse
Affiliation(s)
- Hailan Liu
- Institute of Maize Research, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | | | | | | | | |
Collapse
|
16
|
Zhang S, Gao M, Zaitlin D. Molecular Linkage Mapping and Marker-Trait Associations with NlRPT, a Downy Mildew Resistance Gene in Nicotiana langsdorffii. FRONTIERS IN PLANT SCIENCE 2012; 3:185. [PMID: 22936937 PMCID: PMC3426812 DOI: 10.3389/fpls.2012.00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/29/2012] [Indexed: 05/16/2023]
Abstract
Nicotiana langsdorffii is one of two species of Nicotiana known to express an incompatible interaction with the oomycete Peronospora tabacina, the causal agent of tobacco blue mold disease. We previously showed that incompatibility is due to the hypersensitive response (HR), and plants expressing the HR are resistant to P. tabacina at all stages of growth. Resistance is due to a single dominant gene in N. langsdorffii accession S-4-4 that we have named NlRPT. In further characterizing this unique host-pathogen interaction, NlRPT has been placed on a preliminary genetic map of the N. langsdorffii genome. Allelic scores for five classes of DNA markers were determined for 90 progeny of a "modified backcross" involving two N. langsdorffii inbred lines and the related species N. forgetiana. All markers had an expected segregation ratio of 1:1, and were scored in a common format. The map was constructed with JoinMap 3.0, and loci showing excessive transmission distortion were removed. The linkage map consists of 266 molecular marker loci defined by 217 amplified fragment length polymorphisms (AFLPs), 26 simple-sequence repeats (SSRs), 10 conserved orthologous sequence markers, nine inter-simple sequence repeat markers, and four target region amplification polymorphism markers arranged in 12 linkage groups with a combined length of 1062 cM. NlRPT is located on linkage group three, flanked by four AFLP markers and one SSR. Regions of skewed segregation were detected on LGs 1, 5, and 9. Markers developed for N. langsdorffii are potentially useful genetic tools for other species in Nicotiana section Alatae, as well as in N. benthamiana. We also investigated whether AFLPs could be used to infer genetic relationships within N. langsdorffii and related species from section Alatae. A phenetic analysis of the AFLP data showed that there are two main lineages within N. langsdorffii, and that both contain populations expressing dominant resistance to P. tabacina.
Collapse
Affiliation(s)
- Shouan Zhang
- Kentucky Tobacco Research and Development Center, University of KentuckyLexington, KY, USA
| | - Muqiang Gao
- Kentucky Tobacco Research and Development Center, University of KentuckyLexington, KY, USA
| | - David Zaitlin
- Kentucky Tobacco Research and Development Center, University of KentuckyLexington, KY, USA
| |
Collapse
|
17
|
Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, Asamizu E, Yamaguchi H, Ohyama A. Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:47-56. [PMID: 22350090 DOI: 10.1007/s00122-012-1815-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 05/07/2023]
Abstract
We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F(2) populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato's more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).
Collapse
Affiliation(s)
- Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science (NIVTS), National Agriculture and Food Research Organization, 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arús P, Shulaev V, Verde I, Morgante M, Rokhsar D, Velasco R, Sargent DJ. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 2012; 13:129. [PMID: 22475018 PMCID: PMC3368713 DOI: 10.1186/1471-2164-13-129] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 04/04/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. RESULTS Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. CONCLUSION Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Alessandro Cestaro
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Michela Troggio
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Dorrie Main
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Ping Zheng
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Ilhyung Cho
- Computer Science, Saginaw Valley State University, University Center, MI 48710, USA
| | - Kevin M Folta
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | - Bryon Sosinski
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC 27695, USA
| | - Albert Abbott
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Jean-Marc Celton
- UMR Génétique et Horticulture (GenHort), INRA/Agrocampus-ouest/Université d'Angers, Centre Angers-Nantes, 42 rue Georges Morel -, BP 60057, 49071 Beaucouzé cedex, France
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, Texas, USA
| | - Ignazio Verde
- CRA - Fruit Tree Research Center, Via di Fioranello, 52, 00134 Rome, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico L. Danieli, via Linussio, 51, 33100 Udine, Italy
| | - Daniel Rokhsar
- DOE Joint Genomics Institute, 2800 Mitchell Dr, Walnut Creek, CA, USA
| | - Riccardo Velasco
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Daniel James Sargent
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
19
|
Fricano A, Bakaher N, Corvo MD, Piffanelli P, Donini P, Stella A, Ivanov NV, Pozzi C. Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet 2012; 13:18. [PMID: 22435796 PMCID: PMC3342901 DOI: 10.1186/1471-2156-13-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The goals of our study were to assess the phylogeny and the population structure of tobacco accessions representing a wide range of genetic diversity; identify a subset of accessions as a core collection capturing most of the existing genetic diversity; and estimate, in the tobacco core collection, the extent of linkage disequilibrium (LD) in seven genomic regions using simple sequence repeat (SSR) markers. To this end, a collection of accessions were genotyped with SSR markers. Molecular diversity was evaluated and LD was analyzed across seven regions of the genome. RESULTS A genotyping database for 312 tobacco accessions was profiled with 49 SSR markers. Principal Coordinate Analysis (PCoA) and Bayesian cluster analysis revealed structuring of the tobacco population with regard to commercial classes and six main clades were identified, which correspond to "Oriental", Flue-Cured", "Burley", "Dark", "Primitive", and "Other" classes. Pairwise kinship was calculated between accessions, and an overall low level of co-ancestry was observed. A set of 89 genotypes was identified that captured the whole genetic diversity detected at the 49 loci. LD was evaluated on these genotypes, using 422 SSR markers mapping on seven linkage groups. LD was estimated as squared correlation of allele frequencies (r2). The pattern of intrachromosomal LD revealed that in tobacco LD extended up to distances as great as 75 cM with r2 > 0.05 or up to 1 cM with r2 > 0.2. The pattern of LD was clearly dependent on the population structure. CONCLUSIONS A global population of tobacco is highly structured. Clustering highlights the accessions with the same market class. LD in tobacco extends up to 75 cM and is strongly dependent on the population structure.
Collapse
Affiliation(s)
- Agostino Fricano
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, 26900 Lodi, Italy
- Bayer CropScience, Technologiepark 38, 9052 Zwijnaarde, Belgium
| | - Nicolas Bakaher
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marcello Del Corvo
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, 26900 Lodi, Italy
| | - Pietro Piffanelli
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, 26900 Lodi, Italy
| | - Paolo Donini
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Alessandra Stella
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, 26900 Lodi, Italy
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carlo Pozzi
- Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- Fondazione Edmund Mach, 38010 San Michele all'Adige, TN, Italy
| |
Collapse
|
20
|
Guyot R, Lefebvre-Pautigny F, Tranchant-Dubreuil C, Rigoreau M, Hamon P, Leroy T, Hamon S, Poncet V, Crouzillat D, de Kochko A. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. BMC Genomics 2012; 13:103. [PMID: 22433423 PMCID: PMC3372433 DOI: 10.1186/1471-2164-13-103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. RESULTS Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. CONCLUSIONS These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time factor alone does not explain divergences. Our results are considerably useful for syntenic studies between supposedly remote species for the isolation of important genes for agronomy.
Collapse
Affiliation(s)
- Romain Guyot
- UMR DIADE, Evolution et Dynamique des Génomes, Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Huang R, Hippauf F, Rohrbeck D, Haustein M, Wenke K, Feike J, Sorrelle N, Piechulla B, Barkman TJ. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc Natl Acad Sci U S A 2012; 109:2966-71. [PMID: 22315396 PMCID: PMC3286912 DOI: 10.1073/pnas.1019605109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.
Collapse
Affiliation(s)
- Ruiqi Huang
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008; and
| | - Frank Hippauf
- Institute of Biological Sciences, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Diana Rohrbeck
- Institute of Biological Sciences, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Maria Haustein
- Institute of Biological Sciences, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Katrin Wenke
- Institute of Biological Sciences, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Janie Feike
- Institute of Biological Sciences, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Noah Sorrelle
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008; and
| | - Birgit Piechulla
- Institute of Biological Sciences, Biochemistry, University of Rostock, 18059 Rostock, Germany
| | - Todd J. Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008; and
| |
Collapse
|
22
|
Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:219-30. [PMID: 21461649 PMCID: PMC3114088 DOI: 10.1007/s00122-011-1578-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/15/2011] [Indexed: 05/19/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a species in the large family of the Solanaceae and is important as an agronomic crop and as a model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available that can be used for genome analysis, genetic mapping and breeding. We report here on the development and characterization of 5,119 new and functional microsatellite markers and on the generation of a high-resolution genetic map for the tetraploid tobacco genome. The genetic map was generated using an F2 mapping population derived from the intervarietal cross of Hicks Broadleaf × Red Russian and merges the polymorphic markers from this new set with those from a smaller set previously used to produce a lower density map. The genetic map described here contains 2,317 microsatellite markers and 2,363 loci, resulting in an average distance between mapped microsatellite markers which is less than 2 million base pairs or 1.5 cM. With this new and expanded marker resource, a sufficient number of markers are now available for multiple applications ranging from tobacco breeding to comparative genome analysis. The genetic map of tobacco is now comparable in marker density and resolution with the best characterized genomes of the Solanaceae: tomato and potato.
Collapse
Affiliation(s)
- Gregor Bindler
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Jörg Plieske
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466 Gatersleben, Germany
| | - Nicolas Bakaher
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Irfan Gunduz
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nikolai Ivanov
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Rutger Van der Hoeven
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
- Present Address: KWS SAAT AG, P.O. Box 1463, 37555 Einbeck, Germany
| | - Martin Ganal
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466 Gatersleben, Germany
| | - Paolo Donini
- Applied Research Department, Philip Morris International, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| |
Collapse
|
23
|
Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagné D, Troggio M. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 2011; 11:9. [PMID: 21226921 PMCID: PMC3033827 DOI: 10.1186/1471-2148-11-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. RESULTS We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. CONCLUSIONS A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.
Collapse
Affiliation(s)
- Eudald Illa
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
BACKGROUND Over the past decades, extensive comparative mapping research has been performed in the plant family Solanaceae. The recent identification of a large set of single-copy conserved orthologous (COSII) markers has greatly accelerated comparative mapping studies among major solanaceous species including tomato, potato, eggplant, pepper and diploid Nicotiana species (as well as tetraploid tobacco). The large amount of comparative data now available for these species provides the opportunity to describe the overall patterns of chromosomal evolution in this important plant family. The results of this investigation are described herein. RESULTS We combined data from multiple COSII studies, and other comparative mapping studies performed in tomato, potato, eggplant, pepper and diploid Nicotiana species, to deduce the features and outcomes of chromosomal evolution in the Solanaceae over the past 30 million years. This includes estimating the rates and timing of chromosomal changes (inversions and translocations) as well as deducing the age of ancestral progenitor species and predicting their genome configurations. CONCLUSIONS The Solanaceae has experienced chromosomal changes at a modest rate compared with other families and the rates are likely conserved across different lineages of the family. Chromosomal inversions occur at a consistently higher rate than do translocations. Further, we find evidences for non-random positioning of the chromosomal rearrangement breakpoints. This finding is consistent with the similar finding in mammals, where hot spots for chromosomal breakages have apparently played a significant role in shaping genome evolution. Finally, by utilizing multiple genome comparisons we were able to reconstruct the most likely genome configuration for a number of now-extinct progenitor species that gave rise to the extant solanaceous species used in this research. The results from this study provide the first broad overview of chromosomal evolution in the family Solanaceae, and one of the most detailed thus far for any family of plants.
Collapse
Affiliation(s)
- Feinan Wu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
25
|
Wu F, Tanksley SD. Chromosomal evolution in the plant family Solanaceae. BMC Genomics 2010; 11:182. [PMID: 20236516 PMCID: PMC2847972 DOI: 10.1186/1471-2164-11-182] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/17/2010] [Indexed: 11/12/2022] Open
Abstract
Background Over the past decades, extensive comparative mapping research has been performed in the plant family Solanaceae. The recent identification of a large set of single-copy conserved orthologous (COSII) markers has greatly accelerated comparative mapping studies among major solanaceous species including tomato, potato, eggplant, pepper and diploid Nicotiana species (as well as tetraploid tobacco). The large amount of comparative data now available for these species provides the opportunity to describe the overall patterns of chromosomal evolution in this important plant family. The results of this investigation are described herein. Results We combined data from multiple COSII studies, and other comparative mapping studies performed in tomato, potato, eggplant, pepper and diploid Nicotiana species, to deduce the features and outcomes of chromosomal evolution in the Solanaceae over the past 30 million years. This includes estimating the rates and timing of chromosomal changes (inversions and translocations) as well as deducing the age of ancestral progenitor species and predicting their genome configurations. Conclusions The Solanaceae has experienced chromosomal changes at a modest rate compared with other families and the rates are likely conserved across different lineages of the family. Chromosomal inversions occur at a consistently higher rate than do translocations. Further, we find evidences for non-random positioning of the chromosomal rearrangement breakpoints. This finding is consistent with the similar finding in mammals, where hot spots for chromosomal breakages have apparently played a significant role in shaping genome evolution. Finally, by utilizing multiple genome comparisons we were able to reconstruct the most likely genome configuration for a number of now-extinct progenitor species that gave rise to the extant solanaceous species used in this research. The results from this study provide the first broad overview of chromosomal evolution in the family Solanaceae, and one of the most detailed thus far for any family of plants.
Collapse
Affiliation(s)
- Feinan Wu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|