1
|
Liu S, Xiang M, Wang X, Li J, Cheng X, Li H, Singh RP, Bhavani S, Huang S, Zheng W, Li C, Yuan F, Wu J, Han D, Kang Z, Zeng Q. Development and application of the GenoBaits WheatSNP16K array to accelerate wheat genetic research and breeding. PLANT COMMUNICATIONS 2025; 6:101138. [PMID: 39318097 PMCID: PMC11783889 DOI: 10.1016/j.xplc.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) are widely used as molecular markers for constructing genetic linkage maps in wheat. Compared with available SNP-based genotyping platforms, a genotyping by target sequencing (GBTS) system with capture-in-solution (liquid chip) technology has become the favored genotyping technology because it is less demanding and more cost effective, flexible, and user-friendly. In this study, a new GenoBaits WheatSNP16K (GBW16K) GBTS array was designed using datasets generated by the wheat 660K SNP array and resequencing platforms in our previous studies. The GBW16K array contains 14 868 target SNP regions that are evenly distributed across the wheat genome, and 37 669 SNPs in these regions can be identified in a diversity panel consisting of 239 wheat accessions from around the world. Principal component and neighbor-joining analyses using the called SNPs are consistent with the pedigree information and geographic distributions or ecological environments of the accessions. For the GBW16K marker panel, the average genetic diversity among the 239 accessions is 0.270, which is sufficient for linkage map construction and preliminary mapping of targeted genes or quantitative trait loci (QTLs). A genetic linkage map, constructed using the GBW16K array-based genotyping of a recombinant inbred line population derived from a cross of the CIMMYT wheat line Yaco"S" and the Chinese landrace Mingxian169, enables the identification of Yr27, Yr30, and QYr.nwafu-2BL.4 for adult-plant resistance to stripe rust from Yaco"S" and of Yr18 from Mingxian169. QYr.nwafu-2BL.4 is different from any previously reported gene/QTL. Three haplotypes and six candidate genes have been identified for QYr.nwafu-2BL.4 on the basis of haplotype analysis, micro-collinearity, gene annotation, RNA sequencing, and SNP data. This array provides a new tool for wheat genetic analysis and breeding studies and for achieving durable control of wheat stripe rust.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjie Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiangrui Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huaizhou Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico; Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico
| | - Shuo Huang
- Key Laboratory of Plant Design, Chinese Academy of Sciences, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200000, China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengping Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Li Z, Yuan C, Li S, Zhang Y, Bai B, Yang F, Liu P, Sang W, Ren Y, Singh R, Liao P, Lan C. Genetic Analysis of Stripe Rust Resistance in the Chinese Wheat Cultivar Luomai 163. PLANT DISEASE 2024; 108:3550-3561. [PMID: 39054604 DOI: 10.1094/pdis-06-24-1195-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Stripe or yellow rust (YR) caused by Puccinia striiformis tritici (Pst) is an important foliar disease affecting wheat production globally. Resistant varieties are the most economically and environmentally effective way to manage this disease. The common winter wheat (Triticum aestivum L.) cultivar Luomai 163 exhibited resistance to the Pst races CYR32 and CYR33 at the seedling stage and showed a high level of adult plant resistance in the field. To understand the genetic basis of YR resistance in this cultivar, 142 F5 recombinant inbred lines (RILs) derived from cross Apav#1 × LM163 and both parents were genotyped with the 16K SNP array and bulked segregant analysis sequencing. The analysis detected a major gene, YrLM163, at the seedling stage associated with the 1BL.1RS translocation. Additionally, three genes for resistance at the adult plant stage were detected on chromosome arms 1BL (Lr46/Yr29/Pm39/Sr58), 6BS, and 6BL in Luomai 163, whereas Apav#1 contributed resistance at a quantitative trait locus (QTL) on 2BL. These QTL explained YR disease severity variations ranging from 6.9 to 54.8%. The kompetitive allele-specific PCR (KASP) markers KASP-2BL, KASP-6BS, and KASP-6BL for the three novel loci QYr.hzau-2BL, QYr.hzau-6BS, and QYr.hzau-6BL were developed and validated. QYr.hzau-1BL, QYr.hzau-2BL, and QYr.hzau-6BS showed varying degrees of resistance to YR when present individually or in combination based on genotype and phenotype analysis of a panel of 570 wheat accessions. Six RILs combining resistance alleles of all QTL, showing higher resistance to YR in the field than Luomai 163 with disease severities of 10.7 to 16.0%, are important germplasm resources for breeding programs to develop YR-resistant wheat varieties with good agronomic traits.
Collapse
Affiliation(s)
- Zimeng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chan Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shunda Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Fangping Yang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Pengpeng Liu
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, Xinjiang 832000, China
| | - Wei Sang
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi, Xinjiang 832000, China
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, Sichuan 621023, China
| | - Ravi Singh
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco 56237E, Mexico
| | - Pingan Liao
- Luohe Academy of Agricultural Sciences, Luohe, Henan 462000, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
Zhou X, Wang Y, Luo Y, Shuai J, Jia G, Chen H, Zhang L, Chen H, Li X, Huang K, Yang S, Wang M, Ren Y, Li G, Chen X. Genome-wide mapping of quantitative trait loci conferring resistance to stripe rust in spring wheat line PI 660072. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:255. [PMID: 39443304 DOI: 10.1007/s00122-024-04760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Two major QTL for resistance to stripe rust were mapped on chromosome 2BL and 4BL in spring wheat PI 660072, and their KASP markers were developed. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Identifying resistance genes is crucial for developing resistant cultivars to control the disease. Spring wheat PI 660072 (Triticum aestivum) has been identified to possess both adult-plant resistance (APR) and all-stage resistance (ASR) to stripe rust. To elucidate the genetic basis of the resistance in PI 660072, a mapping population consisting of 211 F5-F7 recombinant-inbred lines (RILs) was developed from a cross of PI 660072 with susceptible spring wheat Avocet S. The mapping population was phenotyped for stripe rust responses across five field environments from 2020 to 2022 and genotyped using the 15 K SNP (single nucleotide polymorphism) array to map stripe rust resistance loci. The mapping population was also tested at the seedling stage with predominant Chinese Pst races CYR31, CYR32, CYR34 and PST-YX1-3-1 in the greenhouse. Stripe rust resistance genes were identified using the quantitative trait locus (QTL) mapping approach. Two QTL were identified with QYrPI660072.swust-2BL mapped on the long arm of chromosome 2B for ASR and QYrPI660072.swust-4BL on the long arm of chromosome 4B for APR. To facilitate marker-assisted selection breeding, Kompetitive allele specific PCR (KASP) markers, KASP-1269 for QYrPI660072.swust-2BL and KASP-3209 for QYrPI660072.swust-4BL, were developed. These markers could be used to introgress the effective resistance QTL into new wheat cultivars.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Yuqi Wang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yuqi Luo
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jie Shuai
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Guoyun Jia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongyang Chen
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Liangqi Zhang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hao Chen
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, 621023, Sichuan, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
4
|
Feng X, Huang M, Lou X, Yang X, Yu B, Huang K, Yang S. Identification and Mapping of QTLs for Adult Plant Resistance in Wheat Line XK502. PLANTS (BASEL, SWITZERLAND) 2024; 13:2365. [PMID: 39273849 PMCID: PMC11396990 DOI: 10.3390/plants13172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Stripe rust is a serious wheat disease occurring worldwide. At present, the most effective way to control it is to grow resistant cultivars. In this study, a population of 221 recombinant inbred lines (RILs) derived via single-seed descent from a hybrid of a susceptible wheat line, SY95-71, and a resistant line, XK502, was tested in three crop seasons from 2022 to 2024 in five environments. A genetic linkage map was constructed using 12,577 single-nucleotide polymorphisms (SNPs). Based on the phenotypic data of infection severity and the linkage map, five quantitative trait loci (QTL) for adult plant resistance (APR) were detected using the inclusive composite interval mapping (ICIM) method. These five loci are QYrxk502.swust-1BL, QYrxk502.swust-2BL, QYrxk502.swust-3AS, QYrxk502.swust-3BS, and QYrxk502.swust-7BS, explaining 5.67-19.64%, 9.63-36.74%, 9.58-11.30%, 9.76-23.98%, and 8.02-12.41% of the phenotypic variation, respectively. All these QTL originated from the resistant parent XK502. By comparison with the locations of known stripe rust resistance genes, three of the detected QTL, QYrxk502.swust-3AS, QYrxk502.swust-3BS, and QYrxk502.swust-7BS, may harbor new, unidentified genes. From among the tested RILs, 16 lines were selected with good field stripe rust resistance and acceptable agronomic traits for inclusion in breeding programs.
Collapse
Affiliation(s)
- Xianli Feng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoqin Lou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xue Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Boxun Yu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Yan Q, Jia G, Tan W, Tian R, Zheng X, Feng J, Luo X, Si B, Li X, Huang K, Wang M, Chen X, Ren Y, Yang S, Zhou X. Genome-wide QTL mapping for stripe rust resistance in spring wheat line PI 660122 using the Wheat 15K SNP array. FRONTIERS IN PLANT SCIENCE 2023; 14:1232897. [PMID: 37701804 PMCID: PMC10493333 DOI: 10.3389/fpls.2023.1232897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Introduction Stripe rust is a global disease of wheat. Identification of new resistance genes is key to developing and growing resistant varieties for control of the disease. Wheat line PI 660122 has exhibited a high level of stripe rust resistance for over a decade. However, the genetics of stripe rust resistance in this line has not been studied. A set of 239 recombinant inbred lines (RILs) was developed from a cross between PI 660122 and an elite Chinese cultivar Zhengmai 9023. Methods The RIL population was phenotyped for stripe rust response in three field environments and genotyped with the Wheat 15K single-nucleotide polymorphism (SNP) array. Results A total of nine quantitative trait loci (QTLs) for stripe rust resistance were mapped to chromosomes 1B (one QTL), 2B (one QTL), 4B (two QTLs), 4D (two QTLs), 6A (one QTL), 6D (one QTL), and 7D (one QTL), of which seven QTLs were stable and designated as QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-4DS, QYrPI660122.swust-4DL, QYrZM9023.swust-6AS, QYrZM9023.swust-6DS, and QYrPI660122.swust-7DS. QYrPI660122.swust-4DS was a major all-stage resistance QTL explaining the highest percentage (10.67%-20.97%) of the total phenotypic variation and was mapped to a 12.15-cM interval flanked by SNP markers AX-110046962 and AX-111093894 on chromosome 4DS. Discussion The QTL and their linked SNP markers in this study can be used in wheat breeding to improve resistance to stripe rust. In addition, 26 lines were selected based on stripe rust resistance and agronomic traits in the field for further selection and release of new cultivars.
Collapse
Affiliation(s)
- Qiong Yan
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Guoyun Jia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Wenjing Tan
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ran Tian
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaochen Zheng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Junming Feng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaoqin Luo
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Binfan Si
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, US Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
| | - Yong Ren
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang Institute of Agricultural Science, Mianyang, Sichuan, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
6
|
Qureshi N, Singh RP, Gonzalez BM, Velazquez-Miranda H, Bhavani S. Genomic Regions Associated with Resistance to Three Rusts in CIMMYT Wheat Line "Mokue#1". Int J Mol Sci 2023; 24:12160. [PMID: 37569535 PMCID: PMC10418946 DOI: 10.3390/ijms241512160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.
Collapse
Affiliation(s)
- Naeela Qureshi
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Blanca Minerva Gonzalez
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Hedilberto Velazquez-Miranda
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, United Nations Avenue, Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| |
Collapse
|
7
|
Yang G, Deng P, Ji W, Fu S, Li H, Li B, Li Z, Zheng Q. Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. FRONTIERS IN PLANT SCIENCE 2023; 14:1131205. [PMID: 36909389 PMCID: PMC9995812 DOI: 10.3389/fpls.2023.1131205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Thinopyrum ponticum (Podp.) Barkworth and D.R. Dewey is a decaploid species that has served as an important genetic resource for improving wheat for the better part of a century. The wheat-Th. ponticum 4Ag (4D) disomic substitution line Blue 58, which was obtained following the distant hybridization between Th. ponticum and common wheat, has been stably resistant to powdery mildew under field conditions for more than 40 years. The transfer of 4Ag into the susceptible wheat cultivar Xiaoyan 81 resulted in powdery mildew resistance, indicating the alien chromosome includes the resistance locus. Irradiated Blue 58 pollen were used for the pollination of the recurrent parent Xiaoyan 81, which led to the development of four stable wheat-Th. ponticum 4Ag translocation lines with diverse alien chromosomal segments. The assessment of powdery mildew resistance showed that translocation line L1 was susceptible, but the other three translocation lines (WTT139, WTT146, and WTT323) were highly resistant. The alignment of 81 specific-locus amplified fragments to the Th. elongatum genome revealed that 4Ag originated from a group 4 chromosome. The corresponding physical positions of every 4Ag-derived fragment were determined according to a cytogenetic analysis, the amplification of specific markers, and a sequence alignment. Considering the results of the evaluation of disease resistance, the Pm locus was mapped to the 3.79-97.12 Mb region of the short arm of chromosome 4Ag. Because of its durability, this newly identified Pm locus from a group 4 chromosome of Th. ponticum may be important for breeding wheat varieties with broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Shahinnia F, Mohler V, Hartl L. Genetic Basis of Resistance to Warrior (-) Yellow Rust Race at the Seedling Stage in Current Central and Northern European Winter Wheat Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 12:420. [PMID: 36771509 PMCID: PMC9920722 DOI: 10.3390/plants12030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
To evaluate genetic variability and seedling plant response to a dominating Warrior (-) race of yellow rust in Northern and Central European germplasm, we used a population of 229 winter wheat cultivars and breeding lines for a genome-wide association study (GWAS). A wide variation in yellow rust disease severity (based on infection types 1-9) was observed in this panel. Four breeding lines, TS049 (from Austria), TS111, TS185, and TS229 (from Germany), and one cultivar, TS158 (KWS Talent), from Germany were found to be resistant to Warrior (-) FS 53/20 and Warrior (-) G 23/19. The GWAS identified five significant SNPs associated with yellow rust on chromosomes 1B, 2A, 5B, and 7A for Warrior (-) FS 53/20, while one SNP on chromosome 5B was associated with disease for Warrior (-) G 23/19. For Warrior (-) FS 53/20, we discovered a new QTL for yellow rust resistance associated with the marker Kukri_c5357_323 on chromosome 1B. The resistant alleles G and T at the marker loci Kukri_c5357_323 on chromosome 1B and Excalibur_c17489_804 on chromosome 5B showed the largest effects (1.21 and 0.81, respectively) on the severity of Warrior (-) FS 53/20 and Warrior (-) G 23/19. Our results provide the basis for knowledge-based resistance breeding in the face of the enormous impact of the Warrior (-) race on wheat production in Europe.
Collapse
|
9
|
Franco MF, Polacco AN, Campos PE, Pontaroli AC, Vanzetti LS. Genome-wide association study for resistance in bread wheat (Triticum aestivum L.) to stripe rust (Puccinia striiformis f. sp. tritici) races in Argentina. BMC PLANT BIOLOGY 2022; 22:543. [PMID: 36434507 PMCID: PMC9701071 DOI: 10.1186/s12870-022-03916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of the wheat crop. It causes significant reductions in both grain yield and grain quality. In recent years, new and more virulent races have overcome many of the known resistance genes in Argentinian germplasm. In order to identify loci conferring resistance to the local races of Pst for effective utilization in future breeding programs, a genome-wide association study (GWAS) was performed using a collection of 245 bread wheat lines genotyped with 90 K SNPs. RESULTS To search for adult plant resistance (APR) the panel was evaluated for disease severity (DS) and area under disease progress curve (AUDPC) in field trials during two years under natural infection conditions. To look for seedling or all-stage resistance (ASR) the panel was evaluated to determine infection type (IT) under greenhouse conditions against two prevalent races in Argentina. The phenotypic data showed that the panel possessed enough genetic variability for searching for sources of resistance to Pst. Significant correlations between years were observed for Pst response in the field and high heritability values were found for DS (H2 = 0.89) and AUDPC (H2 = 0.93). Based on GWAS, eight markers associated with Pst resistance (FDR < 0.01) were identified, of these, five were associated with ASR (on chromosomes 1B, 2A, 3A and 5B) and three with APR (on chromosomes 3B and 7A). These markers explained between 2% and 32.62% of the phenotypic variation. Five of the markers corresponded with previously reported Yr genes/QTL, while the other three (QYr.Bce.1B.sd.1, QYr.Bce.3A.sd and QYr.Bce.3B.APR.2) might be novel resistance loci. CONCLUSION Our results revealed high genetic variation for resistance to Argentinian stripe rust races in the germplasm used here. It constitutes a very promising step towards the improvement of Pst resistance of bread wheat in Argentina. Also, the identification of new resistance loci would represent a substantial advance for diversifying the current set of resistance genes and to advance in the improvement of the durable resistance to the disease.
Collapse
Affiliation(s)
- M F Franco
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7620, Balcarce, CP, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
- Estación Experimental Agropecuaria INTA Balcarce, 7620, Balcarce, CP, Argentina.
| | - A N Polacco
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7620, Balcarce, CP, Argentina
| | - P E Campos
- Estación Experimental Agropecuaria INTA Bordenave, 8187, Bordenave, CP, Argentina
| | - A C Pontaroli
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria INTA Balcarce, 7620, Balcarce, CP, Argentina
| | - L S Vanzetti
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria INTA Marcos Juárez, 2580, Marcos Juárez, CP, Argentina
| |
Collapse
|
10
|
Shahinnia F, Geyer M, Schürmann F, Rudolphi S, Holzapfel J, Kempf H, Stadlmeier M, Löschenberger F, Morales L, Buerstmayr H, Sánchez JIY, Akdemir D, Mohler V, Lillemo M, Hartl L. Genome-wide association study and genomic prediction of resistance to stripe rust in current Central and Northern European winter wheat germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3583-3595. [PMID: 36018343 PMCID: PMC9519682 DOI: 10.1007/s00122-022-04202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/17/2022] [Indexed: 05/03/2023]
Abstract
We found two loci on chromosomes 2BS and 6AL that significantly contribute to stripe rust resistance in current European winter wheat germplasm. Stripe or yellow rust, caused by the fungus Puccinia striiformis Westend f. sp. tritici, is one of the most destructive wheat diseases. Sustainable management of wheat stripe rust can be achieved through the deployment of rust resistant cultivars. To detect effective resistance loci for use in breeding programs, an association mapping panel of 230 winter wheat cultivars and breeding lines from Northern and Central Europe was employed. Genotyping with the Illumina® iSelect® 25 K Infinium® single nucleotide polymorphism (SNP) genotyping array yielded 8812 polymorphic markers. Structure analysis revealed two subpopulations with 92 Austrian breeding lines and cultivars, which were separated from the other 138 genotypes from Germany, Norway, Sweden, Denmark, Poland, and Switzerland. Genome-wide association study for adult plant stripe rust resistance identified 12 SNP markers on six wheat chromosomes which showed consistent effects over several testing environments. Among these, two marker loci on chromosomes 2BS (RAC875_c1226_652) and 6AL (Tdurum_contig29607_413) were highly predictive in three independent validation populations of 1065, 1001, and 175 breeding lines. Lines with the resistant haplotype at both loci were nearly free of stipe rust symptoms. By using mixed linear models with those markers as fixed effects, we could increase predictive ability in the three populations by 0.13-0.46 compared to a standard genomic best linear unbiased prediction approach. The obtained results facilitate an efficient selection for stripe rust resistance against the current pathogen population in the Northern and Central European winter wheat gene pool.
Collapse
Affiliation(s)
- Fahimeh Shahinnia
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany.
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | | | - Sabine Rudolphi
- SECOBRA Saatzucht GmbH, Lagesche Str. 250, 32657, Lemgo, Germany
| | - Josef Holzapfel
- SECOBRA Saatzucht GmbH, Feldkirchen 3, 85368, Moosburg, Germany
| | - Hubert Kempf
- SECOBRA Saatzucht GmbH, Feldkirchen 3, 85368, Moosburg, Germany
| | | | | | - Laura Morales
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln an der Donau, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln an der Donau, Austria
| | - Julio Isidro Y Sánchez
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Deniz Akdemir
- Center for International Blood and Marrow Transplant Research (CIBMTR), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany.
| |
Collapse
|
11
|
Liu D, Yuan C, Singh RP, Randhawa MS, Bhavani S, Kumar U, Huerta-Espino J, Lagudah E, Lan C. Stripe rust and leaf rust resistance in CIMMYT wheat line "Mucuy" is conferred by combinations of race-specific and adult-plant resistance loci. FRONTIERS IN PLANT SCIENCE 2022; 13:880138. [PMID: 36061764 PMCID: PMC9437451 DOI: 10.3389/fpls.2022.880138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Developing wheat varieties with durable resistance is a core objective of the International Maize and Wheat Improvement Center (CIMMYT) and many other breeding programs worldwide. The CIMMYT advanced wheat line "Mucuy" displayed high levels of resistance to stripe rust (YR) and leaf rust (LR) in field evaluations in Mexico and several other countries. To determine the genetic basis of YR and LR resistance, 138 F5 recombinant inbred lines (RILs) derived from the cross of Apav#1× Mucuy were phenotyped for YR responses from 2015 to 2020 at field sites in India, Kenya, and Mexico, and LR in Mexico. Seedling phenotyping for YR and LR responses was conducted in the greenhouse in Mexico using the same predominant races as in field trials. Using 12,681 polymorphic molecular markers from the DArT, SNP, and SSR genotyping platforms, we constructed genetic linkage maps and QTL analyses that detected seven YR and four LR resistance loci. Among these, a co-located YR/LR resistance loci was identified as Yr29/Lr46, and a seedling stripe rust resistance gene YrMu was mapped on the 2AS/2NS translocation. This fragment also conferred moderate adult plant resistance (APR) under all Mexican field environments and in one season in Kenya. Field trial phenotyping with Lr37-virulent Puccinia triticina races indicated the presence of an APR QTL accounting for 18.3-25.5% of the LR severity variation, in addition to a novel YR resistance QTL, QYr.cim-3DS, derived from Mucuy. We developed breeder-friendly KASP and indel molecular markers respectively for Yr29/Lr46 and YrMu. The current study validated the presence of known genes and identified new resistance loci, a QTL combination effect, and flanking markers to facilitate accelerated breeding for genetically complex, durable rust resistance.
Collapse
Affiliation(s)
- Demei Liu
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design Chinese Academy of Sciences (CAS), Xining, China
| | - Chan Yuan
- Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ravi P. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, Instituto Nacional de Investigacion Forestales Agricolas y Pecuarias (INIFAP), Texcoco, Mexico
| | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Plant Industry, Canberra, ACT, Australia
| | - Caixia Lan
- Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Zhou X, Li X, Han D, Yang S, Kang Z, Ren R. Genome-Wide QTL Mapping for Stripe Rust Resistance in Winter Wheat Pindong 34 Using a 90K SNP Array. FRONTIERS IN PLANT SCIENCE 2022; 13:932762. [PMID: 35873978 PMCID: PMC9296828 DOI: 10.3389/fpls.2022.932762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Winter wheat cultivar Pindong 34 has both adult-plant resistance (APR) and all-stage resistance (ASR) to stripe rust, which is caused by Puccinia striiformis f. sp. tritici (Pst). To map the quantitative trait loci (QTL) for stripe rust resistance, an F6-10 recombinant inbred line (RIL) population from a cross of Mingxian 169 × Pingdong 34 was phenotyped for stripe rust response over multiple years in fields under natural infection conditions and with selected Pst races under controlled greenhouse conditions, and genotyping was performed with a 90K single nucleotide polymorphism (SNP) array chip. Inclusive composite interval mapping (ICIM) identified 12 APR resistance QTLs and 3 ASR resistance QTLs. Among the 12 APR resistance QTLs, QYrpd.swust-1BL (explaining 9.24-13.33% of the phenotypic variation), QYrpd.swust-3AL.1 (11.41-14.80%), QYrpd.swust-3AL.2 (11.55-16.10%), QYrpd.swust-6BL (9.39-12.78%), QYrpd.swust-6DL (9.52-16.36%), QYrpd.swust-7AL (9.09-17.0%), and QYrpd.swust-7DL (8.87-11.38%) were more abundant than in the five tested environments and QYrpd.swust-1AS (11.05-12.72%), QYrpd.swust-1DL (9.81-13.05%), QYrpd.swust-2BL.1 (9.69-10.57%), QYrpd.swust-2BL.2 (10.36-12.97%), and QYrpd.swust-2BL.3 (9.54-13.15%) were significant in some of the tests. The three ASR resistance QTLs QYrpd.swust-2AS (9.69-13.58%), QYrpd.swust-2BL.4 (9.49-12.07%), and QYrpd.swust-7AS (16.16%) were detected based on the reactions in the seedlings tested with the CYR34 Pst race. Among the 15 QTLs detected in Pindong 34, the ASR resistance gene QYrpd.swust-7AS mapped on the short arm of chromosome 7A was likely similar to the previously reported QTL Yr61 in the region. The QTLs identified in the present study and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust.
Collapse
Affiliation(s)
- Xinli Zhou
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Xin Li
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Suizhuang Yang
- School of Life Sciences and Engineering, Wheat Research Institute, Southwest University of Science and Technology, Mianyang, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Runsheng Ren
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
13
|
Bai B, Li Z, Wang H, Du X, Wu L, Du J, Lan C. Genetic Analysis of Adult Plant Resistance to Stripe Rust in Common Wheat Cultivar "Pascal". FRONTIERS IN PLANT SCIENCE 2022; 13:918437. [PMID: 35874020 PMCID: PMC9298664 DOI: 10.3389/fpls.2022.918437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Wheat stripe rust is an important foliar disease that affects the wheat yield globally. Breeding for resistant wheat varieties is one of the most economically and environmentally effective ways to control this disease. The common wheat (Triticum aestivum L.) cultivar "Pascal" exhibited susceptibility to stripe rust at the seedling stage but it showed high resistance to stripe rust at the adult plant stage over 20 years in Gansu, a hotspot of the disease in northwestern China. To understand the genetic mechanism of stripe rust resistance in this cultivar, a 55K SNP array was used to analyze the two parents and the 220 recombinant inbred lines (RILs) derived from the cross of "Huixianhong" × "Pascal." We detected three new stripe rust adult plant resistance (APR) quantitative trait locus (QTL) contributed by Pascal, viz. QYr.gaas-1AL, QYr.gaas-3DL, and QYr.gaas-5AS, using the inclusive composite interval mapping method. They were flanked by SNP markers AX-111218361-AX-110577861, AX-111460455-AX-108798599, and AX-111523523-AX-110028503, respectively, and explained the phenotypic variation ranging from 11.0 to 23.1%. Bulked segregant exome capture sequencing (BSE-Seq) was used for fine mapping of QYr.gaas-1AL and selection of candidate genes, TraesCS1A02G313700, TraesCS1A02G313800, and TraesCS1A02G314900 for QYr.gaas-1AL. KASP markers BSE-1A-12 and HXPA-3D for QYr.gaas-1AL and QYr.gaas-3DL were developed for breeders to develop durable stripe rust-resistant wheat varieties.
Collapse
Affiliation(s)
- Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zimeng Li
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Wang
- Institute of Biotechnology, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolin Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Caixia Lan
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Identification of Three Novel QTLs Associated with Yellow Rust Resistance in Wheat (Triticum aestivum L.) Anong-179/Khaista-17 F2 Population. SUSTAINABILITY 2022. [DOI: 10.3390/su14127454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wheat yellow rust (YR) caused by Puccinia striiformis is lethal for the leaf photosynthetic process, which substantially affects yield components and ultimately causes drastic yield reduction. The current study aimed to identify all-stage YR resistance linked QTLs in the best cross-combination. Experimental materials were phenotyped for disease severity in YR-hot spot area at Cereal Crops Research Institute, Pirsabak Pakistan in Khyber Pakhtunkhwa province in 2019 and 2020 and 2020 and 2021 Rabi seasons. The AN179 × KS17 was found to be the best cross combination, which showed high resistance to YR, whereas crosses AN179 × PK15 and PR129 × PK15 demonstrated susceptibility to YR with high disease severity. The recombinant inbred lines (RIL) F2 wheat population Annong-179/Khaista-17 demonstrated highly desirable YR resistance and yield component traits. Simple sequence repeat (SSR) markers were used to genotype the RIL population and their parents. Three novel QTLs linked to all-stage YR resistance were found on chromosomes 2BS, 3BS and 6BS, which explained 1.24, 0.54, and 0.75 phenotypic variance, respectively. Incorporation of the newly identified novel YR-resistance associated QTLs into hybridization wheat breeding program could be effective for marker-assisted selection of the improved and sustainable resistance.
Collapse
|
15
|
Rollar S, Geyer M, Hartl L, Mohler V, Ordon F, Serfling A. Quantitative Trait Loci Mapping of Adult Plant and Seedling Resistance to Stripe Rust ( Puccinia striiformis Westend.) in a Multiparent Advanced Generation Intercross Wheat Population. FRONTIERS IN PLANT SCIENCE 2021; 12:684671. [PMID: 35003147 PMCID: PMC8733622 DOI: 10.3389/fpls.2021.684671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/19/2021] [Indexed: 05/20/2023]
Abstract
Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.
Collapse
Affiliation(s)
- Sandra Rollar
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
16
|
Yao F, Guan F, Duan L, Long L, Tang H, Jiang Y, Li H, Jiang Q, Wang J, Qi P, Kang H, Li W, Ma J, Pu Z, Deng M, Wei Y, Zheng Y, Chen X, Chen G. Genome-Wide Association Analysis of Stable Stripe Rust Resistance Loci in a Chinese Wheat Landrace Panel Using the 660K SNP Array. FRONTIERS IN PLANT SCIENCE 2021; 12:783830. [PMID: 35003168 PMCID: PMC8728361 DOI: 10.3389/fpls.2021.783830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases affecting wheat production. The disease is best controlled by developing and growing resistant cultivars. Chinese wheat (Triticum aestivum) landraces have excellent resistance to stripe rust. The objectives of this study were to identify wheat landraces with stable resistance and map quantitative trait loci (QTL) for resistance to stripe rust from 271 Chinese wheat landraces using a genome-wide association study (GWAS) approach. The landraces were phenotyped for stripe rust responses at the seedling stage with two predominant Chinese races of P. striiformis f. sp. tritici in a greenhouse and the adult-plant stage in four field environments and genotyped using the 660K wheat single-nucleotide polymorphism (SNP) array. Thirteen landraces with stable resistance were identified, and 17 QTL, including eight associated to all-stage resistance and nine to adult-plant resistance, were mapped on chromosomes 1A, 1B, 2A, 2D, 3A, 3B, 5A, 5B, 6D, and 7A. These QTL explained 6.06-16.46% of the phenotypic variation. Five of the QTL, QYrCL.sicau-3AL, QYrCL.sicau-3B.4, QYrCL.sicau-3B.5, QYrCL.sicau-5AL.1 and QYrCL.sicau-7AL, were likely new. Five Kompetitive allele specific PCR (KASP) markers for four of the QTL were converted from the significant SNP markers. The identified wheat landraces with stable resistance to stripe rust, significant QTL, and KASP markers should be useful for breeding wheat cultivars with durable resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xianming Chen
- Wheat Health, Genetics and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Morales L, Michel S, Ametz C, Dallinger HG, Löschenberger F, Neumayer A, Zimmerl S, Buerstmayr H. Genomic signatures of selection for resistance to stripe rust in Austrian winter wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3111-3121. [PMID: 34125246 PMCID: PMC8354948 DOI: 10.1007/s00122-021-03882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
We combined quantitative and population genetic methods to identify loci under selection for adult plant resistance to stripe rust in an Austrian winter wheat breeding population from 2008 to 2018. Resistance to stripe rust, a foliar disease caused by the fungus P. striiformis f. sp. tritici, in wheat (Triticum aestivum L.) is both qualitatively and quantitatively controlled. Resistance genes confer complete, race-specific resistance but are easily overcome by evolving pathogen populations, while quantitative resistance is controlled by many small- to medium-effect loci that provide incomplete yet more durable protection. Data on resistance loci can be applied in marker-assisted selection and genomic prediction frameworks. We employed genome-wide association to detect loci associated with stripe rust and selection testing to identify regions of the genome that underwent selection for stripe rust resistance in an Austrian winter wheat breeding program from 2008 to 2018. Genome-wide association mapping identified 150 resistance loci, 62 of which showed significant evidence of selection over time. The breeding population also demonstrated selection for resistance at the genome-wide level.
Collapse
Affiliation(s)
- Laura Morales
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria.
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | | | - Hermann Gregor Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | | | | | - Simone Zimmerl
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| |
Collapse
|
18
|
Baranwal DK, Bariana H, Bansal U. Genetic dissection of stripe rust resistance in a Tunisian wheat landrace Aus26670. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:54. [PMID: 37309400 PMCID: PMC10236087 DOI: 10.1007/s11032-021-01248-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/29/2021] [Indexed: 06/14/2023]
Abstract
The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (Puccinia striiformis f. sp. tritici; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet 'S' (AvS) to generate 123 F7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9-763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72. QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29, QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01248-7.
Collapse
Affiliation(s)
- Deepak Kumar Baranwal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570 Australia
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, 813210 India
| | - Harbans Bariana
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570 Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570 Australia
| |
Collapse
|
19
|
Huang S, Liu S, Zhang Y, Xie Y, Wang X, Jiao H, Wu S, Zeng Q, Wang Q, Singh RP, Bhavani S, Kang Z, Wang C, Han D, Wu J. Genome-Wide Wheat 55K SNP-Based Mapping of Stripe Rust Resistance Loci in Wheat Cultivar Shaannong 33 and Their Alleles Frequencies in Current Chinese Wheat Cultivars and Breeding Lines. PLANT DISEASE 2021; 105:1048-1056. [PMID: 32965178 DOI: 10.1094/pdis-07-20-1516-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wheat cultivar Shaannong 33 (SN33) has remained highly resistant to stripe rust in the field since its release in 2009. To unravel the genetic architecture of stripe rust resistance, seedlings of 161 recombinant inbred lines (RILs) from the cross Avocet S × SN33 were evaluated with two isolates (PST-Lab.1 and PST-Lab.2) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici) in the greenhouse, and the RILs were evaluated in naturally or artificially inoculated field sites during two cropping seasons. The RILs and parents were genotyped with the wheat 55K single-nucleotide polymorphism array. Three genomic regions conferring seedling resistance were mapped on chromosomes 1DS, 2AS, and 3DS, and four consistent quantitative trait loci (QTL) for adult-plant resistance (APR) were detected on 1BL, 2AS, 3DL, and 6BS. The 2AS locus conferring all-stage resistance was identified as the resistant gene Yr17 located on 2NS translocation. The QTL identified on 1BL and 6BS likely correspond to Yr29 and Yr78, respectively. An APR QTL on 3DL explaining 5.8 to 12.2% of the phenotypic variation is likely to be new. Molecular marker detection assays with the 2NS segment (Yr17), Yr29, Yr78, and QYrsn.nwafu-3DL on a panel of 420 current Chinese wheat cultivars and breeding lines indicated that these genes were present in 11.4, 7.6, 14.8, and 7.4% of entries, respectively. The interactions among these genes and QTL were additive, suggesting their potential value in enhancing stripe rust resistance breeding materials as observed in the resistant parent. In addition, we also identified two leaf necrosis genes, Ne1 and Ne2; however, the F1 plants from cross Avocet S × SN33 survived, indicating that SN33 probably has another allele of Ne1 which allows seed to be harvested.
Collapse
Affiliation(s)
- Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Hanxuan Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shushu Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de Mexico 56237, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de Mexico 56237, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chengshe Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
20
|
Wang Y, Yu C, Cheng Y, Yao F, Long L, Wu Y, Li J, Li H, Wang J, Jiang Q, Li W, Pu Z, Qi P, Ma J, Deng M, Wei Y, Chen X, Chen G, Kang H, Jiang Y, Zheng Y. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics 2021; 22:34. [PMID: 33413106 PMCID: PMC7791647 DOI: 10.1186/s12864-020-07331-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. RESULTS Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99-23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. CONCLUSIONS Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit; and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
21
|
Yao F, Long L, Wang Y, Duan L, Zhao X, Jiang Y, Li H, Pu Z, Li W, Jiang Q, Wang J, Wei Y, Ma J, Kang H, Dai S, Qi P, Zheng Y, Chen X, Chen G. Population structure and genetic basis of the stripe rust resistance of 140 Chinese wheat landraces revealed by a genome-wide association study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110688. [PMID: 33218646 DOI: 10.1016/j.plantsci.2020.110688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most devastating foliar diseases in wheat. Host resistance is the most effective strategy for the management of the disease. To screen for accessions with stable resistance and identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using a panel of 140 Chinese wheat landraces. The panel was evaluated for stripe rust response at the adult-plant stage at six field-year environments with mixed races and at the seedling stage with two separate predominant races of the pathogen, and genotyped with the genome-wide Diversity Arrays Technology markers. The panel displayed abundant phenotypic variation in stripe rust responses, with 9 landraces showing stable resistance to the mixture of Pst races at the adult-plant stage in the field and 10 landraces showing resistance to individual races at the seedling stage in the greenhouse. GWAS identified 12 quantitative trait loci (QTL) significantly (P ≤ 0.001) associated to stripe rust resistance using the field data of at least two environments and 18 QTL using the seedling data with two races. Among these QTL, 10 were presumably novel, including 4 for adult-plant resistance mapped to chromosomes 1B (QYrcl.sicau-1B.3), 4A (QYrcl.sicau-4A.3), 6A (QYrcl.sicau-6A.2) and 7B (QYrcl.sicau-7B.2) and 6 for all-stage resistance mapped to chromosomes 2D (QYrcl.sicau-2D.1), 3B (QYrcl.sicau-3B.3), 3D (QYrcl.sicau-3D), 4B (QYrcl.sicau-4B), 6A (QYrcl.sicau-6A.1) and 6D (QYrcl.sicau-6D). The landraces with stable resistance can be used for developing wheat cultivars with effective resistance to stripe rust.
Collapse
Affiliation(s)
- Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, PR China; State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
22
|
Pradhan AK, Kumar S, Singh AK, Budhlakoti N, Mishra DC, Chauhan D, Mittal S, Grover M, Kumar S, Gangwar OP, Kumar S, Gupta A, Bhardwaj SC, Rai A, Singh K. Identification of QTLs/Defense Genes Effective at Seedling Stage Against Prevailing Races of Wheat Stripe Rust in India. Front Genet 2020; 11:572975. [PMID: 33329711 PMCID: PMC7728992 DOI: 10.3389/fgene.2020.572975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023] Open
Abstract
Resistance in modern wheat cultivars for stripe rust is not long lasting due to the narrow genetic base and periodical evolution of new pathogenic races. Though nearly 83 Yr genes conferring resistance to stripe rust have been cataloged so far, few of them have been mapped and utilized in breeding programs. Characterization of wheat germplasm for novel sources of resistance and their incorporation into elite cultivars is required to achieve durable resistance and thus to minimize the yield losses. Here, a genome-wide association study (GWAS) was performed on a set of 391 germplasm lines with the aim to identify quantitative trait loci (QTL) using 35K Axiom® array. Phenotypic evaluation disease severity against four stripe rust pathotypes, i.e., 46S119, 110S119, 238S119, and 47S103 (T) at the seedling stage in a greenhouse providing optimal conditions was carried out consecutively for 2 years (2018 and 2019 winter season). We identified, a total of 17 promising QTl which passed FDR criteria. Moreover these 17 QTL identified in the current study were mapped at different genomic locations i.e. 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5B and 6B. These 17 QTLs identified in the present study might play a key role in marker-assisted breeding for developing stripe rust resistant wheat cultivars.
Collapse
Affiliation(s)
- Anjan Kumar Pradhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh C Mishra
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Divya Chauhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shikha Mittal
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Monendra Grover
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Suneel Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Om P Gangwar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Subodh Kumar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Arun Gupta
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Subhash C Bhardwaj
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Anil Rai
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kuldeep Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
23
|
Quoc NB, Trang HTT, Phuong NDN, Chau NNB, Jantasuriyarat C. Development of a SCAR marker linked to fungal pathogenicity of rice blast fungus Magnaporthe Oryzae. Int Microbiol 2020; 24:149-156. [PMID: 33161504 DOI: 10.1007/s10123-020-00150-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/17/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
PCR-based molecular approaches including RAPD (random amplified polymorphic DNA), ISSR (inter-simple sequence repeat), and SRAP (sequence-related amplified polymorphism) are commonly used to analyze genetic diversity. The aims of this study are to analyze genetic diversity of M. oryzae isolates using PCR-based molecular approaches such as RAPD, ISSR, and SRAP and to develop SCAR marker linked to the pathogenicity of rice blast fungus. Twenty Magnaporthe oryzae isolates were collected mainly from the south of Vietnam and assessed for genetic variation by RAPD, ISSR, and SRAP methods. The comparison of those methods was conducted based on the number of polymorphic bands, percentage of polymorphism, PIC values, and phylogenetic analysis. Then, sequenced characterized amplified region (SCAR) markers were developed based on specific bands linked to fungal pathogenicity of rice blast fungus, M. oryzae. The results indicated that SRAP markers yielded the greatest number of polymorphic bands (174) and occupied 51.7% with polymorphism information content (PIC) value of 0.66. Additionally, the SRAP approach showed stability and high productivity compared with RAPD and ISSR. The SCAR marker developed from the SRAP method identified the presence of the avirulence AVR-pita1 gene involving fungal pathogenicity that can break down blast resistance in rice cultivars. The consistency of SCAR marker obtained in this study showed its efficiency in rapid in-field detection of fungal pathogenicity. SCAR marker developed from SRAP technique provides a useful tool for improving the efficiency of blast disease management in rice fields.
Collapse
Affiliation(s)
- Nguyen Bao Quoc
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam.
| | - Ho Thi Thu Trang
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nguyen Doan Nguyen Phuong
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Nguyen Ngoc Bao Chau
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
24
|
Jia M, Yang L, Zhang W, Rosewarne G, Li J, Yang E, Chen L, Wang W, Liu Y, Tong H, He W, Zhang Y, Zhu Z, Gao C. Genome-wide association analysis of stripe rust resistance in modern Chinese wheat. BMC PLANT BIOLOGY 2020; 20:491. [PMID: 33109074 PMCID: PMC7590722 DOI: 10.1186/s12870-020-02693-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Stripe rust (yellow rust) is a significant disease for bread wheat (Triticum aestivum L.) worldwide. A genome-wide association study was conducted on 240 Chinese wheat cultivars and elite lines genotyped with the wheat 90 K single nucleotide polymorphism (SNP) arrays to decipher the genetic architecture of stripe rust resistance in Chinese germplasm. RESULTS Stripe rust resistance was evaluated at the adult plant stage in Pixian and Xindu in Sichuan province in the 2015-2016 cropping season, and in Wuhan in Hubei province in the 2013-2014, 2016-2017 and 2018-2019 cropping seasons. Twelve stable loci for stripe rust resistance were identified by GWAS using TASSEL and GAPIT software. These loci were distributed on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4B (3), 4D, 6D, and 7B and explained 3.6 to 10.3% of the phenotypic variation. Six of the loci corresponded with previously reported genes/QTLs, including Sr2/Yr30/Lr27, while the other six (QYr.hbaas-1BS, QYr.hbaas-2BL, QYr.hbaas-3AL, QYr.hbaas-4BL.3, QYr.hbaas-4DL, and QYr.hbaas-6DS) are probably novel. The results suggest high genetic diversity for stripe rust resistance in this population. The resistance alleles of QYr.hbaas-2AS, QYr.hbaas-3BS, QYr.hbaas-4DL, and QYr.hbaas-7BL were rare in the present panel, indicating their potential use in breeding for stripe rust resistance in China. Eleven penta-primer amplification refractory mutation system (PARMS) markers were developed from SNPs significantly associated with seven mapped QTLs. Twenty-seven genes were predicted for mapped QTLs. Six of them were considered as candidates for their high relative expression levels post-inoculation. CONCLUSION The resistant germplasm, mapped QTLs, and PARMS markers developed in this study are resources for enhancing stripe rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Mengjie Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58108-6050, USA
| | - Garry Rosewarne
- Department of Jobs, Precincts and Regions, Agriculture Victoria, 110 Natimuk Road, Horsham, Victoria, 3400, Australia
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico D.F., Mexico
| | - Junhui Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Enian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ling Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Wenxue Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Hanwen Tong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Weijie He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Yuqing Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China.
| | - Chunbao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze university, Jingzhou, 434025, China.
| |
Collapse
|
25
|
Yang F, Liu J, Guo Y, He Z, Rasheed A, Wu L, Cao S, Nan H, Xia X. Genome-Wide Association Mapping of Adult-Plant Resistance to Stripe Rust in Common Wheat ( Triticum aestivum). PLANT DISEASE 2020; 104:2174-2180. [PMID: 32452749 DOI: 10.1094/pdis-10-19-2116-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a globally devastating disease of common wheat (Triticum aestivum L.), resulting in substantial economic losses. To identify effective resistance genes, a genome-wide association study was conducted on 120 common wheat lines from different wheat-growing regions of China using the wheat 90K iSelect SNP array. Seventeen loci were identified, explaining 9.5 to 21.8% of the phenotypic variation. Most of these genes were detected in the A (seven) and B (seven) genomes, with only three in the D genome. Among them, 11 loci were colocated with known resistance genes or quantitative trait loci reported previously, whereas the other six are likely new resistance loci. Annotation of flanking sequences of significantly associated SNPs indicated the presence of three important candidate genes, including E3 ubiquitin-protein ligase, F-box repeat protein, and disease resistance RPP13-like protein. This study increased our knowledge in understanding the genetic architecture for stripe rust resistance and identified wheat varieties with multiple resistance alleles, which are useful for improvement of stripe rust resistance in breeding.
Collapse
Affiliation(s)
- Fangping Yang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Ying Guo
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Shiqin Cao
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Hai Nan
- Tianshui Institute of Agricultural Sciences, Tianshui, Gansu 741200, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
26
|
Kumar D, Kumar A, Chhokar V, Gangwar OP, Bhardwaj SC, Sivasamy M, Prasad SVS, Prakasha TL, Khan H, Singh R, Sharma P, Sheoran S, Iquebal MA, Jaiswal S, Angadi UB, Singh G, Rai A, Singh GP, Kumar D, Tiwari R. Genome-Wide Association Studies in Diverse Spring Wheat Panel for Stripe, Stem, and Leaf Rust Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:748. [PMID: 32582265 PMCID: PMC7286347 DOI: 10.3389/fpls.2020.00748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/12/2020] [Indexed: 05/20/2023]
Abstract
Among several important wheat foliar diseases, Stripe rust (YR), Leaf rust (LR), and Stem rust (SR) have always been an issue of concern to the farmers and wheat breeders. Evolution of virulent pathotypes of these rusts has posed frequent threats to an epidemic. Pyramiding rust-resistant genes are the most economical and environment-friendly approach in postponing this inevitable threat. To achieve durable long term resistance against the three rusts, an attempt in this study was made searching for novel sources of resistant alleles in a panel of 483 spring wheat genotypes. This is a unique and comprehensive study where evaluation of a diverse panel comprising wheat germplasm from various categories and adapted to different wheat agro-climatic zones was challenged with 18 pathotypes of the three rusts with simultaneous screening in field conditions. The panel was genotyped using 35K SNP array and evaluated for each rust at two locations for two consecutive crop seasons. High heritability estimates of disease response were observed between environments for each rust type. A significant effect of population structure in the panel was visible in the disease response. Using a compressed mixed linear model approach, 25 genomic regions were found associated with resistance for at least two rusts. Out of these, seven were associated with all the three rusts on chromosome groups 1 and 6 along with 2B. For resistance against YR, LR, and SR, there were 16, 18, and 27 QTL (quantitative trait loci) identified respectively, associated at least in two out of four environments. Several of these regions got annotated with resistance associated genes viz. NB-LRR, E3-ubiquitin protein ligase, ABC transporter protein, etc. Alien introgressed (on 1B and 3D) and pleiotropic (on 7D) resistance genes were captured in seedling and adult plant disease responses, respectively. The present study demonstrates the use of genome-wide association for identification of a large number of favorable alleles for leaf, stripe, and stem rust resistance for broadening the genetic base. Quick conversion of these QTL into user-friendly markers will accelerate the deployment of these resistance loci in wheat breeding programs.
Collapse
Affiliation(s)
- Deepender Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Animesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Vinod Chhokar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, India
| | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | | | - M. Sivasamy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, India
| | - S. V. Sai Prasad
- ICAR-Indian Agricultural Research Institute, Regional Station, Indore, India
| | - T. L. Prakasha
- ICAR-Indian Agricultural Research Institute, Regional Station, Indore, India
| | - Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Mir Asif Iquebal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dinesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
27
|
Liu Y, Qie Y, Li X, Wang M, Chen X. Genome-Wide Mapping of Quantitative Trait Loci Conferring All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Landrace PI 181410. Int J Mol Sci 2020; 21:ijms21020478. [PMID: 31940871 PMCID: PMC7014124 DOI: 10.3390/ijms21020478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Genetic resistance is the best strategy for control of the disease. Spring wheat landrace PI 181410 has shown high level resistance to stripe rust. The present study characterized the landrace to have both race-specific all-stage resistance and nonrace-specific high-temperature adult-plant (HTAP) resistance. To map quantitative trait loci (QTL) for the resistance in PI 181410, it was crossed with Avocet S (AvS), from which a recombinant inbred line population was developed. The F5–F8 populations were consecutively phenotyped for stripe rust response in multiple field environments under natural Pst infection, and the F7 population was phenotyped in seedlings at low temperature and in adult-plant stage with selected Pst races in the greenhouse. The F7 population was genotyped using the 90K wheat SNP chip. Three QTL, QYrPI181410.wgp-4AS, QYrPI181410.wgp-4BL, and QYrPI181410.wgp-5BL.1, from PI 181410 for all-stage resistance, were mapped on chromosome arms 4AS, 4BL, and 5BL, respectively. Four QTL, QYrPI181410.wgp-1BL, QYrPI181410.wgp-4BL, QYrPI181410.wgp-5AS, and QYrPI181410.wgp-5BL.2, were identified from PI 181410 for HTAP resistance and mapped to 1BL, 4BL, 5AS, and 5BL, respectively. Two QTL with minor effects on stripe rust response were identified from AvS and mapped to 2BS and 2BL. Four of the QTL from PI 181410 and one from AvS were potentially new. As the 4BL QTL was most effective and likely a new gene for stripe rust resistance, three kompetitive allele specific PCR (KASP) markers were developed for incorporating this gene into new wheat cultivars.
Collapse
Affiliation(s)
- Yan Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
| | - Yanmin Qie
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, 162 Hengshan Street, Gaoxin District, Shijiazhuang, Hebei 050035, China
| | - Xing Li
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
28
|
Genome-wide association analysis of stripe rust resistance loci in wheat accessions from southwestern China. J Appl Genet 2020; 61:37-50. [PMID: 31912452 PMCID: PMC6969011 DOI: 10.1007/s13353-019-00533-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 11/17/2022]
Abstract
Wheat stripe rust can cause considerable yield losses, and genetic resistance is the most effective approach for controlling the disease. To identify the genomic regions responsible for Puccinia striiformis f. sp. tritici (Pst) resistance in a set of winter wheat strains mainly from southwestern China, and to identify DNA markers in these regions, we carried out a genome-wide association study (GWAS) of 120 China winter wheat accessions using single nucleotide polymorphism (SNP) markers from 90K wheat SNP arrays. In total, 16 SNP loci were significantly associated with wheat stripe rust in field and greenhouse trials. Of these, three distinctive SNPs on chromosomes 1B, 4A, and 6A were identified at a site in Mianyang in 2014, where the most prevalent wheat stripe rust races since 2009 have been V26 (G22-9, G22-14). This suggests that the three SNP loci were linked to the new quantitative trait loci (QTL)/genes resistant to the V26 races. Germplasm with immunity to Pst is a good source of stripe rust resistance for breeding, and after further validation, SNPs closely linked to resistance QTLs/genes could be converted into user-friendly markers and facilitate marker-assisted selection to improve wheat stripe rust resistance.
Collapse
|
29
|
Mu J, Liu L, Liu Y, Wang M, See DR, Han D, Chen X. Genome-Wide Association Study and Gene Specific Markers Identified 51 Genes or QTL for Resistance to Stripe Rust in U.S. Winter Wheat Cultivars and Breeding Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:998. [PMID: 32719705 PMCID: PMC7350909 DOI: 10.3389/fpls.2020.00998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/17/2020] [Indexed: 05/06/2023]
Abstract
Stripe (yellow) rust, caused by fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious disease of wheat in the United States and many other countries. Growing resistant cultivars has been approved to be the best approach for control of stripe rust. To determine stripe rust resistance genes in U.S. winter wheat cultivars and breeding lines, we analyzed a winter wheat panel of 857 cultivars and breeding lines in a genome-wide association study (GWAS) using genotyping by multiplexed sequencing (GMS) and by genotyping with molecular markers of 18 important stripe rust resistance genes or quantitative trait loci (QTL). The accessions were phenotyped for stripe rust response at adult-plant stage under natural infection in Pullman and Mount Vernon, Washington in 2018 and 2019, and in the seedling stage with six predominant or most virulent races of Pst. A total of 51 loci were identified to be related to stripe rust resistance, and at least 10 of them (QYrww.wgp.1D-3, QYrww.wgp.2B-2, QYrww.wgp.2B-3, QYrww.wgp.2B-4, QYrww.wgp.3A, QYrww.wgp.5A, QYrww.wgp.5B, QYrww.wgp.5D, QYrww.wgp.6A-2 and QYrww.wgp.7B-3) were previously reported. These genes or QTL were found to be present at different frequencies in breeding lines and cultivars developed by breeding programs in various winter wheat growing regions. Both Yr5 and Yr15, which are highly resistant to all races identified thus far in the U.S., as well as Yr46 providing resistance to many races, were found absent in the breeding lines and commercially grown cultivars. The identified genes or QTL and their markers are useful in breeding programs to improve the level and durability of resistance to stripe rust.
Collapse
Affiliation(s)
- Jingmei Mu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Yan Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- *Correspondence: Xianming Chen,
| |
Collapse
|
30
|
Liu L, Yuan C, Wang M, See DR, Chen X. Mapping Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 197734 Using a Doubled Haploid Population and Genotyping by Multiplexed Sequencing. FRONTIERS IN PLANT SCIENCE 2020; 11:596962. [PMID: 33281855 PMCID: PMC7688900 DOI: 10.3389/fpls.2020.596962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/13/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a global concern for wheat production. Spring wheat cultivar PI 197734, of Sweden origin, has shown high-temperature adult-plant resistance (APR) to stripe rust for many years. To map resistance quantitative trait loci (QTL), 178 doubled haploid lines were developed from a cross of PI 197734 with susceptible AvS. The DH lines and parents were tested in fields in 2017 and 2018 under natural infection of Pst and genotyped with genotyping by multiplexed sequencing (GMS). Kompetitive allele specific PCR (KASP) and simple sequence repeat (SSR) markers from specific chromosomal regions were also used to genotype the population to validate and saturate resistance QTL regions. Two major QTL on chromosomes 1AL and 3BL and one minor QTL on 2AL were identified. The two major QTL, QYrPI197734.wgp-1A and QYrPI197734.wgp-3B, were detected in all tested environments explaining up to 20.7 and 46.8% phenotypic variation, respectively. An awnletted gene mapped to the expected distal end of chromosome 5AL indicated the accuracy of linkage mapping. The KASP markers converted from the GMS-SNPs in the 1A and 3B QTL regions were used to genotype 95 US spring wheat cultivars and breeding lines, and they individually showed different percentages of polymorphisms. The haplotypes of the three markers for the 1A QTL and four markers for the 3B QTL identified 37.9 and 21.1% of the wheat cultivar/breeding lines possibly carrying these two QTL, indicating their usefulness in marker-assisted selection (MAS) for incorporating the two major QTL into new wheat cultivars.
Collapse
Affiliation(s)
- Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada
| | - Congying Yuan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- College of Life Sciences, Luoyang Normal University, Luoyang, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- *Correspondence: Xianming Chen, ;
| |
Collapse
|
31
|
Zhang P, Li X, Gebrewahid TW, Liu H, Xia X, He Z, Li Z, Liu D. QTL Mapping of Adult-Plant Resistance to Leaf and Stripe Rust in Wheat Cross SW 8588/Thatcher using the Wheat 55K SNP Array. PLANT DISEASE 2019; 103:3041-3049. [PMID: 31613193 DOI: 10.1094/pdis-02-19-0380-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Wheat leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) cause large production losses in many regions of the world. The objective of this study was to identify quantitative trait loci (QTL) for resistance to leaf rust and stripe rust in a recombinant inbred line population derived from a cross between wheat cultivars SW 8588 and Thatcher. The population and parents were genotyped with the Wheat 55K SNP Array and SSR markers and phenotyped for leaf rust severity at Zhoukou in Henan Province and Baoding in Hebei Province. Stripe rust responses were also evaluated at Chengdu in Sichuan Province, and at Baoding. Seven and six QTL were detected for resistance to leaf rust and stripe rust, respectively. Four QTL on chromosomes 1BL, 2AS, 5AL, and 7BL conferred resistance to both rusts. The QTL on 1BL and 2AS were identified as Lr46/Yr29 and Lr37/Yr17, respectively. QLr.hebau-2DS from Thatcher, identified as Lr22b that was previously thought to be ineffective in China, contributed a large effect for leaf rust resistance. QLr.hebau-5AL/QYr.hebau-5AL, QLr.hebau-3BL, QLr.hebau-6DS, QYr.hebau-4BS, and QYr.hebau-6DS are likely to be new QTL, but require further validation. Kompetitive allele-specific PCR (KASP) markers for QLr.hebau-2DS and QLr.hebau-5AL/QYr.hebau-5AL were successfully developed and validated in a diverse wheat panel from Sichuan Province, indicating their usefulness under different genetic backgrounds. These QTL and their closely linked SNP and SSR markers will be useful for fine mapping, candidate gene discovery, and marker-assisted selection in breeding for durable resistance to both leaf and stripe rusts.
Collapse
Affiliation(s)
- Peipei Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xing Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Takele-Weldu Gebrewahid
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Agriculture, Aksum University, Shire-Indaslassie, Tigray 314, Ethiopia
| | - Hexing Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China
| | - Zaifeng Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Daqun Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
32
|
Huang S, Wu J, Wang X, Mu J, Xu Z, Zeng Q, Liu S, Wang Q, Kang Z, Han D. Utilization of the Genomewide Wheat 55K SNP Array for Genetic Analysis of Stripe Rust Resistance in Common Wheat Line P9936. PHYTOPATHOLOGY 2019; 109:819-827. [PMID: 30644331 DOI: 10.1094/phyto-10-18-0388-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Breeding for resistance to stripe rust (caused by Puccinia striiformis f. tritici) is essential for reducing losses in yield and quality in wheat. To identify genes for use in breeding, a biparental population of 186 recombinant inbred lines (RILs) from a cross of the Chinese landrace Mingxian 169 and CIMMYT-derived line P9936 was evaluated in field nurseries either artificially or naturally inoculated in two crop seasons. Each of the RILs and parents was genotyped with the wheat 55K single-nucleotide polymorphism (SNP) 'Breeders' array and a genetic linkage map with 8,225 polymorphic SNP markers spanning 3,593.37 centimorgans was constructed. Two major quantitative trait loci (QTL) and two minor QTL were identified. The major QTL QYr.nwafu-3BS.2 and QYr.nwafu-7BL on chromosomes arms 3BS and 7BL were detected in all field locations and explained an average 20.4 and 38.9% of phenotypic variation stripe rust severity, respectively. QYr.nwafu-3BS.2 likely corresponds to the locus Yr30/Sr2 and QYr.nwafu-7BL may be a resistance allele identified previously in CIMMYT germplasm. The other minor QTL had limited individual effects but increased resistance when in combinations with other QTL. Markers linked to QYr.nwafu-7BL were converted to kompetitive allele-specific polymerase chain reaction markers and validated in a panel of wheat accessions. Wheat accessions carrying the same haplotype as P9936 at the identified SNP loci had lower average stripe rust severity than the average severity of all other haplotypes.
Collapse
Affiliation(s)
- Shuo Huang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Jianhui Wu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Xiaoting Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Jingmei Mu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Zhi Xu
- 2 Department of Plant Disease, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Jingjusi Road 20, Jinjiang District, Chengdu, Sichuan610066, P.R. China
| | - Qingdong Zeng
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Shengjie Liu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Qilin Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Zhensheng Kang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Dejun Han
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| |
Collapse
|
33
|
Zeng Q, Wu J, Liu S, Huang S, Wang Q, Mu J, Yu S, Han D, Kang Z. A major QTL co-localized on chromosome 6BL and its epistatic interaction for enhanced wheat stripe rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1409-1424. [PMID: 30707240 DOI: 10.1007/s00122-019-03288-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
Co-localization of a major QTL for wheat stripe rust resistance to a 3.9-cM interval on chromosome 6BL across both populations and another QTL on chromosome 2B with epistatic interaction. Cultivars with diverse resistance are the optimal strategy to minimize yield losses caused by wheat stripe rust (Puccinia striiformis f. sp. tritici). Two wheat populations involving resistant wheat lines P10078 and Snb"S" from CIMMYT were evaluated for stripe rust response in multiple environments. Pool analysis by Wheat660K SNP array showed that the overlapping interval on chromosome 6B likely harbored a major QTL between two populations. Then, linkage maps were constructed using KASP markers, and a co-localized locus with large effect on chromosome 6BL was detected using QTL analysis in both populations. The coincident QTL, named QYr.nwafu-6BL.2, explained 59.7% of the phenotypic maximum variation in the Mingxian 169 × P10078 and 52.5% in the Zhengmai 9023 × Snb"S" populations, respectively. This co-localization interval spanning 3.9 cM corresponds to ~ 30.5-Mb genomic region of the newest common wheat reference genome (IWGSC RefSeq v.1.0). In addition, another QTL was also detected on chromosome 2B in Zhengmai 9023 × Snb"S" population and it can accelerate expression of QYr.nwafu-6BL.2 to enhance resistance with epistatic interaction. Allowing for Pst response, marker genotypes, pedigree analysis and relative genetic distance, QYr.nwafu-6BL.2 is likely to be a distinct adult plant resistance QTL. Haplotype analysis of QYr.nwafu-6BL.2 revealed specific SNPs or alleles in the target region from a diversity panel of 176 unrelated wheat accessions. This QTL region provides opportunity for further map-based cloning, and haplotypes analysis enables pyramiding favorable alleles into commercial cultivars by marker-assisted selection.
Collapse
Affiliation(s)
- Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
34
|
Ye X, Li J, Cheng Y, Yao F, Long L, Yu C, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Li W, Ma J, Wei Y, Zheng Y, Chen G. Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in Sichuan wheat. BMC PLANT BIOLOGY 2019; 19:147. [PMID: 30991940 PMCID: PMC6469213 DOI: 10.1186/s12870-019-1764-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/08/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Stripe rust (also called yellow rust) is a common and serious fungal disease of wheat (Triticum aestivum L.) caused by Puccinia striiformis f. sp. tritici. The narrow genetic basis of modern wheat cultivars and rapid evolution of the rust pathogen have been responsible for periodic and devastating epidemics of wheat rust diseases. In this study, we conducted a genome-wide association study with 44,059 single nucleotide polymorphism markers to identify loci associated with resistance to stripe rust in 244 Sichuan wheat accessions, including 79 landraces and 165 cultivars, in six environments. RESULTS In all the field assessments, 24 accessions displayed stable high resistance to stripe rust. Significant correlations among environments were observed for both infection (IT) and disease severity (DS), and high heritability levels were found for both IT and DS. Using mixed linear models, 12 quantitative trait loci (QTLs) significantly associated with IT and/or DS were identified. Two QTLs were mapped on chromosomes 5AS and 5AL and were distant from previously identified stripe rust resistance genes or QTL regions, indicating that they may be novel resistance loci. CONCLUSIONS Our results revealed that resistance alleles to stripe rust were accumulated in Sichuan wheat germplasm, implying direct or indirect selection for improved stripe rust resistance in elite wheat breeding programs. The identified stable QTLs or favorable alleles could be important chromosome regions in Sichuan wheat that controlled the resistance to stripe rust. These markers can be used molecular marker-assisted breeding of Sichuan wheat cultivars, and will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.
Collapse
Affiliation(s)
- Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jian Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
35
|
Zeng Q, Wu J, Huang S, Yuan F, Liu S, Wang Q, Mu J, Yu S, Chen L, Han D, Kang Z. SNP-based linkage mapping for validation of adult plant stripe rust resistance QTL in common wheat cultivar Chakwal 86. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Zeng Q, Wu J, Liu S, Chen X, Yuan F, Su P, Wang Q, Huang S, Mu J, Han D, Kang Z, Chen XM. Genome-wide Mapping for Stripe Rust Resistance Loci in Common Wheat Cultivar Qinnong 142. PLANT DISEASE 2019; 103:439-447. [PMID: 30648483 DOI: 10.1094/pdis-05-18-0846-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici threatens worldwide wheat production. Growing resistant cultivars is the best way to control this disease. Chinese wheat cultivar Qinnong 142 (QN142) has a high level of adult-plant resistance to stripe rust. To identify quantitative trait loci (QTLs) related to stripe rust resistance, we developed a recombinant inbred line (RIL) population from a cross between QN142 and susceptible cultivar Avocet S. The parents and 165 F6 RILs were evaluated in terms of their stripe rust infection type and disease severity in replicated field tests with six site-year environments. The parents and RILs were genotyped with single-nucleotide polymorphism (SNP) markers. Four stable QTLs were identified in QN142 and mapped to chromosome arms 1BL, 2AL, 2BL, and 6BS. The 1BL QTL was probably the known resistance gene Yr29, the 2BL QTL was in a resistance gene-rich region, and the 2AL and 6BS QTLs might be new. Kompetitive allele specific polymerase chain reaction markers developed from the SNP markers flanking these QTLs were highly polymorphic in a panel of 150 wheat cultivars and breeding lines. These markers could be used in marker-assisted selection for incorporating the stripe rust resistance QTL into new wheat cultivars.
Collapse
Affiliation(s)
- Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xianming Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Pingping Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - X M Chen
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164; and Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| |
Collapse
|
37
|
Mu J, Huang S, Liu S, Zeng Q, Dai M, Wang Q, Wu J, Yu S, Kang Z, Han D. Genetic architecture of wheat stripe rust resistance revealed by combining QTL mapping using SNP-based genetic maps and bulked segregant analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:443-455. [PMID: 30446795 DOI: 10.1007/s00122-018-3231-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/07/2018] [Indexed: 05/27/2023]
Abstract
A major stripe rust resistance QTL was mapped to a 0.4 centimorgan (cM) genetic region on the long arm of chromosome 7B, using combined genome-wide linkage mapping and bulk segregant analysis. The German winter wheat cv. Centrum has displayed high levels of adult plant stripe rust resistance (APR) in field environments for many years. Here, we used the combined genome-wide linkage mapping and pool-extreme genotyping to characterize the APR resistance. One hundred and fifty-one F2:7 recombinant inbred lines derived from a cross between susceptible landrace Mingxian 169 and Centrum were evaluated for stripe rust resistance in multiple environments and genotyped by the wheat 35K single nucleotide polymorphism (SNP) array. Three stable quantitative trait loci (QTL) were identified using QTL analysis across five field environments. To saturate the major QTL, the wheat 660K SNP array was also used to genotype bulked extremes. A major QTL named QYrcen.nwafu-7BL from Centrum was mapped in a 0.4 cM genetic interval flanking by AX-94556751 and AX-110366788 across a 2 Mb physical genomic region, explaining 19.39-42.81% of the total phenotypic variation. It is likely a previously uncharacterized QTL based on pedigree analysis, reaction response, genotyping data and map comparison. The SNP markers closely linked with QYrcen.nwafu-7BL were converted to KASP markers and validated in a subset of 120 wheat lines. A 211 F2 breeding population from a cross of an elite cultivar Xinong 979 with Centrum were developed for marker-based selection. Three selected lines with desirable agronomic traits and the positive alleles of both KASP markers showed acceptable resistance which should be used as resistance donors in wheat breeding programs. The other QTL QYrcen.nwafu-1AL and QYrcen.nwafu-4AL with additive effects could enhance the level of resistance conferred by QYrcen.nwafu-7BL.
Collapse
Affiliation(s)
- Jingmei Mu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Miaofei Dai
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Dejun Han
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
38
|
Long L, Yao F, Yu C, Ye X, Cheng Y, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Li W, Ma J, Liu Y, Deng M, Wei Y, Zheng Y, Chen G. Genome-Wide Association Study for Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landraces ( Triticum aestivum L.) From the Yellow and Huai River Valleys. FRONTIERS IN PLANT SCIENCE 2019; 10:596. [PMID: 31156668 PMCID: PMC6532019 DOI: 10.3389/fpls.2019.00596] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 05/21/2023]
Abstract
Stripe rust (also known as yellow rust), caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), is a common and serious fungal disease of wheat (Triticum aestivum L.) worldwide. To identify effective stripe rust resistance loci, a genome-wide association study was performed using 152 wheat landraces from the Yellow and Huai River Valleys in China based on Diversity Arrays Technology and simple sequence repeat markers. Phenotypic evaluation of the degree of resistance to stripe rust at the adult-plant stage under field conditions was carried out in five environments. In total, 19 accessions displayed stable, high degrees of resistance to stripe rust development when exposed to mixed races of Pst at the adult-plant stage in multi-environment field assessments. A marker-trait association analysis indicated that 51 loci were significantly associated with adult-plant resistance to stripe rust. These loci included 40 quantitative trait loci (QTL) regions for adult-plant resistance. Twenty identified resistance QTL were linked closely to previously reported yellow rust resistance genes or QTL regions, which were distributed across chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4A, 4B, 5B, 6B, 7A, 7B, and 7D. Six multi-trait QTL were detected on chromosomes 1B, 1D, 2B, 3A, 3B, and 7D. Twenty QTL were mapped to chromosomes 1D, 2A, 2D, 4B, 5B, 6A, 6B, 6D, 7A, 7B, and 7D, distant from previously identified yellow rust resistance genes. Consequently, these QTL are potentially novel loci for stripe rust resistance. Among the 20 potentially novel QTL, five (QDS.sicau-2A, QIT.sicau-4B, QDS.sicau-4B.2, QDS.sicau-6A.3, and QYr.sicau-7D) were associated with field responses at the adult-plant stage in at least two environments, and may have large effects on stripe rust resistance. The novel effective QTL for adult-plant resistance to stripe rust will improve understanding of the genetic mechanisms that control the spread of stripe rust, and will aid in the molecular marker-assisted selection-based breeding of wheat for stripe rust resistance.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - YaXi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease Control, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Guoyue Chen,
| |
Collapse
|
39
|
Loci and candidate genes controlling root traits in wheat seedlings-a wheat root GWAS. Funct Integr Genomics 2018; 19:91-107. [PMID: 30151724 DOI: 10.1007/s10142-018-0630-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
Abstract
Two hundred one hexaploid wheat accessions, representing 200 years of selection and breeding history, were sampled from the National Small Grains Collection in Aberdeen, ID, and evaluated for five root traits at the seedling stage. A paper roll-supported hydroponic system was used for seedling growth. Replicated roots samples were analyzed by WinRHIZO. We observed accessions with nearly no branching and accessions with up to 132 cm of branching. Total seminal root length ranged from 70 to 248 cm, a 3.5-fold difference. Next-generation sequencing was used to produce single-nucleotide polymorphism (SNP) markers and genomic libraries that were aligned to the wheat reference genome IWGSCv1 and were called single-nucleotide polymorphism (SNP) markers. After filtering and imputation, a total of 20,881 polymorphic sites were used to perform association mapping in TASSEL. Gene annotations were conducted for identified marker-trait associations (MTAs) with - log10P > 3.5 (p value < 0.003). In total, we identified 63 MTAs with seven for seminal axis root length (SAR), 24 for branching (BR), four for total seminal root length (TSR), eight for root dry matter (RDM), and 20 for root diameter (RD). Putative proteins of interest that we identified include chalcone synthase, aquaporin, and chymotrypsin inhibitor for SAR, MYB transcription factor and peroxidase for BR, zinc fingers and amino acid transporters for RDM, and cinnamoyl-CoA reductase for RD. We evaluated the effects of height-reducing Rht alleles and the 1B/1R translocation event on root traits and found presence of the Rht-B1b allele decreased RDM, while presence of the Rht-D1b allele increased TSR and decreased RD.
Collapse
|
40
|
Feng J, Wang M, See DR, Chao S, Zheng Y, Chen X. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103. PHYTOPATHOLOGY 2018; 108:737-747. [PMID: 29303685 DOI: 10.1094/phyto-11-17-0375-r] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.
Collapse
Affiliation(s)
- Junyan Feng
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775
| | - Meinan Wang
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775
| | - Deven R See
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775
| | - Shiaoman Chao
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775
| | - Youliang Zheng
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775
| | - Xianming Chen
- First author: Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China; first, second, third, and sixth authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; first and fifth authors: Triticeae Research Institute, Sichuan Agricultural University, Northeast Road No. 555, Wenjiang, Chengdu, Sichuan 611130, China; third and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Cereal Crops Research, Fargo, ND 58102-2775
| |
Collapse
|
41
|
Ponce-Molina LJ, Huerta-Espino J, Singh RP, Basnet BR, Alvarado G, Randhawa MS, Lan CX, Aguilar-Rincón VH, Lobato-Ortiz R, García-Zavala JJ. Characterization of Leaf Rust and Stripe Rust Resistance in Spring Wheat 'Chilero'. PLANT DISEASE 2018; 102:421-427. [PMID: 30673516 DOI: 10.1094/pdis-11-16-1545-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Since 1984, the 'Chilero' spring wheat line developed by CIMMYT has proven to be highly resistant to leaf rust and stripe rust. Amid efforts to understand the basis of resistance of this line, a recombinant inbred line (RIL) population derived from a cross between Avocet and Chilero was studied. The parents and RILs were characterized in field trials for leaf rust and stripe rust in three locations in Mexico between 2012 and 2015 and genotyped with DArT-array, DArT-GBS, and SSR markers. A total of 6,168 polymorphic markers were used to construct genetic linkage maps. Inclusive composite interval mapping detected four colocated resistance loci to both rust diseases and two stripe rust resistant loci in the Avocet × Chilero population. Among these, the quantitative trait locus (QTL) on chromosome 1BL was identified as a pleotropic adult plant resistance gene Lr46/Yr29, whereas QLr.cim-5DS/QYr.cim-5DS was a newly discovered colocated resistance locus to both rust diseases in Chilero. Additionally, one new stripe rust resistance locus on chromosome 7BL was mapped in the current population. Avocet also contributed two minor colocated resistance QTLs situated on chromosomes 1DL and 4BS. The flanking SNP markers can be converted to breeder friendly Kompetitive Allele Specific PCR (KASP) markers for wheat breeding programs.
Collapse
Affiliation(s)
- L J Ponce-Molina
- National Institute of Agricultural and Livestock Researches (INIAP-Ecuador), Santa Catalina Experimental Station, Quito, Ecuador; and Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| | - J Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230 Chapingo, State of México, México
| | - R P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - B R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - G Alvarado
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - M S Randhawa
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - C X Lan
- International Maize and Wheat Improvement Center (CIMMYT), 56237 México, DF, México
| | - V H Aguilar-Rincón
- Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| | - R Lobato-Ortiz
- Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| | - J J García-Zavala
- Colegio de Postgraduados (CP), Campus Montecillo, Montecillo, Texcoco 56230, State of México, México
| |
Collapse
|
42
|
Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Yu S, Han D, Kang Z. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:43-58. [PMID: 28965125 DOI: 10.1007/s00122-017-2984-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 05/07/2023]
Abstract
High-throughput SNP array analysis of pooled extreme phenotypes in a segregating population by KASP marker genotyping permitted rapid, cost-effective location of a stripe rust resistance QTL in wheat. German wheat cultivar "Friedrichswerther" has exhibited high levels of adult plant resistance (APR) to stripe rust in field environments for many years. F2:3 lines and F6 recombinant inbred line (RILs) populations derived from a cross between Friedrichswerther and susceptible landrace Mingxian 169 were evaluated in the field in 2013, 2016 and 2017. Illumina 90K iSelect SNP arrays were used to genotype bulked extreme pools and parents; 286 of 1135 polymorphic SNPs were identified on chromosome 6B. Kompetitive Allele-Specific PCR (KASP) markers were used to verify the chromosome region associated with the resistance locus. A linkage map was constructed with 18 KASP-SNP markers, and a major effect QTL was identified within a 1.4 cM interval flanked by KASP markers IWB71602 and IWB55937 in the region 6BL3-0-0.36. The QTL, named QYr.nwafu-6BL, was stable across environments, and explained average 54.4 and 47.8% of the total phenotypic variation in F2:3 lines and F6 RILs, respectively. On the basis of marker genotypes, pedigree analysis and relative genetic distance QYr.nwafu-6BL is likely to be a new APR QTL. Combined high-throughput SNP array genotyping of pooled extremes and validation by KASP assays lowers sequencing costs compared to genome-wide association studies with SNP arrays, and more importantly, permits rapid isolation of major effect QTL in hexaploid wheat as well as improving accuracy of mapping in the QTL region. QYr.nwafu-6BL with flanking KASP markers developed and verified in a subset of 236 diverse lines can be used in marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
43
|
Bokore FE, Cuthbert RD, Knox RE, Randhawa HS, Hiebert CW, DePauw RM, Singh AK, Singh A, Sharpe AG, N'Diaye A, Pozniak CJ, McCartney C, Ruan Y, Berraies S, Meyer B, Munro C, Hay A, Ammar K, Huerta-Espino J, Bhavani S. Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2617-2635. [PMID: 28913655 DOI: 10.1007/s00122-017-2980-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/30/2017] [Indexed: 05/19/2023]
Abstract
Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.
Collapse
Affiliation(s)
- Firdissa E Bokore
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada.
| | - Richard D Cuthbert
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada.
| | - Ron E Knox
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada
| | - Harpinder S Randhawa
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Ron M DePauw
- Advancing Wheat Technologies, 870 Field Drive, Swift Current, SK, S9H 4N5, Canada
| | - Asheesh K Singh
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Andrew G Sharpe
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Amidou N'Diaye
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Curtis J Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Curt McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada
| | - Samia Berraies
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada
| | - Brad Meyer
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada
| | - Catherine Munro
- Plant and Food Research Canterbury Agriculture and Science Centre, Gerald St, Lincoln, 7608, New Zealand
| | - Andy Hay
- Plant and Food Research Canterbury Agriculture and Science Centre, Gerald St, Lincoln, 7608, New Zealand
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Apdo., Postal 6-6-41, 06600, Mexico, DF, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Apdo., Postal 10, 56230, Chapingo, Edo. de México, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
44
|
Muleta KT, Bulli P, Rynearson S, Chen X, Pumphrey M. Loci associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum). PLoS One 2017; 12:e0179087. [PMID: 28591221 PMCID: PMC5462451 DOI: 10.1371/journal.pone.0179087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding.
Collapse
Affiliation(s)
- Kebede T. Muleta
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Sheri Rynearson
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Xianming Chen
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
45
|
Losert D, Maurer HP, Leiser WL, Würschum T. Defeating the Warrior: genetic architecture of triticale resistance against a novel aggressive yellow rust race. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:685-696. [PMID: 28039516 DOI: 10.1007/s00122-016-2843-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/10/2016] [Indexed: 05/20/2023]
Abstract
Genome-wide association mapping of resistance against the novel, aggressive 'Warrior' race of yellow rust in triticale revealed a genetic architecture with some medium-effect QTL and a quantitative component, which in combination confer high levels of resistance on both leaves and ears. Yellow rust is an important destructive fungal disease in small grain cereals and the exotic 'Warrior' race has recently conquered Europe. The aim of this study was to investigate the genetic architecture of yellow rust resistance in hexaploid winter triticale as the basis for a successful resistance breeding. To this end, a diverse panel of 919 genotypes was evaluated for yellow rust infection on leaves and ears in multi-location field trials and genotyped by genotyping-by-sequencing as well as for known Yr resistance loci. Genome-wide association mapping identified ten quantitative trait loci (QTL) for yellow rust resistance on the leaves and seven of these also for ear resistance. The total genotypic variance explained by the QTL amounted to 44.0% for leaf and 26.0% for ear resistance. The same three medium-effect QTL were identified for both traits on chromosomes 1B, 2B, and 7B. Interestingly, plants pyramiding the resistance allele of all three medium-effect QTL were generally most resistant, but constitute less than 5% of the investigated triticale breeding material. Nevertheless, a genome-wide prediction yielded a higher predictive ability than prediction based on these three QTL. Taken together, our results show that yellow rust resistance in winter triticale is genetically complex, including both medium-effect QTL as well as a quantitative resistance component. Resistance to the novel 'Warrior' race of this fungal pathogen is consequently best achieved by recurrent selection in the field based on identified resistant lines and can potentially be assisted by genomic approaches.
Collapse
Affiliation(s)
- Dominik Losert
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Hans Peter Maurer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
46
|
Liu W, Maccaferri M, Bulli P, Rynearson S, Tuberosa R, Chen X, Pumphrey M. Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:649-667. [PMID: 28039515 DOI: 10.1007/s00122-016-2841-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 05/06/2023]
Abstract
Genome-wide association analysis in tetraploid wheat revealed novel and diverse loci for seedling and field resistance to stripe rust in elite spring durum wheat accessions from worldwide. Improving resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major objective for wheat breeding. To identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using 232 elite durum wheat (Triticum turgidum ssp. durum) lines from worldwide breeding programs. Genotyping with the 90 K iSelect wheat single nucleotide polymorphism (SNP) array resulted in 11,635 markers distributed across the genome. Response to stripe rust infection at the seedling stage revealed resistant and susceptible accessions present in rather balanced frequencies for the six tested races, with a higher frequency of susceptible responses to United States races as compared to Italian races (61.1 vs. 43.1% of susceptible accessions). Resistance at the seedling stage only partially explained adult plant resistance, which was found to be more frequent with 67.7% of accessions resistant across six nurseries in the United States. GWAS identified 82 loci associated with seedling stripe rust resistance, five of which were significant at the false discovery rate adjusted P value <0.1 and 11 loci were detected for the field response at the adult plant stages in at least two environments. Notably, Yrdurum-1BS.1 showed the largest effect for both seedling and field resistance, and is therefore considered as a major locus for resistance in tetraploid wheat. Our GWAS study is the first of its kind for stripe rust resistance in tetraploid wheat and provides an overview of resistance in elite germplasm and reports new loci that can be used in breeding resistant cultivars.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| | - Marco Maccaferri
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Sheri Rynearson
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna, 40127, Bologna, Italy
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164-6430, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
47
|
Ren Y, Singh RP, Basnet BR, Lan CX, Huerta-Espino J, Lagudah ES, Ponce-Molina LJ. Identification and Mapping of Adult Plant Resistance Loci to Leaf Rust and Stripe Rust in Common Wheat Cultivar Kundan. PLANT DISEASE 2017; 101:456-463. [PMID: 30677352 DOI: 10.1094/pdis-06-16-0890-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leaf rust (LR) and stripe rust (YR) are important diseases of wheat worldwide. We used 148 recombinant inbred lines (RIL) from the cross of Avocet × Kundan for determining and mapping the genetic basis of adult plant resistance (APR) loci. The population was phenotyped LR and YR for three seasons in field trials conducted in Mexico and genotyped with the diversity arrays technology sequencing (DArT-Seq) and simple sequence repeat markers. The final genetic map was constructed using 2,937 polymorphic markers with an average distance of 1.29 centimorgans between markers. Inclusive composite interval mapping identified two co-located APR quantitative trait loci (QTL) for LR and YR, two LR QTL, and three YR QTL. The co-located resistance QTL on chromosome 1BL corresponded to the pleiotropic APR gene Lr46/Yr29. QLr.cim-2BL, QYr.cim-2AL, and QYr.cim-5AS could be identified as new resistance loci in this population. Lr46/Yr29 contributed 49.5 to 65.1 and 49.2 to 66.1% of LR and YR variations, respectively. The additive interaction between detected QTL showed that LR severities for RIL combining four QTL ranged between 5.3 and 25.8%, whereas the lowest YR severities were for RIL carrying QTL on chromosomes 1BL + 2AL + 6AL. The high-density DArT-Seq markers across chromosomes can be used in fine mapping of the targeted loci and development SNP markers.
Collapse
Affiliation(s)
- Y Ren
- Mianyang Institute of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, China
| | - R P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - B R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - C X Lan
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - J Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230 Chapingo, Edo. de México, Mexico
| | - E S Lagudah
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - L J Ponce-Molina
- National Institute of Agricultural and Livestock Researches (INIAP-Ecuador), Santa Catalina Experimental Station, Quito, Ecuador
| |
Collapse
|
48
|
Manickavelu A, Joukhadar R, Jighly A, Lan C, Huerta-Espino J, Stanikzai AS, Kilian A, Singh RP, Ban T. Genome wide association mapping of stripe rust resistance in Afghan wheat landraces. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:222-229. [PMID: 27717458 DOI: 10.1016/j.plantsci.2016.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 05/16/2023]
Abstract
Mining of new genetic resources is of paramount importance to combat the alarming spread of stripe rust disease and breakdown of major resistance genes in wheat. We conducted a genome wide association study on 352 un-utilized Afghan wheat landraces against stripe rust resistance in eight locations. High level of disease variation was observed among locations and a core-set of germplasm showed consistence performance. Linkage disequilibrium (LD) decayed rapidly (R2≈0.16 at 0cM) due to germplasm peerless diversity. The mixed linear model resulted in ten marker-trait associations (MTAs) across all environments representing five QTL. The extensively short LD blocks required us to repeat the analysis with less diverse subset of 220 landraces in which R2 decayed below 0.2 at 0.3cM. The subset GWAS resulted in 36 MTAs clustered in nine QTL. The subset analysis validated three QTL previously detected in the full list analysis. Overall, the study revealed that stripe rust epidemics in the geographical origin of this germplasm through time have permitted for selecting novel resistance loci.
Collapse
Affiliation(s)
- Alagu Manickavelu
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 2440813, Japan; Present address: Department of Genome Science, School of Biological Science, Central University of Kerala, Kasaragod, 671314, Kerala, India.
| | - Reem Joukhadar
- AgriBio, Centre for Agribioscience, DEDJTR, 5 Ring Road, Bundoora, Vic. 3083, Australia; Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic. 3083, Australia
| | - Abdulqader Jighly
- AgriBio, Centre for Agribioscience, DEDJTR, 5 Ring Road, Bundoora, Vic. 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Vic. 3083, Australia; The International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
| | - Caixia Lan
- CIMMYT, Apdo. Postal 6-641, 06600, Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, INIFAP, Chapingo, Estado de México, Mexico
| | - Ahmad Shah Stanikzai
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 2440813, Japan; Ministry of Agriculture, Irrigation and Livestock, Afghanistan
| | | | | | - Tomohiro Ban
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 2440813, Japan
| |
Collapse
|
49
|
Bulli P, Zhang J, Chao S, Chen X, Pumphrey M. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection. G3 (BETHESDA, MD.) 2016; 6:2237-53. [PMID: 27226168 PMCID: PMC4978880 DOI: 10.1534/g3.116.028407] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/16/2016] [Indexed: 12/30/2022]
Abstract
Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Shiaoman Chao
- USDA-ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, North Dakota 58102
| | - Xianming Chen
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, Washington 99164 Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| |
Collapse
|
50
|
Liu M, Lei L, Powers C, Liu Z, Campbell KG, Chen X, Bowden RL, Carver BF, Yan L. TaXA21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:345-355. [PMID: 26602233 DOI: 10.1007/s00122-015-2631-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
KEY MESSAGE The wheat ortholog of the rice gene OsXA21 against bacterial leaf blight showed resistance to multiple pests in bread wheat but different interacting proteins. ABSTRACT A quantitative trait locus QYr.osu-5A on the long arm of chromosome 5A in bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) was previously reported to confer consistent resistance in adult plants to predominant stripe rust races, but the gene causing the quantitative trait locus (QTL) is not known. Single-nucleotide polymorphism (SNP) markers were used to saturate the QTL region. Comparative and syntenic regions between wheat and rice (Oryza sativa) were applied to identify candidate genes for QYr.osu-5A. TaXA21-A1, which is referred to as a wheat ortholog of OsXA21-like gene on chromosome 9 in rice, was mapped under the peak of the QYr.osu-5A. TaXA21-A1 not only explained the phenotypic variation in reaction to different stripe rust races but also showed significant effects on resistance to powdery mildew and Hessian fly biotype BP. The natural allelic variation resulted in the alternations of four amino acids in deduced TaXA21-A1 proteins. The interacting proteins of TaXA21-A1 were different from those identified by OsXA21 on rice chromosome 11 against bacterial leaf blight. TaXA21-A1 confers unique resistance against multiple pests in wheat but might not have common protein interactors or thus overlapping functions with OsXA21 in rice. XA21 function has diverged during evolution of cereal crops. The molecular marker developed for TaXA21-A1 would accelerate its application of the candidate gene at the QYr.osu-5A locus in wheat breeding programs.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74074, USA
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lei Lei
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Carol Powers
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Zhiyong Liu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Kimberly G Campbell
- Wheat Genetics, Quality, Physiology, and Disease Research Unit, USDA-ARS, Pullman, WA, 99164, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Xianming Chen
- Wheat Genetics, Quality, Physiology, and Disease Research Unit, USDA-ARS, Pullman, WA, 99164, USA
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Robert L Bowden
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, 66506, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74074, USA.
| |
Collapse
|