1
|
Zhernova DA, Pushkova EN, Rozhmina TA, Borkhert EV, Arkhipov AA, Sigova EA, Dvorianinova EM, Dmitriev AA, Melnikova NV. History and prospects of flax genetic markers. FRONTIERS IN PLANT SCIENCE 2025; 15:1495069. [PMID: 39881731 PMCID: PMC11774856 DOI: 10.3389/fpls.2024.1495069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Flax (Linum usitatissimum L.) is known as a dual-purpose crop, producing both fiber and oil, which have a wide range of uses. Successful flax breeding requires knowledge on the genetic determinants of flax traits. The former identification of molecular markers for valuable traits used labor-intensive and sometimes poorly reproducible approaches. However, they allowed an assessment of the genetic diversity of flax and its relatives, the construction of linkage maps, and the identification of some markers for important characteristics. The sequencing of flax whole genome triggered the development of genome-wide association studies (GWAS) and quantitative trait locus (QTL) mapping. QTLs and quantitative trait nucleotides (QTNs) were identified for valuable seed- and fiber-related features and for resistance to biotic and abiotic stressors. Cost-effective and accurate analysis of large number of genotypes for multiple markers simultaneously using microarrays or targeted deep sequencing became available, as well as HRM, TaqMan, KASP, and other fluorescence-based high-throughput methods for detecting DNA polymorphisms. However, most DNA markers identified in flax are ambiguously linked to trait expression and are not universally applicable. A major challenge remains the lack of knowledge on functional polymorphisms. To date, only a few are known, mainly mutations in the FAD3 genes responsible for reduced linolenic acid content in linseed oil. For the further development of marker-assisted and genomic selection of flax, it is necessary to analyze exhaustively phenotyped sample sets, to identify DNA polymorphisms that determine valuable traits, and to develop efficient DNA test systems.
Collapse
Affiliation(s)
- Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A. Arkhipov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Saroha A, Gomashe SS, Kaur V, Pal D, Ujjainwal S, Aravind J, Singh M, Rajkumar S, Singh K, Kumar A, Wankhede DP. Genetic dissection of thousand-seed weight in linseed ( Linum usitatissimum L.) using multi-locus genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1166728. [PMID: 37332700 PMCID: PMC10272591 DOI: 10.3389/fpls.2023.1166728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 06/20/2023]
Abstract
Flaxseed/linseed is an important oilseed crop having applications in the food, nutraceutical, and paint industry. Seed weight is one of the most crucial determinants of seed yield in linseed. Here, quantitative trait nucleotides (QTNs) associated with thousand-seed weight (TSW) have been identified using multi-locus genome-wide association study (ML-GWAS). Field evaluation was carried out in five environments in multi-year-location trials. SNP genotyping information of the AM panel of 131 accessions comprising 68,925 SNPs was employed for ML-GWAS. From the six ML-GWAS methods employed, five methods helped identify a total of 84 unique significant QTNs for TSW. QTNs identified in ≥ 2 methods/environments were designated as stable QTNs. Accordingly, 30 stable QTNs have been identified for TSW accounting up to 38.65% trait variation. Alleles with positive effect on trait were analyzed for 12 strong QTNs with r 2 ≥ 10.00%, which showed significant association of specific alleles with higher trait value in three or more environments. A total of 23 candidate genes have been identified for TSW, which included B3 domain-containing transcription factor, SUMO-activating enzyme, protein SCARECROW, shaggy-related protein kinase/BIN2, ANTIAUXIN-RESISTANT 3, RING-type E3 ubiquitin transferase E4, auxin response factors, WRKY transcription factor, and CBS domain-containing protein. In silico expression analysis of candidate genes was performed to validate their possible role in different stages of seed development process. The results from this study provide significant insight and elevate our understanding on genetic architecture of TSW trait in linseed.
Collapse
Affiliation(s)
- Ankit Saroha
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sunil S. Gomashe
- ICAR-National Bureau of Plant Genetic Resources, Regional Station Akola, Maharashtra, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Deepa Pal
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shraddha Ujjainwal
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - J. Aravind
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - S. Rajkumar
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
3
|
Kaur V, Singh M, Wankhede DP, Gupta K, Langyan S, Aravind J, Thangavel B, Yadav SK, Kalia S, Singh K, Kumar A. Diversity of Linum genetic resources in global genebanks: from agro-morphological characterisation to novel genomic technologies - a review. Front Nutr 2023; 10:1165580. [PMID: 37324736 PMCID: PMC10267467 DOI: 10.3389/fnut.2023.1165580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Linseed or flaxseed is a well-recognized nutritional food with nutraceutical properties owing to high omega-3 fatty acid (α-Linolenic acid), dietary fiber, quality protein, and lignan content. Currently, linseed enjoys the status of a 'superfood' and its integration in the food chain as a functional food is evolving continuously as seed constituents are associated with lowering the risk of chronic ailments, such as heart diseases, cancer, diabetes, and rheumatoid arthritis. This crop also receives much attention in the handloom and textile sectors as the world's coolest fabric linen is made up of its stem fibers which are endowed with unique qualities such as luster, tensile strength, density, bio-degradability, and non-hazardous nature. Worldwide, major linseed growing areas are facing erratic rainfall and temperature patterns affecting flax yield, quality, and response to biotic stresses. Amid such changing climatic regimes and associated future threats, diverse linseed genetic resources would be crucial for developing cultivars with a broad genetic base for sustainable production. Furthermore, linseed is grown across the world in varied agro-climatic conditions; therefore it is vital to develop niche-specific cultivars to cater to diverse needs and keep pace with rising demands globally. Linseed genetic diversity conserved in global genebanks in the form of germplasm collection from natural diversity rich areas is expected to harbor genetic variants and thus form crucial resources for breeding tailored crops to specific culinary and industrial uses. Global genebank collections thus potentially play an important role in supporting sustainable agriculture and food security. Currently, approximately 61,000 germplasm accessions of linseed including 1,127 wild accessions are conserved in genebanks/institutes worldwide. This review analyzes the current status of Linum genetic resources in global genebanks, evaluation for agro-morphological traits, stress tolerance, and nutritional profiling to promote their effective use for sustainable production and nutrition enhancement in our modern diets.
Collapse
Affiliation(s)
- Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kavita Gupta
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jayaraman Aravind
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Boopathi Thangavel
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Kuldeep Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
4
|
Kanapin A, Rozhmina T, Bankin M, Surkova S, Duk M, Osyagina E, Samsonova M. Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. Int J Mol Sci 2022; 23:14536. [PMID: 36498863 PMCID: PMC9738745 DOI: 10.3390/ijms232314536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we explore potential genetic factors in control of flax phenotypes associated with fiber by mining a collection of 306 flax accessions from the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. In total, 11 traits were assessed in the course of 3 successive years. A genome-wide association study was performed for each phenotype independently using six different single-locus models implemented in the GAPIT3 R package. Moreover, we applied a multivariate linear mixed model implemented in the GEMMA package to account for trait correlations and potential pleiotropic effects of polymorphisms. The analyses revealed a number of genomic variants associated with different fiber traits, implying the complex and polygenic control. All stable variants demonstrate a statistically significant allelic effect across all 3 years of the experiment. We tested the validity of the predicted variants using gene expression data available for the flax fiber studies. The results shed new light on the processes and pathways associated with the complex fiber traits, while the pinpointed candidate genes may be further used for marker-assisted selection.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Ekaterina Osyagina
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
5
|
Jia B, Conner RL, Penner WC, Zheng C, Cloutier S, Hou A, Xia X, You FM. Quantitative Trait Locus Mapping of Marsh Spot Disease Resistance in Cranberry Common Bean (Phaseolus vulgaris L.). Int J Mol Sci 2022; 23:ijms23147639. [PMID: 35886986 PMCID: PMC9324509 DOI: 10.3390/ijms23147639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a food crop that is an important source of dietary proteins and carbohydrates. Marsh spot is a physiological disorder that diminishes seed quality in beans. Prior research suggested that this disease is likely caused by manganese (Mn) deficiency during seed development and that marsh spot resistance is controlled by at least four genes. In this study, genetic mapping was performed to identify quantitative trait loci (QTL) and the potential candidate genes associated with marsh spot resistance. All 138 recombinant inbred lines (RILs) from a bi-parental population were evaluated for marsh spot resistance during five years from 2015 to 2019 in sandy and heavy clay soils in Morden, Manitoba, Canada. The RILs were sequenced using a genotyping by sequencing approach. A total of 52,676 single nucleotide polymorphisms (SNPs) were identified and filtered to generate a high-quality set of 2066 SNPs for QTL mapping. A genetic map based on 1273 SNP markers distributed on 11 chromosomes and covering 1599 cm was constructed. A total of 12 stable and 4 environment-specific QTL were identified using additive effect models, and an additional two epistatic QTL interacting with two of the 16 QTL were identified using an epistasis model. Genome-wide scans of the candidate genes identified 13 metal transport-related candidate genes co-locating within six QTL regions. In particular, two QTL (QTL.3.1 and QTL.3.2) with the highest R2 values (21.8% and 24.5%, respectively) harbored several metal transport genes Phvul.003G086300, Phvul.003G092500, Phvul.003G104900, Phvul.003G099700, and Phvul.003G108900 in a large genomic region of 16.8–27.5 Mb on chromosome 3. These results advance the current understanding of the genetic mechanisms of marsh spot resistance in cranberry common bean and provide new genomic resources for use in genomics-assisted breeding and for candidate gene isolation and functional characterization.
Collapse
Affiliation(s)
- Bosen Jia
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (B.J.); (C.Z.); (S.C.)
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada;
| | - Robert L. Conner
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (R.L.C.); (W.C.P.)
| | - Waldo C. Penner
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (R.L.C.); (W.C.P.)
| | - Chunfang Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (B.J.); (C.Z.); (S.C.)
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (B.J.); (C.Z.); (S.C.)
| | - Anfu Hou
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (R.L.C.); (W.C.P.)
- Correspondence: (A.H.); (F.M.Y.); Tel.: +1-204-822-7528 (A.H.); +1-613-759-1539 (F.M.Y.)
| | - Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada;
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (B.J.); (C.Z.); (S.C.)
- Correspondence: (A.H.); (F.M.Y.); Tel.: +1-204-822-7528 (A.H.); +1-613-759-1539 (F.M.Y.)
| |
Collapse
|
6
|
Saroha A, Pal D, Gomashe SS, Akash, Kaur V, Ujjainwal S, Rajkumar S, Aravind J, Radhamani J, Kumar R, Chand D, Sengupta A, Wankhede DP. Identification of QTNs Associated With Flowering Time, Maturity, and Plant Height Traits in Linum usitatissimum L. Using Genome-Wide Association Study. Front Genet 2022; 13:811924. [PMID: 35774513 PMCID: PMC9237403 DOI: 10.3389/fgene.2022.811924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Early flowering, maturity, and plant height are important traits for linseed to fit in rice fallows, for rainfed agriculture, and for economically viable cultivation. Here, Multi-Locus Genome-Wide Association Study (ML-GWAS) was undertaken in an association mapping panel of 131 accessions, genotyped using 68,925 SNPs identified by genotyping by sequencing approach. Phenotypic evaluation data of five environments comprising 3 years and two locations were used. GWAS was performed for three flowering time traits including days to 5%, 50%, and 95% flowering, days to maturity, and plant height by employing five ML-GWAS methods: FASTmrEMMA, FASTmrMLM, ISIS EM-BLASSO, mrMLM, and pLARmEB. A total of 335 unique QTNs have been identified for five traits across five environments. 109 QTNs were stable as observed in ≥2 methods and/or environments, explaining up to 36.6% phenotypic variance. For three flowering time traits, days to maturity, and plant height, 53, 30, and 27 stable QTNs, respectively, were identified. Candidate genes having roles in flower, pollen, embryo, seed and fruit development, and xylem/phloem histogenesis have been identified. Gene expression of candidate genes for flowering and plant height were studied using transcriptome of an early maturing variety Sharda (IC0523807). The present study unravels QTNs/candidate genes underlying complex flowering, days to maturity, and plant height traits in linseed.
Collapse
|
7
|
You FM, Rashid KY, Zheng C, Khan N, Li P, Xiao J, He L, Yao Z, Cloutier S. Insights into the Genetic Architecture and Genomic Prediction of Powdery Mildew Resistance in Flax ( Linum usitatissimum L.). Int J Mol Sci 2022; 23:ijms23094960. [PMID: 35563347 PMCID: PMC9104541 DOI: 10.3390/ijms23094960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022] Open
Abstract
Powdery mildew (PM), caused by the fungus Oidium lini in flax, can cause defoliation and reduce seed yield and quality. To date, one major dominant gene (Pm1) and three quantitative trait loci (QTL) on chromosomes 1, 7 and 9 have been reported for PM resistance. To fully dissect the genetic architecture of PM resistance and identify QTL, a diverse flax core collection of 372 accessions augmented with an additional 75 breeding lines were sequenced, and PM resistance was evaluated in the field for eight years (2010–2017) in Morden, Manitoba, Canada. Genome-wide association studies (GWAS) were performed using two single-locus and seven multi-locus statistical models with 247,160 single nucleotide polymorphisms (SNPs) and the phenotypes of the 447 individuals for each year separately as well as the means over years. A total of 349 quantitative trait nucleotides (QTNs) were identified, of which 44 large-effect QTNs (R2 = 10–30%) were highly stable over years. The total number of favourable alleles per accession was significantly correlated with PM resistance (r = 0.74), and genomic selection (GS) models using all identified QTNs generated significantly higher predictive ability (r = 0.93) than those constructed using the 247,160 genome-wide random SNP (r = 0.69), validating the overall reliability of the QTNs and showing the additivity of PM resistance in flax. The QTNs were clustered on the distal ends of all 15 chromosomes, especially on chromosome 5 (0.4–5.6 Mb and 9.4–16.9 Mb) and 13 (4.7–5.2 Mb). To identify candidate genes, a dataset of 3230 SNPs located in resistance gene analogues (RGAs) was used as input for GWAS, from which an additional 39 RGA-specific QTNs were identified. Overall, 269 QTN loci harboured 445 RGAs within the 200 Kb regions spanning the QTNs, including 45 QTNs located within the RGAs. These RGAs supported by significant QTN/SNP allele effects were mostly nucleotide binding site and leucine-rich repeat receptors (NLRs) belonging to either coiled-coil (CC) NLR (CNL) or toll interleukin-1 (TIR) NLR (TNL), receptor-like kinase (RLK), receptor-like protein kinase (RLP), transmembrane-coiled-coil (TM-CC), WRKY, and mildew locus O (MLO) genes. These results constitute an important genomic tool for resistance breeding and gene cloning for PM in flax.
Collapse
Affiliation(s)
- Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Correspondence: (F.M.Y.); (S.C.); Tel.: +1-613-759-1539 (F.M.Y.); +1-613-759-1744 (S.C.)
| | - Khalid Y. Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (K.Y.R.); (Z.Y.)
| | - Chunfang Zheng
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
| | - Nadeem Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Pingchuan Li
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
| | - Jin Xiao
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China;
| | - Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China;
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; (K.Y.R.); (Z.Y.)
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (C.Z.); (N.K.); (P.L.); (L.H.)
- Correspondence: (F.M.Y.); (S.C.); Tel.: +1-613-759-1539 (F.M.Y.); +1-613-759-1744 (S.C.)
| |
Collapse
|
8
|
Povkhova LV, Melnikova NV, Rozhmina TA, Novakovskiy RO, Pushkova EN, Dvorianinova EM, Zhuchenko AA, Kamionskaya AM, Krasnov GS, Dmitriev AA. Genes Associated with the Flax Plant Type (Oil or Fiber) Identified Based on Genome and Transcriptome Sequencing Data. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122616. [PMID: 34961087 PMCID: PMC8707629 DOI: 10.3390/plants10122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Anastasia M. Kamionskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| |
Collapse
|
9
|
Comprehensive Thermal Characteristics of Different Cultivars of Flaxseed Oil ( Linum usittatissimum L.). Molecules 2021; 26:molecules26071958. [PMID: 33807192 PMCID: PMC8036527 DOI: 10.3390/molecules26071958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/21/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.
Collapse
|
10
|
Singh N, Kumar R, Kumar S, Singh PK, Yadav HK. Mapping QTLs for Alternaria blight in Linseed ( Linum usitatissimum L.). 3 Biotech 2021; 11:91. [PMID: 33520577 PMCID: PMC7826323 DOI: 10.1007/s13205-020-02638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022] Open
Abstract
A SSR-based linkage map of linseed constructed based on 154 individual lines of F 2 mapping population derived from JRF-4 (disease-resistant) and Chambal (disease susceptible) genotypes. QTLs for Alternaria blight and other yield related traits identified. Out of 1720 SSRs, 216 SSRs were found polymorphic among the parents but due to segregation distortion 18 SSRs could not be used for linkage map construction. Total 191 SSRs were used to construct the linkage map and distributed in 15 linkage groups covering genome length of 1802.4 cM. A total of 10 QTLs were identified for 4 phenotypic traits including 4 QTLs for capsules/plant, 2 for capsule weight/plant, 2 for seed weight/plant and 2 for Alternaria blight resistance. This study laid a foundation for further validation and fine mapping with more advance and large set of marker for different QTL identification and marker-assisted selection in linseed.
Collapse
Affiliation(s)
- Neha Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001 India
| | - Rajendra Kumar
- Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sujit Kumar
- Uttar Pradesh Council of Agricultural Research (UPCAR), Vibhuti Khand, Gomatinagar, Lucknow, 226010 India
| | - P. K. Singh
- Chandrashekhar Azad University of Agriculture and Technology, Kanpur, 208003 India
| | - Hemant Kumar Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
11
|
You FM, Cloutier S. Mapping Quantitative Trait Loci onto Chromosome-Scale Pseudomolecules in Flax. Methods Protoc 2020; 3:mps3020028. [PMID: 32260372 PMCID: PMC7359702 DOI: 10.3390/mps3020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
Quantitative trait loci (QTL) are genomic regions associated with phenotype variation of quantitative traits. To date, a total of 313 QTL for 31 quantitative traits have been reported in 14 studies on flax. Of these, 200 QTL from 12 studies were identified based on genetic maps, the scaffold sequences, or the pre-released chromosome-scale pseudomolecules. Molecular markers for QTL identification differed across studies but the most used ones were simple sequence repeats (SSRs) or single nucleotide polymorphisms (SNPs). To uniquely map the SSR and SNP markers from different references onto the recently released chromosome-scale pseudomolecules, methods with several scripts and database files were developed to locate PCR- and SNP-based markers onto the same reference, co-locate QTL, and scan genome-wide candidate genes. Using these methods, 195 out of 200 QTL were successfully sorted onto the 15 flax chromosomes and grouped into 133 co-located QTL clusters; the candidate genes that co-located with these QTL clusters were also predicted. The methods and tools presented in this article facilitate marker re-mapping to a new reference, genome-wide QTL analysis, candidate gene scanning, and breeding applications in flax and other crops.
Collapse
|
12
|
Zhang J, Qi Y, Wang L, Wang L, Yan X, Dang Z, Li W, Zhao W, Pei X, Li X, Liu M, Tan M, Wang L, Long Y, Wang J, Zhang X, Dang Z, Zheng H, Liu T. Genomic Comparison and Population Diversity Analysis Provide Insights into the Domestication and Improvement of Flax. iScience 2020; 23:100967. [PMID: 32240956 PMCID: PMC7114909 DOI: 10.1016/j.isci.2020.100967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
Flax has been cultivated for its oil and fiber for thousands of years. However, it remains unclear how the modifications of agronomic traits occurred on the genetic level during flax cultivation. In this study, we conducted genome-wide variation analyses on multiple accessions of oil-use, fiber-use, landraces, and pale flax to identify the genomic variations during flax cultivation. Our findings indicate that, during flax domestication, genes relevant to flowering, dehiscence, oil production, and plant architecture were preferentially selected. Furthermore, regardless of origins, the improvement of the modern oil-use flax preceded that of the fiber-use flax, although the dual selection on oil-use and fiber-use characteristics might have occurred in the early flax domestication. We also found that the expansion of MYB46/MYB83 genes may have contributed to the unique secondary cell wall biosynthesis in flax and the directional selections on MYB46/MYB83 may have shaped the morphological profile of the current oil-use and fiber-use flax. Assemblies of genomes, including oil-use flax, fiber-use flax and pale flax Comparative genomic analysis between pale flax and cultivated flax Dual-selection mode on oil-use and fiber-use characteristics might be existing Expansion and selection of MYB46/MYB83 may shape the morphological profile of flax
Collapse
Affiliation(s)
- Jianping Zhang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Yanni Qi
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Limin Wang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xingchu Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhao Dang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wenjuan Li
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wei Zhao
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Meilian Tan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Lei Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xuewen Zhang
- Biomarker Technologies Corporation, Beijing, China
| | - Zhanhai Dang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | | | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China.
| |
Collapse
|
13
|
Miart F, Fontaine JX, Pineau C, Demailly H, Thomasset B, Van Wuytswinkel O, Pageau K, Mesnard F. MuSeeQ, a novel supervised image analysis tool for the simultaneous phenotyping of the soluble mucilage and seed morphometric parameters. PLANT METHODS 2018; 14:112. [PMID: 30568724 PMCID: PMC6297999 DOI: 10.1186/s13007-018-0377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The mucilage is a model to study the polysaccharide biosynthesis since it is produced in large amounts and composed of complex polymers. In addition, it is of great economic interest for its technical and nutritional value. A fast method for phenotyping the released mucilage and the seed morphometric parameters will be useful for fundamental, food, pharmaceutical and breeding researches. Current strategies to phenotype soluble mucilage are restricted to visual evaluations or are highly time-consuming. RESULTS Here, we developed a high-throughput phenotyping method for the simultaneous measurement of the soluble mucilage content released on a gel and the seed morphometric parameters. Within this context, we combined a biochemical assay and an open-source computer-aided image analysis tool, MuSeeQ. The biochemical assay consists in sowing seeds on an agarose medium containing the dye toluidine blue O, which specifically stains the mucilage once it is released on the gel. The second part of MuSeeQ is a macro developed in ImageJ allowing to quickly extract and analyse 11 morphometric data of seeds and their respective released mucilages. As an example, MuSeeQ was applied on a flax recombinant inbred lines population (previously screened for fatty acids content.) and revealed significant correlations between the soluble mucilage shape and the concentration of some fatty acids, e.g. C16:0 and C18:2. Other fatty acids were also found to correlate with the seed shape parameters, e.g. C18:0 and C18:2. MuSeeQ was then showed to be used for the analysis of other myxospermous species, including Arabidopsis thaliana and Camelina sativa. CONCLUSIONS MuSeeQ is a low-cost and user-friendly method which may be used by breeders and researchers for phenotyping simultaneously seeds of specific cultivars, natural variants or mutants and their respective soluble mucilage area released on a gel. The script of MuSeeQ and video tutorials are freely available at http://MuSeeQ.free.fr.
Collapse
Affiliation(s)
- Fabien Miart
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
- Present Address: Institut Jean-Pierre Bourgin, UMR1318, INRA/AgroParisTech, Saclay Plant Sciences, INRA Centre de Versailles, 78026 Versailles Cedex, France
| | - Jean-Xavier Fontaine
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - Christophe Pineau
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - Hervé Demailly
- Centre de ressources régionales en biologie moléculaire, Bâtiment Serrres-Transfert, rue Dallery, 80039 Amiens Cedex 1, France
| | - Brigitte Thomasset
- Sorbonne Universités, Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne Cedex, France
| | - Olivier Van Wuytswinkel
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - Karine Pageau
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - François Mesnard
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| |
Collapse
|
14
|
Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM. Genome-Wide Association Analysis of Mucilage and Hull Content in Flax ( Linum usitatissimum L.) Seeds. Int J Mol Sci 2018; 19:ijms19102870. [PMID: 30248911 PMCID: PMC6213135 DOI: 10.3390/ijms19102870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
New flaxseed cultivars differing in seed mucilage content (MC) with low hull content (HC) represent an attractive option to simultaneously target the food and feed markets. Here, a genome-wide association study (GWAS) was conducted for MC and HC in 200 diverse flaxseed accessions genotyped with 1.7 million single nucleotide polymorphism (SNP) markers. The data obtained for MC and HC indicated a broad phenotypic variation and high (~70%) and a moderate (~49%) narrow sense heritability, respectively. MC and HC did not differ statistically between fiber and oil morphotypes, but yellow-seeded accessions had 2.7% less HC than brown-seeded ones. The genome-wide linkage disequilibrium (LD) decayed to r2 = 0.1 at a physical distance of ~100 kb. Seven and four quantitative trait loci (QTL) were identified for MC and HC, respectively. Promising candidate genes identified include Linum usitatissimum orthologs of the Arabidopsis thaliana genes TRANSPARENT TESTA 8, SUBTILISIN-LIKE SERINE PROTEASE, GALACTUROSYL TRANSFERASE-LIKE 5, MUCILAGE-MODIFIED 4, AGAMOUS-LIKE MADS-BOX PROTEIN AGL62, GLYCOSYL HYDROLASE FAMILY 17, and UDP-GLUCOSE FLAVONOL 3-O-GLUCOSYLTRANSFERASE. These genes have been shown to play a role in mucilage synthesis and release, seed coat development and anthocyanin biosynthesis in A. thaliana. The favorable alleles will be useful in flaxseed breeding towards the goal of achieving the ideal MC and HC composition for food and feed by genomic-based breeding.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Rocío Quian
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Humberto A Gajardo
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Marcos Olivos
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
15
|
Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2018. [PMID: 30086718 DOI: 10.1186/s128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Flax is an important field crop that can be used for either oilseed or fiber production. Plant height and technical length are important characters for flax. For linseed flax, plants usually have a short technical length and plant height than those for fiber flax. As an important agronomical character for fiber and linseed flax, plant height is usually a selection target for breeding. However, because of limited technologies and methods available, there has been little research focused on discovering the molecular mechanism controlling plant height. RESULTS In this study, two related recombinant inbred line (RIL) populations developed from crosses of linseed and fiber parents were developed and phenotyped for plant height and technical length in four environments. A consensus linkage map based on two RIL populations was constructed using SNP markers generated by genotyping by sequencing (GBS) technology. A total of 4497 single nucleotide polymorphism (SNP) markers were included on 15 linkage groups with an average marker density of one marker every 2.71 cM. Quantitative trait locus (QTL) mapping analysis was performed for plant height and technical length using the two populations. A total of 19 QTLs were identified for plant height and technical length. For the MH population, eight plant height QTLs and seven technical length QTLs were identified, five of which were common QTLs for both traits. For the PH population, six plant height and three technical length QTLs were identified. By comparing the QTLs and candidate gene information in the two population, two common QTLs and three candidate genes were discovered. CONCLUSIONS This study provides a foundation for map-based cloning of QTLs and marker-assisted selection for plant height-related traits in linseed and fiber flax.
Collapse
Affiliation(s)
- Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liming Wang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zhao Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Tianbao Zhang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaxia Song
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanhai Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2018; 18:160. [PMID: 30086718 PMCID: PMC6081803 DOI: 10.1186/s12870-018-1366-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/16/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Flax is an important field crop that can be used for either oilseed or fiber production. Plant height and technical length are important characters for flax. For linseed flax, plants usually have a short technical length and plant height than those for fiber flax. As an important agronomical character for fiber and linseed flax, plant height is usually a selection target for breeding. However, because of limited technologies and methods available, there has been little research focused on discovering the molecular mechanism controlling plant height. RESULTS In this study, two related recombinant inbred line (RIL) populations developed from crosses of linseed and fiber parents were developed and phenotyped for plant height and technical length in four environments. A consensus linkage map based on two RIL populations was constructed using SNP markers generated by genotyping by sequencing (GBS) technology. A total of 4497 single nucleotide polymorphism (SNP) markers were included on 15 linkage groups with an average marker density of one marker every 2.71 cM. Quantitative trait locus (QTL) mapping analysis was performed for plant height and technical length using the two populations. A total of 19 QTLs were identified for plant height and technical length. For the MH population, eight plant height QTLs and seven technical length QTLs were identified, five of which were common QTLs for both traits. For the PH population, six plant height and three technical length QTLs were identified. By comparing the QTLs and candidate gene information in the two population, two common QTLs and three candidate genes were discovered. CONCLUSIONS This study provides a foundation for map-based cloning of QTLs and marker-assisted selection for plant height-related traits in linseed and fiber flax.
Collapse
Affiliation(s)
- Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Liming Wang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Zhao Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Tianbao Zhang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaxia Song
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhanhai Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
17
|
You FM, Xiao J, Li P, Yao Z, Jia G, He L, Kumar S, Soto-Cerda B, Duguid SD, Booker HM, Rashid KY, Cloutier S. Genome-Wide Association Study and Selection Signatures Detect Genomic Regions Associated with Seed Yield and Oil Quality in Flax. Int J Mol Sci 2018; 19:ijms19082303. [PMID: 30082613 PMCID: PMC6121305 DOI: 10.3390/ijms19082303] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
A genome-wide association study (GWAS) was performed on a set of 260 lines which belong to three different bi-parental flax mapping populations. These lines were sequenced to an averaged genome coverage of 19× using the Illumina Hi-Seq platform. Phenotypic data for 11 seed yield and oil quality traits were collected in eight year/location environments. A total of 17,288 single nucleotide polymorphisms were identified, which explained more than 80% of the phenotypic variation for days to maturity (DTM), iodine value (IOD), palmitic (PAL), stearic, linoleic (LIO) and linolenic (LIN) acid contents. Twenty-three unique genomic regions associated with 33 quantitative trait loci (QTL) for the studied traits were detected, thereby validating four genomic regions previously identified. The 33 QTL explained 48–73% of the phenotypic variation for oil content, IOD, PAL, LIO and LIN but only 8–14% for plant height, DTM and seed yield. A genome-wide selective sweep scan for selection signatures detected 114 genomic regions that accounted for 7.82% of the flax pseudomolecule and overlapped with the 11 GWAS-detected genomic regions associated with 18 QTL for 11 traits. The results demonstrate the utility of GWAS combined with selection signatures for dissection of the genetic structure of traits and for pinpointing genomic regions for breeding improvement.
Collapse
Affiliation(s)
- Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Jin Xiao
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Department of Agronomy, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pingchuan Li
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Gaofeng Jia
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Santosh Kumar
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Braulio Soto-Cerda
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4871158, Chile.
| | - Scott D Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Helen M Booker
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Khalid Y Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
18
|
Xie D, Dai Z, Yang Z, Tang Q, Sun J, Yang X, Song X, Lu Y, Zhao D, Zhang L, Su J. Genomic variations and association study of agronomic traits in flax. BMC Genomics 2018; 19:512. [PMID: 29969983 PMCID: PMC6029072 DOI: 10.1186/s12864-018-4899-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Flax (Linum usitatissimum. L) is an ancient oilseed and natural fiber crop. It could be divided into three categories by use, namely oil flax, fiber flax and oil-fiber dual purpose (OF). Cultivated flax is widely used in the food and textile industry. It is of great significance to elucidate the genetic characteristics of flax collections for accelerating the process of breeding improvement in this dual purpose crop. With the development of next-generation sequencing, we can use new methods, such as SLAF-seq (specific-locus amplified fragment sequencing), to decode unknown genomes of species. In this study, a high-through sequencing of flax collections using SLAF-seq was conducted. The evolutionary tendency was defined and candidate genes associated with agronomic traits of flax species were identified by Genome-Wide Association Studying (GWAS). RESULTS A flax collection consisting of 224 varieties were sequenced by SLAF-seq. In total, 346,639 SLAF tags were developed from all accessions, with an average sequencing depth of 7.19 for each accession. A total of 584,987 SNPs (single nucleotide polymorphism) with an MAF > 0.05 were identified from these SLAFs. The population structure division and phylogenetic analysis indicated a strong divergence among three kinds of flax groups. The genome-wide variation uncovered that oil flax had the highest genetic diversity and was considered to be the ancestor of fiber flax and oil-fiber flax. Sixteen associated peak SNPs for six traits were obtained by GWAS of oil-related traits using EMMAX (efficient mixed-model association eXpedited). Candidate genes and their related pathway were evaluated. A new GWAS was developed for fiber properties using the GLM (General linear model) model and a number of loci were identified. CONCLUSIONS To our knowledge, this is the first study on discovery multiple loci for important agronomic traits of flax species using GWAS strategy. These results will provide the highest possibility of incorporating both high fiber and good oil traits in a single variety.
Collapse
Affiliation(s)
- Dongwei Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jian Sun
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Xue Yang
- Sino-Russian Agricultural Scientific and Technological Cooperation Center, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xixia Song
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ying Lu
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Debao Zhao
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liguo Zhang
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
19
|
Xie D, Dai Z, Yang Z, Tang Q, Sun J, Yang X, Song X, Lu Y, Zhao D, Zhang L, Su J. Genomic variations and association study of agronomic traits in flax. BMC Genomics 2018. [PMID: 29969983 DOI: 10.1186/s12864-018-4899-za] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Flax (Linum usitatissimum. L) is an ancient oilseed and natural fiber crop. It could be divided into three categories by use, namely oil flax, fiber flax and oil-fiber dual purpose (OF). Cultivated flax is widely used in the food and textile industry. It is of great significance to elucidate the genetic characteristics of flax collections for accelerating the process of breeding improvement in this dual purpose crop. With the development of next-generation sequencing, we can use new methods, such as SLAF-seq (specific-locus amplified fragment sequencing), to decode unknown genomes of species. In this study, a high-through sequencing of flax collections using SLAF-seq was conducted. The evolutionary tendency was defined and candidate genes associated with agronomic traits of flax species were identified by Genome-Wide Association Studying (GWAS). RESULTS A flax collection consisting of 224 varieties were sequenced by SLAF-seq. In total, 346,639 SLAF tags were developed from all accessions, with an average sequencing depth of 7.19 for each accession. A total of 584,987 SNPs (single nucleotide polymorphism) with an MAF > 0.05 were identified from these SLAFs. The population structure division and phylogenetic analysis indicated a strong divergence among three kinds of flax groups. The genome-wide variation uncovered that oil flax had the highest genetic diversity and was considered to be the ancestor of fiber flax and oil-fiber flax. Sixteen associated peak SNPs for six traits were obtained by GWAS of oil-related traits using EMMAX (efficient mixed-model association eXpedited). Candidate genes and their related pathway were evaluated. A new GWAS was developed for fiber properties using the GLM (General linear model) model and a number of loci were identified. CONCLUSIONS To our knowledge, this is the first study on discovery multiple loci for important agronomic traits of flax species using GWAS strategy. These results will provide the highest possibility of incorporating both high fiber and good oil traits in a single variety.
Collapse
Affiliation(s)
- Dongwei Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jian Sun
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Xue Yang
- Sino-Russian Agricultural Scientific and Technological Cooperation Center, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xixia Song
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ying Lu
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Debao Zhao
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liguo Zhang
- The Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
20
|
Dmitriev AA, Krasnov GS, Rozhmina TA, Novakovskiy RO, Snezhkina AV, Fedorova MS, Yurkevich OY, Muravenko OV, Bolsheva NL, Kudryavtseva AV, Melnikova NV. Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2017; 17:253. [PMID: 29297347 PMCID: PMC5751779 DOI: 10.1186/s12870-017-1192-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is a crop plant used for fiber and oil production. Although potentially high-yielding flax varieties have been developed, environmental stresses markedly decrease flax production. Among biotic stresses, Fusarium oxysporum f. sp. lini is recognized as one of the most devastating flax pathogens. It causes wilt disease that is one of the major limiting factors for flax production worldwide. Breeding and cultivation of flax varieties resistant to F. oxysporum is the most effective method for controlling wilt disease. Although the mechanisms of flax response to Fusarium have been actively studied, data on the plant response to infection and resistance gene candidates are currently very limited. RESULTS The transcriptomes of two resistant and two susceptible flax cultivars with respect to Fusarium wilt, as well as two resistant BC2F5 populations, which were grown under control conditions or inoculated with F. oxysporum, were sequenced using the Illumina platform. Genes showing changes in expression under F. oxysporum infection were identified in both resistant and susceptible flax genotypes. We observed the predominant overexpression of numerous genes that are involved in defense response. This was more pronounced in resistant cultivars. In susceptible cultivars, significant downregulation of genes involved in cell wall organization or biogenesis was observed in response to F. oxysporum. In the resistant genotypes, upregulation of genes related to NAD(P)H oxidase activity was detected. Upregulation of a number of genes, including that encoding beta-1,3-glucanase, was significantly greater in the cultivars and BC2F5 populations resistant to Fusarium wilt than in susceptible cultivars in response to F. oxysporum infection. CONCLUSIONS Using high-throughput sequencing, we identified genes involved in the early defense response of L. usitatissimum against the fungus F. oxysporum. In response to F. oxysporum infection, we detected changes in the expression of pathogenesis-related protein-encoding genes and genes involved in ROS production or related to cell wall biogenesis. Furthermore, we identified genes that were upregulated specifically in flax genotypes resistant to Fusarium wilt. We suggest that the identified genes in resistant cultivars and BC2F5 populations showing induced expression in response to F. oxysporum infection are the most promising resistance gene candidates.
Collapse
Affiliation(s)
- Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- All-Russian Research Institute for Flax, Torzhok, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Yurkevich OY, Kirov IV, Bolsheva NL, Rachinskaya OA, Grushetskaya ZE, Zoschuk SA, Samatadze TE, Bogdanova MV, Lemesh VA, Amosova AV, Muravenko OV. Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase ( CesA) Genes in Flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1467. [PMID: 28878799 PMCID: PMC5572355 DOI: 10.3389/fpls.2017.01467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/07/2017] [Indexed: 05/07/2023]
Abstract
Flax, Linum usitatissimum L., is a valuable multi-purpose plant, and currently, its genome is being extensively investigated. Nevertheless, mapping of genes in flax genome is still remaining a challenging task. The cellulose synthase (CesA) multigene family involving in the process of cellulose synthesis is especially important for metabolism of this fiber crop. For the first time, fluorescent in situ hybridization (FISH)-based chromosomal localization of the CesA conserved fragment (KF011584.1), 5S, and 26S rRNA genes was performed in landrace, oilseed, and fiber varieties of L. usitatissimum. Intraspecific polymorphism in chromosomal distribution of KF011584.1 and 5S DNA loci was revealed, and the generalized chromosome ideogram was constructed. Using BLAST analysis, available data on physical/genetic mapping and also whole-genome sequencing of flax, localization of KF011584.1, 45S, and 5S rRNA sequences on genomic scaffolds, and their anchoring to the genetic map were conducted. The alignment of the results of FISH and BLAST analyses indicated that KF011584.1 fragment revealed on chromosome 3 could be anchored to linkage group (LG) 11. The common LG for 45S and 5S rDNA was not found probably due to the polymorphic localization of 5S rDNA on chromosome 1. Our findings indicate the complexity of integration of physical, genetic, and cytogenetic mapping data for multicopy gene families in plants. Nevertheless, the obtained results can be useful for future progress in constructing of integrated physical/genetic/cytological maps in L. usitatissimum which are essential for flax breeding.
Collapse
Affiliation(s)
- Olga Y. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Ilya V. Kirov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga A. Rachinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Zoya E. Grushetskaya
- Institute of Genetics and Cytology, National Academy of Sciences of BelarusMinsk, Belarus
| | - Svyatoslav A. Zoschuk
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Marina V. Bogdanova
- Institute of Genetics and Cytology, National Academy of Sciences of BelarusMinsk, Belarus
| | - Valentina A. Lemesh
- Institute of Genetics and Cytology, National Academy of Sciences of BelarusMinsk, Belarus
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
22
|
Wu J, Zhao Q, Wu G, Zhang S, Jiang T. Development of Novel SSR Markers for Flax ( Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 7:2018. [PMID: 28133461 PMCID: PMC5233678 DOI: 10.3389/fpls.2016.02018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/19/2016] [Indexed: 05/29/2023]
Abstract
Flax (Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5-8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs.
Collapse
Affiliation(s)
- Jianzhong Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Qian Zhao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Guangwen Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Shuquan Zhang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
23
|
Frank MY, Gaofeng J, Sylvie C, Helen MB, Scott DD, Khalid YR. A method of estimating broad-sense heritability for quantitative traits in the type 2 modified augmented design. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jpbcs2016.0614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
|
25
|
Thambugala D, Ragupathy R, Cloutier S. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents. Funct Integr Genomics 2016; 16:429-39. [PMID: 27142663 DOI: 10.1007/s10142-016-0494-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/15/2023]
Abstract
Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | - Raja Ragupathy
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada. .,Ottawa Research and Development Centre, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
26
|
Cytotoxic Activity and Chemical Composition of the Root Extract from the Mexican Species Linum scabrellum: Mechanism of Action of the Active Compound 6-Methoxypodophyllotoxin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:298463. [PMID: 26246833 PMCID: PMC4515262 DOI: 10.1155/2015/298463] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 12/17/2022]
Abstract
The cytotoxic activity and the chemical composition of the dichloromethane/methanol root extract of Linum scabrellum Planchon (Linaceae) were analyzed. Using NMR spectra and mass spectrometry analyses of the extract we identified eight main constituents: oleic acid (1), octadecenoic acid (2), stigmasterol (3), α-amyrin (4), pinoresinol (5), 6 methoxypodophyllotoxin (6), coniferin (7), and 6-methoxypodophyllotoxin-7-O-β-D-glucopyranoside (8). By using the sulforhodamine B assay, an important cytotoxic activity against four human cancer cell lines, HF6 colon (IC50 = 0.57 μg/mL), MCF7 breast (IC50 = 0.56 μg/mL), PC3 prostate (IC50 = 1.60 μg/mL), and SiHa cervical (IC50 = 1.54 μg/mL), as well as toward the normal fibroblasts line HFS-30 IC50 = 1.02 μg/mL was demonstrated. Compound 6 (6-methoxypodophyllotoxin) was responsible for the cytotoxic activity exhibiting an IC50 value range of 0.0632 to 2.7433 µg/mL against the tested cell lines. Cell cycle studies with compound 6 exhibited a cell arrest in G2/M of the prostate PC3 cancer cell line. Microtubule disruption studies demonstrated that compound 6 inhibited the polymerization of tubulin through its binding to the colchicine site (binding constant K b = 7.6 × 10(6) M(-1)). A dose-response apoptotic effect was also observed. This work constitutes the first investigation reporting the chemical composition of L. scabrellum and the first study determining the mechanism of action of compound 6.
Collapse
|