1
|
Valencia-Ortiz M, McGee RJ, Sankaran S. Field Asymmetric Ion Mobility Spectrometry for Early Detection of Aphanomyces Root Rot in Peas Using Volatile Biomarkers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12083-12092. [PMID: 40304396 DOI: 10.1021/acs.jafc.4c12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Volatile organic compounds (VOCs) produced by plants during plant-pathogen interactions can be highly informative for early disease detection. The real-time capability of field asymmetric ion mobility spectrometry (FAIMS) offers a valuable opportunity to monitor plant VOCs nondestructively and dynamically. This study evaluated the FAIMS system reliability in measuring VOC profiles for an early diagnosis of Aphanomyces root rot (ARR) in pea (Pisum sativum L.). This evaluation utilized pea lines with a major quantitative trait locus (QTL Ae-Ps7.6) and lines without QTL, identified to provide partial resistance against ARR. For the first time, a VOC biomarker associated with ARR was detected as early as 2 days after inoculation (DAI). Furthermore, at 7 DAI, one of the biomarkers showed significant differences between lines with and without QTL Ae-Ps7.6 in the noninoculated samples. These findings demonstrate the potential applicability of the FAIMS system as a valuable tool for detecting volatile biomarkers for early plant disease detection.
Collapse
Affiliation(s)
- Milton Valencia-Ortiz
- Department of Biological System Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Rebecca J McGee
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Sindhuja Sankaran
- Department of Biological System Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Goyal RK, Hui JPM, Ranches J, Stefanova R, Jones A, Banskota AH, Burton I, Yu B, Berrue F, Hannig A, Clark S, Chatterton S, Dhaubhadel S, Zhang J. Untargeted Metabolomic Analysis Reveals a Potential Role of Saponins in the Partial Resistance of Pea ( Pisum sativum) Against a Root Rot Pathogen, Aphanomyces euteiches. PHYTOPATHOLOGY 2024; 114:2502-2514. [PMID: 39186063 DOI: 10.1094/phyto-04-24-0151-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In soilborne diseases, the plant-pathogen interaction begins as soon as the seed germinates and develops into a seedling. Aphanomyces euteiches, an oomycete, stays dormant in soil and is activated by sensing the host through chemical signals present in the root exudates. The composition of plant exudates may, thus, play an important role during the early phase of infection. To better understand the role of root exudates in plant resistance, we investigated the interaction between partially resistant lines (PI660736 and PI557500) and susceptible pea cultivars (CDC Meadow and AAC Chrome) against A. euteiches during the pre-invasion phase. The root exudates of the two sets of cultivars clearly differed from each other in inducing oospore germination. PI557500 root exudate not only had diminished induction but also inhibited the oospore germination. The contrast between the root exudates of resistant and susceptible cultivars was reflected in their metabolic profiles. Data from fractionation and oospore germination inhibitory experiments identified a group of saponins that accumulated differentially in susceptible and resistant cultivars. We detected 56 saponins and quantified 44 of them in pea root and 30 from root exudate; the majority of them, especially soyasaponin I and dehydrosoyasaponin I with potent in vitro inhibitory activities, were present in significantly higher amounts in both roots and root exudates of PI660736 and PI557500 compared with Meadow and Chrome. Our results provide evidence for saponins as deterrents against A. euteiches, which might have contributed to the resistance against root rot in the studied pea cultivars. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada and the National Research Council of Canada. This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ravinder K Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Joseph P M Hui
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Jeffrey Ranches
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Roumiana Stefanova
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Alysson Jones
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Arjun H Banskota
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Ian Burton
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, S7N 0W9, Canada
| | - Fabrice Berrue
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| | - Albert Hannig
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB, T4L 1W1, Canada
| | - Shawn Clark
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 110 Gymnasium Pl., Saskatoon, SK, S7N 0W9, Canada
| | - Syama Chatterton
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 - 1 Ave. South, P.O. Box 3000, Lethbridge, AB, T1J 4B1, Canada
| | - Sangeeta Dhaubhadel
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford St., Halifax, NS, B3H 3Z1, Canada
| |
Collapse
|
3
|
Trenk NK, Pacheco-Moreno A, Arora S. Understanding the root of the problem for tackling pea root rot disease. Front Microbiol 2024; 15:1441814. [PMID: 39512933 PMCID: PMC11540676 DOI: 10.3389/fmicb.2024.1441814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Pea (Pisum sativum), a crop historically significant in the field of genetics, is regaining momentum in sustainable agriculture due to its high protein content and environmental benefits. However, its cultivation faces significant challenges from root rot, a complex disease caused by multiple soil-borne pathogens prevalent across most pea growing regions. This disease leads to substantial yield losses, further complicated by the dynamic interactions among pathogens, soil conditions, weather, and agricultural practices. Recent advancements in molecular diagnostics provide promising tools for the early and precise detection of these pathogens, which is critical for implementing effective disease management strategies. In this review, we explore how the availability of latest pea genomic resources and emerging technologies, such as CRISPR and cell-specific transcriptomics, will enable a deeper understanding of the molecular basis underlying host-pathogen interactions. We emphasize the need for a comprehensive approach that integrates genetic resistance, advanced diagnostics, cultural practices and the role of the soil microbiome in root rot. By leveraging these strategies, it is possible to develop pea varieties that can withstand root rot, ensuring the crop's resilience and its continued importance in global agriculture.
Collapse
Affiliation(s)
| | | | - Sanu Arora
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
4
|
Rodriguez-Mena S, Rubiales D, González M. Identification of Sources of Resistance to Aphanomyces Root Rot in Pisum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2454. [PMID: 39273939 PMCID: PMC11397196 DOI: 10.3390/plants13172454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Aphanomyces root rot (ARR), caused by Aphanomyces euteiches, is one of the most devastating diseases that affect the production of peas. Several control strategies such as crop rotation, biocontrol, and fungicides have been proposed, but none provides a complete solution. Therefore, the deployment of resistant cultivars is fundamental. ARR resistance breeding is hampered by the moderate levels of resistance identified so far. The available screening protocols require post-inoculation root assessment, which is destructive, time-consuming, and tedious. In an attempt to address these limitations, we developed a non-destructive screening protocol based on foliar symptoms and used it to identify new sources of resistance in a Pisum spp. germplasm collection. Accessions were root inoculated separately with two A. euteiches isolates, and leaf symptoms were assessed at 5, 10, 14, 17, and 20 days after inoculation (DAI). Although the majority of accessions exhibited high levels of susceptibility, thirty of them exhibited moderate resistance. These thirty accessions were selected for a second experiment, in which they were inoculated with both A. euteiches isolates at two inoculum doses. The objective of this second trial was to confirm the resistance of these accessions by evaluating root and biomass loss, as well as foliar symptoms, and to compare root and foliar evaluations. As a result, a high correlation (R2 = 0.75) between foliar and root evaluations was observed, validating the foliar evaluation method. Notably, accessions from P.s. subsp. humile exhibited the lowest symptomatology across all evaluation methods, representing valuable genetic resources for breeding programs aimed at developing pea varieties resistant to ARR.
Collapse
Affiliation(s)
- Sara Rodriguez-Mena
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
- Campus de Rabanales, University of Cordoba, 14014 Cordoba, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
| | - Mario González
- Institute for Sustainable Agriculture, CSIC, 14004 Cordoba, Spain
| |
Collapse
|
5
|
Kälin C, Piombo E, Bourras S, Brantestam AK, Dubey M, Elfstrand M, Karlsson M. Transcriptomic analysis identifies candidate genes for Aphanomyces root rot disease resistance in pea. BMC PLANT BIOLOGY 2024; 24:144. [PMID: 38413860 PMCID: PMC10900555 DOI: 10.1186/s12870-024-04817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Aphanomyces euteiches is a soil-borne oomycete that causes root rot in pea and other legume species. Symptoms of Aphanomyces root rot (ARR) include root discoloration and wilting, leading to significant yield losses in pea production. Resistance to ARR is known to be polygenic but the roles of single genes in the pea immune response are still poorly understood. This study uses transcriptomics to elucidate the immune response of two pea genotypes varying in their levels of resistance to A. euteiches. RESULTS In this study, we inoculated roots of the pea (P. sativum L.) genotypes 'Linnea' (susceptible) and 'PI180693' (resistant) with two different A. euteiches strains varying in levels of virulence. The roots were harvested at 6 h post-inoculation (hpi), 20 hpi and 48 hpi, followed by differential gene expression analysis. Our results showed a time- and genotype-dependent immune response towards A. euteiches infection, involving several WRKY and MYB-like transcription factors, along with genes associated with jasmonic acid (JA) and abscisic acid (ABA) signaling. By cross-referencing with genes segregating with partial resistance to ARR, we identified 39 candidate disease resistance genes at the later stage of infection. Among the genes solely upregulated in the resistant genotype 'PI180693', Psat7g091800.1 was polymorphic between the pea genotypes and encoded a Leucine-rich repeat receptor-like kinase reminiscent of the Arabidopsis thaliana FLAGELLIN-SENSITIVE 2 receptor. CONCLUSIONS This study provides new insights into the gene expression dynamics controlling the immune response of resistant and susceptible pea genotypes to A. euteiches infection. We present a set of 39 candidate disease resistance genes for ARR in pea, including the putative immune receptor Psat7g091800.1, for future functional validation.
Collapse
Affiliation(s)
- Carol Kälin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Salim Bourras
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Lavaud C, Lesné A, Leprévost T, Pilet-Nayel ML. Fine mapping of Ae-Ps4.5, a major locus for resistance to pathotype III of Aphanomyces euteiches in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:47. [PMID: 38334777 DOI: 10.1007/s00122-024-04548-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
KEY MESSAGE QTL mapping and recombinant screening confirmed the major effect of QTL Ae-Ps4.5 on pea resistance to pathotype III of Aphanomyces euteiches and fine-mapped the QTL to a 3.06-Mb interval. Aphanomyces root rot, caused by Aphanomyces euteiches, is the most important disease of pea (Pisum sativum L.) worldwide. The development of pea-resistant varieties is a major challenge to control the disease. Previous linkage studies identified seven main resistance quantitative trait loci (QTL), including the QTL Ae-Ps4.5 associated with partial resistance in US nurseries infested by the pea pathotype III of A. euteiches. This study aimed to confirm the major effect of Ae-Ps4.5 on A. euteiches pathotype III, refine its interval, and identify candidate genes underlying the QTL. QTL mapping on an updated genetic map from the Puget × 90-2079 pea recombinant inbred line population identified Ae-Ps4.5 in a 0.8-cM confidence interval with a high effect (R2 = 89%) for resistance to the Ae109 reference strain of A. euteiches (pathotype III) under controlled conditions. However, the QTL mapping did not detect Ae-Ps4.5 for resistance to the RB84 reference strain of A. euteiches (pathotype I). Screening 224-pea BC5F2 plant progeny derived from three near-isogenic lines (NILs) carrying the 90-2079 allele at Ae-Ps4.5 in the Puget genetic background with 26 SNP markers identified 15 NILs showing recombination in the QTL interval. Phenotyping of the recombinant lines for resistance to the Ae109 strain of A. euteiches reduced the QTL to a physical interval of 3.06 Mb, containing 50 putative annotated genes on the Caméor pea genome V1a among which three candidate genes highlighted. This study provides closely linked SNP markers and putative candidate genes to accelerate pea breeding for resistant varieties to Aphanomyces root rot.
Collapse
Affiliation(s)
- Clément Lavaud
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Théo Leprévost
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | |
Collapse
|
7
|
Leprévost T, Boutet G, Lesné A, Rivière JP, Vetel P, Glory I, Miteul H, Le Rat A, Dufour P, Regnault-Kraut C, Sugio A, Lavaud C, Pilet-Nayel ML. Advanced backcross QTL analysis and comparative mapping with RIL QTL studies and GWAS provide an overview of QTL and marker haplotype diversity for resistance to Aphanomyces root rot in pea ( Pisum sativum). FRONTIERS IN PLANT SCIENCE 2023; 14:1189289. [PMID: 37841625 PMCID: PMC10569610 DOI: 10.3389/fpls.2023.1189289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023]
Abstract
Aphanomyces euteiches is the most damaging soilborne pea pathogen in France. Breeding of pea resistant varieties combining a diversity of quantitative trait loci (QTL) is a promising strategy considering previous research achievements in dissecting polygenic resistance to A. euteiches. The objective of this study was to provide an overview of the diversity of QTL and marker haplotypes for resistance to A. euteiches, by integrating a novel QTL mapping study in advanced backcross (AB) populations with previous QTL analyses and genome-wide association study (GWAS) using common markers. QTL analysis was performed in two AB populations derived from the cross between the susceptible spring pea variety "Eden" and the two new sources of partial resistance "E11" and "LISA". The two AB populations were genotyped using 993 and 478 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for resistance to A. euteiches in controlled conditions and in infested fields at two locations. GWAS and QTL mapping previously reported in the pea-Aphanomyces collection and from four recombinant inbred line (RIL) populations, respectively, were updated using a total of 1,850 additional markers, including the markers used in the Eden x E11 and Eden x LISA populations analysis. A total of 29 resistance-associated SNPs and 171 resistance QTL were identified by GWAS and RIL or AB QTL analyses, respectively, which highlighted 10 consistent genetic regions confirming the previously reported QTL. No new consistent resistance QTL was detected from both Eden x E11 and Eden x LISA AB populations. However, a high diversity of resistance haplotypes was identified at 11 linkage disequilibrium (LD) blocks underlying consistent genetic regions, especially in 14 new sources of resistance from the pea-Aphanomyces collection. An accumulation of favorable haplotypes at these 11 blocks was confirmed in the most resistant pea lines of the collection. This study provides new SNP markers and rare haplotypes associated with the diversity of Aphanomyces root rot resistance QTL investigated, which will be useful for QTL pyramiding strategies to increase resistance levels in future pea varieties.
Collapse
Affiliation(s)
- Théo Leprévost
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Gilles Boutet
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | - Pierrick Vetel
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Henri Miteul
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Anaïs Le Rat
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
- KWS MOMONT Recherche SARL, Allonnes, France
| | | |
Collapse
|
8
|
Fortier M, Lemaitre V, Gaudry A, Pawlak B, Driouich A, Follet-Gueye ML, Vicré M. A fine-tuned defense at the pea root caps: Involvement of border cells and arabinogalactan proteins against soilborne diseases. FRONTIERS IN PLANT SCIENCE 2023; 14:1132132. [PMID: 36844081 PMCID: PMC9947496 DOI: 10.3389/fpls.2023.1132132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Plants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in these organs. The root cap releases cells termed root "associated cap-derived cells" (AC-DCs) or "border cells" embedded in a thick mucilage layer forming the root extracellular trap (RET) dedicated to root protection against soilborne pathogens. Pea (Pisum sativum) is the plant model used to characterize the composition of the RET and to unravel its function in root defense. The objective of this paper is to review modes of action of the RET from pea against diverse pathogens with a special focus on root rot disease caused by Aphanomyces euteiches, one of the most widely occurring and large-scale pea crop diseases. The RET, at the interface between the soil and the root, is enriched in antimicrobial compounds including defense-related proteins, secondary metabolites, and glycan-containing molecules. More especially arabinogalactan proteins (AGPs), a family of plant extracellular proteoglycans belonging to the hydroxyproline-rich glycoproteins were found to be particularly present in pea border cells and mucilage. Herein, we discuss the role of RET and AGPs in the interaction between roots and microorganisms and future potential developments for pea crop protection.
Collapse
|
9
|
Wohor OZ, Rispail N, Ojiewo CO, Rubiales D. Pea Breeding for Resistance to Rhizospheric Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:2664. [PMID: 36235530 PMCID: PMC9572552 DOI: 10.3390/plants11192664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Pea (Pisum sativum L.) is a grain legume widely cultivated in temperate climates. It is important in the race for food security owing to its multipurpose low-input requirement and environmental promoting traits. Pea is key in nitrogen fixation, biodiversity preservation, and nutritional functions as food and feed. Unfortunately, like most crops, pea production is constrained by several pests and diseases, of which rhizosphere disease dwellers are the most critical due to their long-term persistence in the soil and difficulty to manage. Understanding the rhizosphere environment can improve host plant root microbial association to increase yield stability and facilitate improved crop performance through breeding. Thus, the use of various germplasm and genomic resources combined with scientific collaborative efforts has contributed to improving pea resistance/cultivation against rhizospheric diseases. This improvement has been achieved through robust phenotyping, genotyping, agronomic practices, and resistance breeding. Nonetheless, resistance to rhizospheric diseases is still limited, while biological and chemical-based control strategies are unrealistic and unfavourable to the environment, respectively. Hence, there is a need to consistently scout for host plant resistance to resolve these bottlenecks. Herein, in view of these challenges, we reflect on pea breeding for resistance to diseases caused by rhizospheric pathogens, including fusarium wilt, root rots, nematode complex, and parasitic broomrape. Here, we will attempt to appraise and harmonise historical and contemporary knowledge that contributes to pea resistance breeding for soilborne disease management and discuss the way forward.
Collapse
Affiliation(s)
- Osman Z. Wohor
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- Savanna Agriculture Research Institute, CSIR, Nyankpala, Tamale Post TL52, Ghana
| | - Nicolas Rispail
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Chris O. Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue—Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
10
|
Wu L, Fredua-Agyeman R, Strelkov SE, Chang KF, Hwang SF. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. Int J Mol Sci 2022; 23:9744. [PMID: 36077139 PMCID: PMC9456226 DOI: 10.3390/ijms23179744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Aphanomyces root rot, caused by Aphanomyces euteiches, causes severe yield loss in field pea (Pisum sativum). The identification of a pea germplasm resistant to this disease is an important breeding objective. Polygenetic resistance has been reported in the field pea cultivar '00-2067'. To facilitate marker-assisted selection (MAS), bulked segregant RNA-seq (BSR-seq) analysis was conducted using an F8 RIL population derived from the cross of 'Carman' × '00-2067'. Root rot development was assessed under controlled conditions in replicated experiments. Resistant (R) and susceptible (S) bulks were constructed based on the root rot severity in a greenhouse study. The BSR-seq analysis of the R bulks generated 44,595,510~51,658,688 reads, of which the aligned sequences were linked to 44,757 genes in a reference genome. In total, 2356 differentially expressed genes were identified, of which 44 were used for gene annotation, including defense-related pathways (jasmonate, ethylene and salicylate) and the GO biological process. A total of 344.1 K SNPs were identified between the R and S bulks, of which 395 variants were located in 31 candidate genes. The identification of novel genes associated with partial resistance to Aphanomyces root rot in field pea by BSR-seq may facilitate efforts to improve management of this important disease.
Collapse
Affiliation(s)
| | | | | | | | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
11
|
Parihar AK, Kumar J, Gupta DS, Lamichaney A, Naik SJ S, Singh AK, Dixit GP, Gupta S, Toklu F. Genomics Enabled Breeding Strategies for Major Biotic Stresses in Pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:861191. [PMID: 35665148 PMCID: PMC9158573 DOI: 10.3389/fpls.2022.861191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pea (Pisum sativum L.) is one of the most important and productive cool season pulse crops grown throughout the world. Biotic stresses are the crucial constraints in harnessing the potential productivity of pea and warrant dedicated research and developmental efforts to utilize omics resources and advanced breeding techniques to assist rapid and timely development of high-yielding multiple stress-tolerant-resistant varieties. Recently, the pea researcher's community has made notable achievements in conventional and molecular breeding to accelerate its genetic gain. Several quantitative trait loci (QTLs) or markers associated with genes controlling resistance for fusarium wilt, fusarium root rot, powdery mildew, ascochyta blight, rust, common root rot, broomrape, pea enation, and pea seed borne mosaic virus are available for the marker-assisted breeding. The advanced genomic tools such as the availability of comprehensive genetic maps and linked reliable DNA markers hold great promise toward the introgression of resistance genes from different sources to speed up the genetic gain in pea. This review provides a brief account of the achievements made in the recent past regarding genetic and genomic resources' development, inheritance of genes controlling various biotic stress responses and genes controlling pathogenesis in disease causing organisms, genes/QTLs mapping, and transcriptomic and proteomic advances. Moreover, the emerging new breeding approaches such as transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding hold great promise to transform pea breeding. Overall, the judicious amalgamation of conventional and modern omics-enabled breeding strategies will augment the genetic gain and could hasten the development of biotic stress-resistant cultivars to sustain pea production under changing climate. The present review encompasses at one platform the research accomplishment made so far in pea improvement with respect to major biotic stresses and the way forward to enhance pea productivity through advanced genomic tools and technologies.
Collapse
Affiliation(s)
- Ashok Kumar Parihar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Jitendra Kumar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Debjyoti Sen Gupta
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Amrit Lamichaney
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Satheesh Naik SJ
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Anil K. Singh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Girish P. Dixit
- All India Coordinated Research Project on Chickpea, ICAR-IIPR, Kanpur, India
| | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Faruk Toklu
- Department of Field Crops, Faculty of Agricultural, Cukurova University, Adana, Turkey
| |
Collapse
|
12
|
Ollivier R, Glory I, Cloteau R, Le Gallic JF, Denis G, Morlière S, Miteul H, Rivière JP, Lesné A, Klein A, Aubert G, Kreplak J, Burstin J, Pilet-Nayel ML, Simon JC, Sugio A. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1511-1528. [PMID: 35192006 DOI: 10.1007/s00122-022-04050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE A genome-wide association study for pea resistance against a pea-adapted biotype and a non-adapted biotype of the aphid, Acyrthosiphon pisum, identified a genomic region conferring resistance to both biotypes. In a context of reduced insecticide use, the development of cultivars resistant to insect pests is crucial for an integrated pest management. Pea (Pisum sativum) is a crop of major importance among cultivated legumes, for the supply of dietary proteins and nitrogen in low-input cropping systems. However, yields of the pea crop have become unstable due to plant parasites. The pea aphid (Acyrthosiphon pisum) is an insect pest species forming a complex of biotypes, each one adapted to feed on one or a few related legume species. This study aimed to identify resistance to A. pisum and the underlying genetic determinism by examining a collection of 240 pea genotypes. The collection was screened against a pea-adapted biotype and a non-adapted biotype of A. pisum to characterize their resistant phenotype. Partial resistance was observed in some pea genotypes exposed to the pea-adapted biotype. Many pea genotypes were completely resistant to non-adapted biotype, but some exhibited partial susceptibility. A genome-wide association study, using pea exome-capture sequencing data, enabled the identification of the major-effect quantitative trait locus ApRVII on the chromosome 7. ApRVII includes linkage disequilibrium blocks significantly associated with resistance to one or both of the two aphid biotypes studied. Finally, we identified candidate genes underlying ApRVII that are potentially involved in plant-aphid interactions and marker haplotypes linked with aphid resistance. This study sets the ground for the functional characterization of molecular pathways involved in pea defence to the aphids but also is a step forward for breeding aphid-resistant cultivars.
Collapse
Affiliation(s)
- Rémi Ollivier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Romuald Cloteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Gaëtan Denis
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Anthony Klein
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Grégoire Aubert
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.
| |
Collapse
|
13
|
Lu Q, Xiao X, Gong J, Li P, Zhao Y, Feng J, Peng R, Shi Y, Yuan Y. Identification of Candidate Cotton Genes Associated With Fiber Length Through Quantitative Trait Loci Mapping and RNA-Sequencing Using a Chromosome Segment Substitution Line. FRONTIERS IN PLANT SCIENCE 2021; 12:796722. [PMID: 34970293 PMCID: PMC8712442 DOI: 10.3389/fpls.2021.796722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Fiber length is an important determinant of fiber quality, and it is a quantitative multi-genic trait. Identifying genes associated with fiber length is of great importance for efforts to improve fiber quality in the context of cotton breeding. Integrating transcriptomic information and details regarding candidate gene regions can aid in candidate gene identification. In the present study, the CCRI45 line and a chromosome segment substitution line (CSSL) with a significantly higher fiber length (MBI7747) were utilized to establish F2 and F2:3 populations. Using a high-density genetic map published previously, six quantitative trait loci (QTLs) associated with fiber length and two QTLs associated with fiber strength were identified on four chromosomes. Within these QTLs, qFL-A07-1, qFL-A12-2, qFL-A12-5, and qFL-D02-1 were identified in two or three environments and confirmed by a meta-analysis. By integrating transcriptomic data from the two parental lines and through qPCR analyses, four genes associated with these QTLs including Cellulose synthase-like protein D3 (CSLD3, GH_A12G2259 for qFL-A12-2), expansin-A1 (EXPA1, GH_A12G1972 for qFL-A12-5), plasmodesmata callose-binding protein 3 (PDCB3, GH_A12G2014 for qFL-A12-5), and Polygalacturonase (At1g48100, GH_D02G0616 for qFL-D02-1) were identified as promising candidate genes associated with fiber length. Overall, these results offer a robust foundation for further studies regarding the molecular basis for fiber length and for efforts to improve cotton fiber quality.
Collapse
Affiliation(s)
- Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Zhao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jiajia Feng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Youlu Yuan
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
14
|
Sivachandra Kumar NT, Caudillo-Ruiz KB, Chatterton S, Banniza S. Characterization of Aphanomyces euteiches Pathotypes Infecting Peas in Western Canada. PLANT DISEASE 2021; 105:4025-4030. [PMID: 34142844 DOI: 10.1094/pdis-04-21-0874-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aphanomyces root rot, caused by the soilborne oomycete Aphanomyces euteiches Drechs., has developed into a serious disease in the pea- and lentil-producing areas of the Great Plains of North America. Based on six pea differentials previously used to differentiate 11 pathotypes in France, pathotypes were identified among field isolates from Saskatchewan (14) and Alberta (18). Four isolates from the U.S.A. and standard isolates for pathotypes I and III designated in the French study were also included. Each isolate was tested twice in replicated experiments by inoculating French pea differentials 'Baccara', 'Capella', MN 313, 902131, 552, and PI 80693, along with the Canadian susceptible pea cultivar 'CDC Meadow' and partially resistant USDA line PI 660736 under controlled conditions. Pea plants grown in vermiculite were inoculated 10 days after seeding by pipetting 5 ml of a suspension containing 1 × 103 zoospores ml-1 to the base of each plant. Root discoloration was scored 10 days postinoculation using a 0 to 5 scale. Testing revealed that 38 of the isolates, including standard pathotype I isolate RB84, belonged to pathotype I; four isolates including standard pathotype III isolate Ae109 were pathotype III; and U.S.A. isolate Ae16-01 was a pathotype II isolate. An alfalfa isolate from Quebec was avirulent on all pea genotypes. These findings indicate that pathotype I is predominant on the Canadian prairies.
Collapse
Affiliation(s)
| | - Kiela B Caudillo-Ruiz
- University of Saskatchewan, Crop Development Centre/Department of Plant Sciences, Saskatoon, S7N 5A8, Canada
| | - Syama Chatterton
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Sabine Banniza
- University of Saskatchewan, Crop Development Centre/Department of Plant Sciences, Saskatoon, S7N 5A8, Canada
| |
Collapse
|
15
|
Laloum Y, Gangneux C, Gügi B, Lanoue A, Munsch T, Blum A, Gauthier A, Trinsoutrot-Gattin I, Boulogne I, Vicré M, Driouich A, Laval K, Follet-Gueye ML. Faba bean root exudates alter pea root colonization by the oomycete Aphanomyces euteiches at early stages of infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111032. [PMID: 34620436 DOI: 10.1016/j.plantsci.2021.111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Aphanomyces euteiches is an oomycete pathogen that causes the pea root rot. We investigated the potential role of early belowground defense in pea (susceptible plant) and faba bean (tolerant plant) at three days after inoculation. Pea and faba bean were inoculated with A. euteiches zoospores. Root colonization was examined. Root exudates from pea and faba bean were harvested and their impact on A. euteiches development were assessed by using in vitro assays. A. euteiches root colonization and the influence of the oomycete inoculation on specialized metabolites patterns and arabinogalactan protein (AGP) concentration of root exudates were also determined. In faba bean root, A. euteiches colonization was very low as compared with that of pea. Whereas infected pea root exudates have a positive chemotaxis index (CI) on zoospores, faba bean exudate CI was negative suggesting a repellent effect. While furanoacetylenic compounds were only detected in faba bean exudates, AGP concentration was specifically increased in pea.This work showed that early in the course of infection, host susceptibility to A. euteiches is involved via a plant-species specific root exudation opening new perspectives in pea root rot disease management.
Collapse
Affiliation(s)
- Yohana Laloum
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France; Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Christophe Gangneux
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Arnaud Lanoue
- Université de Tours, EA 2106 «Biomolécules et Biotechnologies Végétales», UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200, Tours, France
| | - Thibaut Munsch
- Université de Tours, EA 2106 «Biomolécules et Biotechnologies Végétales», UFR des Sciences Pharmaceutiques, 31 Av. Monge, F37200, Tours, France
| | - Adrien Blum
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Adrien Gauthier
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Isabelle Trinsoutrot-Gattin
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Isabelle Boulogne
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Maïté Vicré
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France
| | - Karine Laval
- AGHYLE research unit, UP 2018.C101, UniLaSalle Rouen 3 rue du tronquet CS 40118, 76134, Mont Saint Aignan, France
| | - Marie-Laure Follet-Gueye
- Normandie Univ, UNIROUEN, Glyco-MEV, EA4358, SFR NORVEGE FED 4277, I2C Carnot, IRIB, 76000, Rouen, France.
| |
Collapse
|
16
|
Wu L, Fredua-Agyeman R, Hwang SF, Chang KF, Conner RL, McLaren DL, Strelkov SE. Mapping QTL associated with partial resistance to Aphanomyces root rot in pea (Pisum sativum L.) using a 13.2 K SNP array and SSR markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2965-2990. [PMID: 34129066 DOI: 10.1007/s00122-021-03871-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE A stable and major QTL, which mapped to an approximately 20.0 cM region on pea chromosome 4, was identified as the most consistent region conferring partial resistance to Aphanomyces euteiches. Aphanomyces root rot (ARR), caused by Aphanomyces euteiches Drechs., is a destructive soilborne disease of field pea (Pisum Sativum L.). No completely resistant pea germplasm is available, and current ARR management strategies rely on partial resistance and fungicidal seed treatments. In this study, an F8 recombinant inbred line population of 135 individuals from the cross 'Reward' (susceptible) × '00-2067' (tolerant) was evaluated for reaction to ARR under greenhouse conditions with the A. euteiches isolate Ae-MDCR1 and over 2 years in a field nursery in Morden, Manitoba. Root rot severity, foliar weight, plant vigor and height were used as estimates of tolerance to ARR. Genotyping was conducted with a 13.2 K single-nucleotide polymorphism (SNP) array and 222 simple sequence repeat (SSR) markers. Statistical analyses of the phenotypic data indicated significant (P < 0.001) genotypic effects and significant G × E interactions (P < 0.05) in all experiments. After filtering, 3050 (23.1%) of the SNP and 30 (13.5%) of the SSR markers were retained for linkage analysis, which distributed 2999 (2978 SNP + 21 SSR) of the markers onto nine linkage groups representing the seven chromosomes of pea. Mapping of quantitative trait loci (QTL) identified 8 major-effect (R2 > 20%), 13 moderate-effect (10% < R2 < 20%) effect and 6 minor-effect (R2 < 10%) QTL. A genomic region on chromosome 4, delimited by the SNP markers PsCam037549_22628_1642 and PsCam026054_14999_2864, was identified as the most consistent region responsible for partial resistance to A. euteiches isolate Ae-MDCR1. Other genomic regions important for resistance were of the order chromosome 5, 6 and 7.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kan-Fa Chang
- Alberta Agriculture and Forestry, Crop Diversification Centre North, 17507 Fort Road, Edmonton, AB, T5Y 6H3, Canada
| | - Robert L Conner
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Debra L McLaren
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
17
|
Quillévéré-Hamard A, Le Roy G, Lesné A, Le May C, Pilet-Nayel ML. Aggressiveness of Diverse French Aphanomyces euteiches Isolates on Pea Near Isogenic Lines Differing in Resistance Quantitative Trait Loci. PHYTOPATHOLOGY 2021; 111:695-702. [PMID: 32781903 DOI: 10.1094/phyto-04-20-0147-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aphanomyces root rot is a major disease in many pea growing regions worldwide. Development of resistant varieties is necessary to manage the disease. Near isogenic lines (NILs) carrying resistance alleles at main quantitative trait loci (QTLs) were developed by marker-assisted backcrossing. This study aimed to evaluate the aggressiveness of diverse French isolates of Aphanomyces euteiches on NILs carrying different resistance QTLs. Forty-three A. euteiches isolates from different French pea growing regions were tested for aggressiveness on eight NILs carrying single or combinations of resistance QTLs and two susceptible or resistant control lines, in controlled conditions. Three clusters of isolates, unrelated to geographical origin, were identified, including 37, 56, and 7% of isolates with high, moderate, and low average levels of aggressiveness, respectively. Three groups of pea lines were also identified. The first group consisted of a pea resistant control line, moderately to highly resistant to all of the isolates. The second group included five NILs carrying a major-effect resistance allele at QTL Ae-Ps7.6, with a medium to broad range of effects on the isolates. The third group consisted of three NILs carrying minor-effect resistance alleles, with a narrow range of effects on the isolates. The results suggest that highly aggressive isolates occur naturally, which may be selected by future partially resistant pea varieties carrying QTLs and increase the risk of erosion of QTL effect. QTL pyramiding strategies for a higher level and a broader range of effect of quantitative resistance on A. euteiches populations will be required for breeding for durable pea resistant varieties.
Collapse
Affiliation(s)
| | - Gwenola Le Roy
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | | |
Collapse
|
18
|
Pandey AK, Rubiales D, Wang Y, Fang P, Sun T, Liu N, Xu P. Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:755-776. [PMID: 33433637 DOI: 10.1007/s00122-020-03751-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 05/09/2023]
Abstract
Pea (Pisum sativum L.), a cool-season legume crop grown in more than 85 countries, is the second most important grain legume and one of the major green vegetables in the world. While pea was historically studied as the genetic model leading to the discovery of the laws of genetics, pea research has lagged behind that of other major legumes in the genomics era, due to its large and complex genome. The evolving climate change and growing population have posed grand challenges to the objective of feeding the world, making it essential to invest research efforts to develop multi-omics resources and advanced breeding tools to support fast and continuous development of improved pea varieties. Recently, the pea researchers have achieved key milestones in omics and molecular breeding. The present review provides an overview of the recent important progress including the development of genetic resource databases, high-throughput genotyping assays, reference genome, genes/QTLs responsible for important traits, transcriptomic, proteomic, and phenomic atlases of various tissues under different conditions. These multi-faceted resources have enabled the successful implementation of various markers for monitoring early-generation populations as in marker-assisted backcrossing breeding programs. The emerging new breeding approaches such as CRISPR, speed breeding, and genomic selection are starting to change the paradigm of pea breeding. Collectively, the rich omics resources and omics-enable breeding approaches will enhance genetic gain in pea breeding and accelerate the release of novel pea varieties to meet the elevating demands on productivity and quality.
Collapse
Affiliation(s)
- Arun K Pandey
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, 14004, Córdoba, Spain
| | - Yonggang Wang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
19
|
Ku YS, Contador CA, Ng MS, Yu J, Chung G, Lam HM. The Effects of Domestication on Secondary Metabolite Composition in Legumes. Front Genet 2020; 11:581357. [PMID: 33193705 PMCID: PMC7530298 DOI: 10.3389/fgene.2020.581357] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Legumes are rich in secondary metabolites, such as polyphenols, alkaloids, and saponins, which are important defense compounds to protect the plant against herbivores and pathogens, and act as signaling molecules between the plant and its biotic environment. Legume-sourced secondary metabolites are well known for their potential benefits to human health as pharmaceuticals and nutraceuticals. During domestication, the color, smell, and taste of crop plants have been the focus of artificial selection by breeders. Since these agronomic traits are regulated by secondary metabolites, the basis behind the genomic evolution was the selection of the secondary metabolite composition. In this review, we will discuss the classification, occurrence, and health benefits of secondary metabolites in legumes. The differences in their profiles between wild legumes and their cultivated counterparts will be investigated to trace the possible effects of domestication on secondary metabolite compositions, and the advantages and drawbacks of such modifications. The changes in secondary metabolite contents will also be discussed at the genetic level to examine the genes responsible for determining the secondary metabolite composition that might have been lost due to domestication. Understanding these genes would enable breeding programs and metabolic engineering to produce legume varieties with favorable secondary metabolite profiles for facilitating adaptations to a changing climate, promoting beneficial interactions with biotic factors, and enhancing health-beneficial secondary metabolite contents for human consumption.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Jeongjun Yu
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
20
|
Kankanala P, Nandety RS, Mysore KS. Genomics of Plant Disease Resistance in Legumes. FRONTIERS IN PLANT SCIENCE 2019; 10:1345. [PMID: 31749817 PMCID: PMC6842968 DOI: 10.3389/fpls.2019.01345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
The constant interactions between plants and pathogens in the environment and the resulting outcomes are of significant importance for agriculture and agricultural scientists. Disease resistance genes in plant cultivars can break down in the field due to the evolution of pathogens under high selection pressure. Thus, the protection of crop plants against pathogens is a continuous arms race. Like any other type of crop plant, legumes are susceptible to many pathogens. The dawn of the genomic era, in which high-throughput and cost-effective genomic tools have become available, has revolutionized our understanding of the complex interactions between legumes and pathogens. Genomic tools have enabled a global view of transcriptome changes during these interactions, from which several key players in both the resistant and susceptible interactions have been identified. This review summarizes some of the large-scale genomic studies that have clarified the host transcriptional changes during interactions between legumes and their plant pathogens while highlighting some of the molecular breeding tools that are available to introgress the traits into breeding programs. These studies provide valuable insights into the molecular basis of different levels of host defenses in resistant and susceptible interactions.
Collapse
|
21
|
Can H, Kal U, Ozyigit II, Paksoy M, Turkmen O. Construction, characteristics and high throughput molecular screening methodologies in some special breeding populations: a horticultural perspective. J Genet 2019. [DOI: 10.1007/s12041-019-1129-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Application of high-throughput amplicon sequencing-based SSR genotyping in genetic background screening. BMC Genomics 2019; 20:444. [PMID: 31159719 PMCID: PMC6547574 DOI: 10.1186/s12864-019-5800-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/14/2019] [Indexed: 12/05/2022] Open
Abstract
Background Host genetic backgrounds affect gene functions. The genetic backgrounds of genetically engineered organisms must be identified to confirm their genetic backgrounds identity with those of recipients. Marker-assisted backcrossing (MAB), transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) editing are three commonly used genetic engineering techniques. However, methods for genetic background screening between genetically engineered organisms and corresponding recipients suffer from low efficiency, low accuracy or high cost. Results Here, we improved our previously reported AmpSeq-SSR method, an amplicon sequencing-based simple sequence repeat (SSR) genotyping method, by selecting SSR loci with high polymorphism among varieties. Ultimately, a set of 396 SSRs was generated and applied to evaluate the genetic backgrounds identity between rice lines developed through MAB, transgenesis, and CRISPR/Cas9 editing and the respective recipient rice. We discovered that the percentage of different SSRs between the MAB-developed rice line and its recipient was as high as 23.5%. In contrast, only 0.8% of SSRs were different between the CRISPR/Cas9-system-mediated rice line and its recipient, while no SSRs showed different genotypes between the transgenic rice line and its recipient. Furthermore, most differential SSRs induced by MAB technology were located in non-coding regions (62.9%), followed by untranslated regions (21.0%) and coding regions (16.1%). Trinucleotide repeats were the most prevalent type of altered SSR. Most importantly, all altered SSRs located in coding regions were trinucleotide repeats. Conclusions This method is not only useful for the background evaluation of genetic resources but also expands our understanding of the unintended effects of different genetic engineering techniques. While the work we present focused on rice, this method can be readily extended to other organisms. Electronic supplementary material The online version of this article (10.1186/s12864-019-5800-4) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Quillévéré-Hamard A, Le Roy G, Moussart A, Baranger A, Andrivon D, Pilet-Nayel ML, Le May C. Genetic and Pathogenicity Diversity of Aphanomyces euteiches Populations From Pea-Growing Regions in France. FRONTIERS IN PLANT SCIENCE 2018; 9:1673. [PMID: 30510559 PMCID: PMC6252352 DOI: 10.3389/fpls.2018.01673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/26/2018] [Indexed: 06/09/2023]
Abstract
Aphanomyces euteiches is an oomycete pathogen with a broad host-range on legumes that causes devastating root rot disease in many pea-growing countries and especially in France. Genetic resistance is a promising way to manage the disease since consistent QTL controlling partial resistance have been identified in near isogenic lines of pea. However, there are still no resistant pea varieties cultivated in France. This study aimed to evaluate the phenotypic and genetic diversity of A. euteiches populations from the major pea-growing regions in France. A collection of 205 isolates, from soil samples collected in infested pea fields located in five French regions, was established and genotyped using 20 SSR markers. Thirteen multilocus genotypes were found among the 205 isolates which displayed a low genotypic richness (ranged from 0 to 0.333). Two main clusters of isolates were identified using PCoA and STRUCTURE, including a predominant group comprising 88% of isolates and another group representing 12% of isolates mainly from the Bourgogne region. A subset of 34 isolates, representative of the fields sampled, was phenotyped for aggressiveness on a set of resistant and susceptible varieties of four legume hosts (pea, faba bean, vetch, alfalfa). Significant differences in disease severity were found among isolates and three groups of aggressiveness comprising 16, 17, and 2 isolates, respectively, were identified using HCA analysis. A higher diversity in pathogen aggressiveness was observed among isolates from Bourgogne, which included different legumes in its crop history. Little relationship was observed between genetic clusters and pathogenicity in the subset of 34 isolates, as expected using neutral markers. This study provides useful knowledge on the current state of low to moderate diversity among A. euteiches populations before resistant pea varieties are grown in France. New insights and hypotheses about the major factors shaping the diversity and evolution of A. euteiches are also discussed.
Collapse
Affiliation(s)
- Anne Quillévéré-Hamard
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Gwenola Le Roy
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Anne Moussart
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
- Terres Inovia, Thiverval Grignon, France
| | - Alain Baranger
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Didier Andrivon
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Marie-Laure Pilet-Nayel
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
| | - Christophe Le May
- UMT PISOM INRA/Terres Inovia, Le Rheu, France
- IGEPP, Agrocampus Ouest, INRA, Université de Rennes 1, Université Bretagne-Loire, Rennes, France
| |
Collapse
|
24
|
Gali KK, Liu Y, Sindhu A, Diapari M, Shunmugam ASK, Arganosa G, Daba K, Caron C, Lachagari RVB, Tar’an B, Warkentin TD. Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC PLANT BIOLOGY 2018; 18:172. [PMID: 30115030 PMCID: PMC6097431 DOI: 10.1186/s12870-018-1368-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/20/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND The objective of this research was to map quantitative trait loci (QTLs) of multiple traits of breeding importance in pea (Pisum sativum L.). Three recombinant inbred line (RIL) populations, PR-02 (Orb x CDC Striker), PR-07 (Carerra x CDC Striker) and PR-15 (1-2347-144 x CDC Meadow) were phenotyped for agronomic and seed quality traits under field conditions over multiple environments in Saskatchewan, Canada. The mapping populations were genotyped using genotyping-by-sequencing (GBS) method for simultaneous single nucleotide polymorphism (SNP) discovery and construction of high-density linkage maps. RESULTS After filtering for read depth, segregation distortion, and missing values, 2234, 3389 and 3541 single nucleotide polymorphism (SNP) markers identified by GBS in PR-02, PR-07 and PR-15, respectively, were used for construction of genetic linkage maps. Genetic linkage groups were assigned by anchoring to SNP markers previously positioned on these linkage maps. PR-02, PR-07 and PR-15 genetic maps represented 527, 675 and 609 non-redundant loci, and cover map distances of 951.9, 1008.8 and 914.2 cM, respectively. Based on phenotyping of the three mapping populations in multiple environments, 375 QTLs were identified for important traits including days to flowering, days to maturity, lodging resistance, Mycosphaerella blight resistance, seed weight, grain yield, acid and neutral detergent fiber concentration, seed starch concentration, seed shape, seed dimpling, and concentration of seed iron, selenium and zinc. Of all the QTLs identified, the most significant in terms of explained percentage of maximum phenotypic variance (PVmax) and occurrence in multiple environments were the QTLs for days to flowering (PVmax = 47.9%), plant height (PVmax = 65.1%), lodging resistance (PVmax = 35.3%), grain yield (PVmax = 54.2%), seed iron concentration (PVmax = 27.4%), and seed zinc concentration (PVmax = 43.2%). CONCLUSION We have identified highly significant and reproducible QTLs for several agronomic and seed quality traits of breeding importance in pea. The QTLs identified will be the basis for fine mapping candidate genes, while some of the markers linked to the highly significant QTLs are useful for immediate breeding applications.
Collapse
Affiliation(s)
- Krishna K. Gali
- Crop Development Centre, Department of Plant Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK Canada
| | - Yong Liu
- Crop Development Centre, Department of Plant Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK Canada
| | - Anoop Sindhu
- CHS, Inc, 220 Clement Ave., Grandin, ND 58038 USA
| | - Marwan Diapari
- Agriculture and Agri-Food Canada, London Research and Development centre, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Arun S. K. Shunmugam
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Gene Arganosa
- Crop Development Centre, Department of Plant Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK Canada
| | - Ketema Daba
- Crop Development Centre, Department of Plant Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK Canada
| | - Carolyn Caron
- Crop Development Centre, Department of Plant Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK Canada
| | - Reddy V. B. Lachagari
- AgriGenome Labs Pvt Ltd., BTIC, MN iHub, Genome Valley, Shamirpet, Hyderabad, 500 078 India
| | - Bunyamin Tar’an
- Crop Development Centre, Department of Plant Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK Canada
| | - Thomas D. Warkentin
- Crop Development Centre, Department of Plant Sciences, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
25
|
Varshney RK, Thudi M, Pandey MK, Tardieu F, Ojiewo C, Vadez V, Whitbread AM, Siddique KHM, Nguyen HT, Carberry PS, Bergvinson D. Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3293-3312. [PMID: 29514298 DOI: 10.1093/jxb/ery088] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/22/2018] [Indexed: 05/23/2023]
Abstract
Grain legumes form an important component of the human diet, provide feed for livestock, and replenish soil fertility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced the frequency and intensity of drought stress, posing serious production constraints, especially in rainfed regions where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree and performance-based selection over the past half century. To achieve faster genetic gains in legumes in rainfed conditions, this review proposes the integration of modern genomics approaches, high throughput phenomics, and simulation modelling in support of crop improvement that leads to improved varieties that perform with appropriate agronomy. Selection intensity, generation interval, and improved operational efficiencies in breeding are expected to further enhance the genetic gain in experimental plots. Improved seed access to farmers, combined with appropriate agronomic packages in farmers' fields, will deliver higher genetic gains. Enhanced genetic gains, including not only productivity but also nutritional and market traits, will increase the profitability of farming and the availability of affordable nutritious food especially in developing countries.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Francois Tardieu
- French National Institute for Agricultural Research (INRA), Monpellier, France
| | - Chris Ojiewo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Institut de recherche pour le développement (IRD), Montpellier, France
| | - Anthony M Whitbread
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | - Peter S Carberry
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - David Bergvinson
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
26
|
Desgroux A, Baudais VN, Aubert V, Le Roy G, de Larambergue H, Miteul H, Aubert G, Boutet G, Duc G, Baranger A, Burstin J, Manzanares-Dauleux M, Pilet-Nayel ML, Bourion V. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea. FRONTIERS IN PLANT SCIENCE 2018; 8:2195. [PMID: 29354146 PMCID: PMC5761208 DOI: 10.3389/fpls.2017.02195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 05/04/2023]
Abstract
Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional intervals associated with plant architecture overlapped with GWA intervals previously identified for resistance to A. euteiches. This study provides innovative results about genetic interdependency of root disease resistance and RSA inheritance. It identifies pea lines, QTL, closely-linked markers and candidate genes for marker-assisted-selection of RSA loci to reduce Aphanomyces root rot severity in future pea varieties.
Collapse
Affiliation(s)
- Aurore Desgroux
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Valentin N. Baudais
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
| | - Véronique Aubert
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gwenola Le Roy
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Henri de Larambergue
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Henri Miteul
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Grégoire Aubert
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gilles Boutet
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Gérard Duc
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain Baranger
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Judith Burstin
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Maria Manzanares-Dauleux
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
| | - Marie-Laure Pilet-Nayel
- Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université Rennes 1, Le Rheu, France
- PISOM, UMT INRA/Terre Inovia, Le Rheu, France
| | - Virginie Bourion
- Agroécologie, INRA, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
27
|
Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:1838. [PMID: 29163575 PMCID: PMC5664368 DOI: 10.3389/fpls.2017.01838] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.
Collapse
Affiliation(s)
- Marie-Laure Pilet-Nayel
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
- PISOM, UMT INRA-Terres Inovia, Le Rheu, France
| | | | - Valérie Caffier
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Josselin Montarry
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Marie-Claire Kerlan
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Sylvain Fournet
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| | - Charles-Eric Durel
- Research Institute of Horticulture and Seeds (INRA), UMR 1345, Beaucouzé, France
| | - Régine Delourme
- Institute for Genetics, Environment and Plant Protection (INRA), UMR 1349, Leu Rheu, France
| |
Collapse
|
28
|
Xu P, Gao J, Cao Z, Chee PW, Guo Q, Xu Z, Paterson AH, Zhang X, Shen X. Fine mapping and candidate gene analysis of qFL-chr1, a fiber length QTL in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1309-1319. [PMID: 28361363 DOI: 10.1007/s00122-017-2890-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/02/2017] [Indexed: 05/20/2023]
Abstract
A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length. Prior analysis of a backcross-self mapping population derived from a cross between Gossypium hirsutum L. and G. barbadense L. revealed a QTL on chromosome 1 associated with increased fiber length (qFL-chr1), which was confirmed in three independent populations of near-isogenic introgression lines (NIILs). Here, a single NIIL, R01-40-08, was used to develop a large population segregating for the target region. Twenty-two PCR-based polymorphic markers used to genotype 1672 BC4F2 plants identified 432 recombinants containing breakpoints in the target region. Substitution mapping using 141 informative recombinants narrowed the position of qFL-chr1 to a 1.0-cM interval between SSR markers MUSS084 and CIR018. To exclude possible effects of non-target introgressions on fiber length, different heterozygous BC4F3 plants introgressed between SSR markers NAU3384 and CGR5144 were selected to develop sub-NILs. The qFL-chr1 was further mapped at 0.9-cM interval between MUSS422 and CIR018 by comparisons of sub-NIL phenotype, and increased fiber length by ~1 mm. The 2.38-Mb region between MUSS422 and CIR018 in G. barbadense contained 19 annotated genes. Expression levels of two of these genes, GOBAR07705 (encoding 1-aminocyclopropane-1-carboxylate synthase) and GOBAR25992 (encoding amino acid permease), were positively correlated with fiber length in a small F2 population, supporting these genes as candidates for qFL-chr1.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jin Gao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Zhibin Cao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Peng W Chee
- Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 3179, USA
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Xianggui Zhang
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, People's Republic of China.
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
29
|
Brauner PC, Melchinger AE, Schrag TA, Utz HF, Schipprack W, Kessel B, Ouzunova M, Miedaner T. Low validation rate of quantitative trait loci for Gibberella ear rot resistance in European maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:175-186. [PMID: 27709251 DOI: 10.1007/s00122-016-2802-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 05/16/2023]
Abstract
Six quantitative trait loci (QTL) for Gibberella ear rot resistance in maize were tested in two different genetic backgrounds; three QTL displayed an effect in few near isogenic line pairs. Few quantitative trait loci (QTL) mapping studies for Gibberella ear rot (GER) have been conducted, but no QTL have been verified so far. QTL validation is prudent before their implementation into marker-assisted selection (MAS) programs. Our objectives were to (1) validate six QTL for GER resistance, (2) evaluate the QTL across two genetic backgrounds, (3) investigate the genetic background outside the targeted introgressions. Pairs of near isogenic lines (NILs) segregating for a single QTL (Qger1, Qger2, Qger10, Qger13, Qger16, or Qger21) were developed by recurrent backcross until generation BC3S2. Donor parents (DP) carrying QTL were backcrossed to a susceptible (UH009) and a moderately resistant (UH007) recurrent parent. MAS was performed using five SNP markers covering a region of 40 cM around each QTL. All NILs were genotyped with the MaizeSNP50 assay and phenotyped for GER severity and deoxynivalenol and zearalenone content. Traits were significantly (P < 0.001) intercorrelated. Out of 34 NIL pairs with the UH009 genetic background, three pairs showed significant differences in at least one trait for three QTL (Qger1, Qger2, Qger13). Out of 25 NIL pairs with the UH007 genetic background, five pairs showed significant differences in at least one trait for two QTL (Qger2, Qger21). However, Qger16, Qger10 and Qger13 were most likely false positives. The genetic background possibly affected NIL pairs comparisons due to linkage drag and/or epistasis with residual loci from the DP in non-target regions. In conclusion, validation rates were disappointingly low, which further indicates that GER resistance is controlled by many low-effect QTL.
Collapse
Affiliation(s)
- Pedro Correa Brauner
- Institute of Plant Breeding, Seed Science and Population Genetics (350a), University of Hohenheim, 70593, Stuttgart, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics (350a), University of Hohenheim, 70593, Stuttgart, Germany
| | - Tobias A Schrag
- Institute of Plant Breeding, Seed Science and Population Genetics (350a), University of Hohenheim, 70593, Stuttgart, Germany
| | - H Friedrich Utz
- Institute of Plant Breeding, Seed Science and Population Genetics (350a), University of Hohenheim, 70593, Stuttgart, Germany
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Science and Population Genetics (350a), University of Hohenheim, 70593, Stuttgart, Germany
| | | | | | - Thomas Miedaner
- State Plant Breeding Institute (720), University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
30
|
Lavaud C, Baviere M, Le Roy G, Hervé MR, Moussart A, Delourme R, Pilet-Nayel ML. Single and multiple resistance QTL delay symptom appearance and slow down root colonization by Aphanomyces euteiches in pea near isogenic lines. BMC PLANT BIOLOGY 2016; 16:166. [PMID: 27465043 PMCID: PMC4964060 DOI: 10.1186/s12870-016-0822-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/26/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the effects of resistance QTL on pathogen development cycle is an important issue for the creation of QTL combination strategies to durably increase disease resistance in plants. The oomycete pathogen Aphanomyces euteiches, causing root rot disease, is one of the major factors limiting the pea crop in the main producing countries. No commercial resistant varieties are currently available in Europe. Resistance alleles at seven main QTL were recently identified and introgressed into pea agronomic lines, resulting in the creation of Near Isogenic Lines (NILs) at the QTL. This study aimed to determine the effect of main A. euteiches resistance QTL in NILs on different steps of the pathogen life cycle. RESULTS NILs carrying resistance alleles at main QTL in susceptible genetic backgrounds were evaluated in a destructive test under controlled conditions. The development of root rot disease severity and pathogen DNA levels in the roots was measured during ten days after inoculation. Significant effects of several resistance alleles at the two major QTL Ae-Ps7.6 and Ae-Ps4.5 were observed on symptom appearance and root colonization by A. euteiches. Some resistance alleles at three other minor-effect QTL (Ae-Ps2.2, Ae-Ps3.1 and Ae-Ps5.1) significantly decreased root colonization. The combination of resistance alleles at two or three QTL including the major QTL Ae-Ps7.6 (Ae-Ps5.1/Ae-Ps7.6 or Ae-Ps2.2/Ae-Ps3.1/Ae-Ps7.6) had an increased effect on delaying symptom appearance and/or slowing down root colonization by A. euteiches and on plant resistance levels, compared to the effects of individual or no resistance alleles. CONCLUSIONS This study demonstrated the effects of single or multiple resistance QTL on delaying symptom appearance and/or slowing down colonization by A. euteiches in pea roots, using original plant material and a precise pathogen quantification method. Our findings suggest that single resistance QTL can act on multiple or specific steps of the disease development cycle and that their actions could be pyramided to increase partial resistance in future pea varieties. Further studies are needed to investigate QTL effects on different steps of the pathogen life cycle, as well as the efficiency and durability of pyramiding strategies using QTL which appear to act on the same stage of the pathogen cycle.
Collapse
Affiliation(s)
- C Lavaud
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M Baviere
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - G Le Roy
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M R Hervé
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - A Moussart
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
- Terres Inovia, 11 rue de Monceau, CS 60003, 75378, Paris cedex 08, France
| | - R Delourme
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France
| | - M-L Pilet-Nayel
- INRA, UMR IGEPP 1349, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu cedex, France.
| |
Collapse
|
31
|
Desgroux A, L'Anthoëne V, Roux-Duparque M, Rivière JP, Aubert G, Tayeh N, Moussart A, Mangin P, Vetel P, Piriou C, McGee RJ, Coyne CJ, Burstin J, Baranger A, Manzanares-Dauleux M, Bourion V, Pilet-Nayel ML. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 2016; 17:124. [PMID: 26897486 PMCID: PMC4761183 DOI: 10.1186/s12864-016-2429-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/02/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. METHODS A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. RESULTS GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions. CONCLUSION This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of partial resistance to A. euteiches in pea breeding.
Collapse
Affiliation(s)
- Aurore Desgroux
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Virginie L'Anthoëne
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- Present Address: Nestlé R&D Center Tours, 101 Avenue Gustave Eiffel, 37097, Tours Cedex 2, France.
| | - Martine Roux-Duparque
- GSP, Domaine Brunehaut, 80200, Estrées-Mons Cedex, France.
- Present Address: Chambre d'Agriculture de l'Aisne, 1 rue René Blondelle, 02007, Laon Cedex, France.
| | - Jean-Philippe Rivière
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Grégoire Aubert
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Nadim Tayeh
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Anne Moussart
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- Terres Inovia, 11 rue de Monceau, CS 60003, 75378, Paris Cedex, France.
| | - Pierre Mangin
- INRA, Domaine Expérimental d'Epoisses, UE0115, 21110, Bretenières Cedex, France.
| | - Pierrick Vetel
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Christophe Piriou
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Rebecca J McGee
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164-6434, USA.
| | - Clarice J Coyne
- USDA, ARS, Western Regional Plant Introduction Station, Washington State University, Pullman, WA, 99164-6402, USA.
| | - Judith Burstin
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Alain Baranger
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| | - Maria Manzanares-Dauleux
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- AgroCampus Ouest, UMR IGEPP 1349 IGEPP, 65 rue de Saint Brieuc, 35042, Rennes Cedex, France.
| | - Virginie Bourion
- INRA, UMR 1347 Agroécologie, 17 rue de Sully, 21065, Dijon Cedex, France.
| | - Marie-Laure Pilet-Nayel
- INRA, UMR IGEPP 1349, Institut de Génétique et Protection des Plantes, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
- PISOM, UMT INRA/Terres Inovia, UMR IGEPP 1349, Domaine de la Motte au Vicomte, BP 35327, 35653, Le Rheu Cedex, France.
| |
Collapse
|
32
|
Boutet G, Alves Carvalho S, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel ML, Rivière N, Baranger A. SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics 2016; 17:121. [PMID: 26892170 PMCID: PMC4758021 DOI: 10.1186/s12864-016-2447-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Progress in genetics and breeding in pea still suffers from the limited availability of molecular resources. SNP markers that can be identified through affordable sequencing processes, without the need for prior genome reduction or a reference genome to assemble sequencing data would allow the discovery and genetic mapping of thousands of molecular markers. Such an approach could significantly speed up genetic studies and marker assisted breeding for non-model species. RESULTS A total of 419,024 SNPs were discovered using HiSeq whole genome sequencing of four pea lines, followed by direct identification of SNP markers without assembly using the discoSnp tool. Subsequent filtering led to the identification of 131,850 highly designable SNPs, polymorphic between at least two of the four pea lines. A subset of 64,754 SNPs was called and genotyped by short read sequencing on a subpopulation of 48 RILs from the cross 'Baccara' x 'PI180693'. This data was used to construct a WGGBS-derived pea genetic map comprising 64,263 markers. This map is collinear with previous pea consensus maps and therefore with the Medicago truncatula genome. Sequencing of four additional pea lines showed that 33 % to 64 % of the mapped SNPs, depending on the pairs of lines considered, are polymorphic and can therefore be useful in other crosses. The subsequent genotyping of a subset of 1000 SNPs, chosen for their mapping positions using a KASP™ assay, showed that almost all generated SNPs are highly designable and that most (95 %) deliver highly qualitative genotyping results. Using rather low sequencing coverages in SNP discovery and in SNP inferring did not hinder the identification of hundreds of thousands of high quality SNPs. CONCLUSIONS The development and optimization of appropriate tools in SNP discovery and genetic mapping have allowed us to make available a massive new genomic resource in pea. It will be useful for both fine mapping within chosen QTL confidence intervals and marker assisted breeding for important traits in pea improvement.
Collapse
Affiliation(s)
- Gilles Boutet
- INRA, UMR 1349 IGEPP, BP35327, Le Rheu Cedex, 35653, France.
- PISOM, UMT INRA/CETIOM, BP35327, Le Rheu Cedex, 35653, France.
| | - Susete Alves Carvalho
- INRA, UMR 1349 IGEPP, BP35327, Le Rheu Cedex, 35653, France.
- INRIA Rennes - Bretagne Atlantique/IRISA, EPI GenScale, Rennes, 35042, France.
| | - Matthieu Falque
- INRA, UMR Génétique Quantitative et Evolution - Le Moulon, INRA - Univ Paris-Sud - CNRS - AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France.
| | - Pierre Peterlongo
- INRIA Rennes - Bretagne Atlantique/IRISA, EPI GenScale, Rennes, 35042, France.
| | - Emeline Lhuillier
- GeT-PlaGe, Genotoul, INRA Auzeville F31326, Castanet-tolosan, France.
| | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRA Auzeville F31326, Castanet-tolosan, France.
- INRA, UMR1388 INRA/ENVT/ENSAT GenPhySE, INRA Auzeville F31326, Castanet-tolosan, France.
| | - Clément Lavaud
- INRA, UMR 1349 IGEPP, BP35327, Le Rheu Cedex, 35653, France.
- PISOM, UMT INRA/CETIOM, BP35327, Le Rheu Cedex, 35653, France.
| | - Marie-Laure Pilet-Nayel
- INRA, UMR 1349 IGEPP, BP35327, Le Rheu Cedex, 35653, France.
- PISOM, UMT INRA/CETIOM, BP35327, Le Rheu Cedex, 35653, France.
| | | | - Alain Baranger
- INRA, UMR 1349 IGEPP, BP35327, Le Rheu Cedex, 35653, France.
- PISOM, UMT INRA/CETIOM, BP35327, Le Rheu Cedex, 35653, France.
| |
Collapse
|
33
|
Tayeh N, Aubert G, Pilet-Nayel ML, Lejeune-Hénaut I, Warkentin TD, Burstin J. Genomic Tools in Pea Breeding Programs: Status and Perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:1037. [PMID: 26640470 PMCID: PMC4661580 DOI: 10.3389/fpls.2015.01037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/09/2015] [Indexed: 05/07/2023]
Abstract
Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22-25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome.
Collapse
Affiliation(s)
| | | | | | | | - Thomas D. Warkentin
- Crop Development Centre, College of Agriculture and Bioresources, University of SaskatchewanSaskatoon, SK, Canada
| | | |
Collapse
|