1
|
Gao Y, Peng J, Qiao Y, Wang G, Zhan J, Zhang W. Fine mapping and identification of CqMYB62 as the subgynoecy gene in chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:96. [PMID: 40204945 DOI: 10.1007/s00122-025-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
KEY MESSAGE It was hypothesized that Bch08G003160 (CqMYB62), located in the 51.08 Kb region on chromosome 08, might be an important candidate gene for the subgynoecy trait in chieh-qua, based on BSA-seq and linkage mapping approaches. In cucurbit crops, the use of female lines can greatly increase the yield of a single plant and is especially important for the production of hybrid generation seeds, thus being of great interest to breeders. To identify genes regulating sex differentiation in chieh-qua, genetic analysis of the subgynoecy trait was conducted using a chieh-qua F2 population. Initial localization of the locus was done using BSA-seq, followed by fine mapping with a large F2 population (n = 2,741). The locus was ultimately narrowed down to a 51.08 Kb region on Chr08, revealing a single gene Bch08G003160 (CqMYB62) in this region. Further analysis revealed that the presence of two variant loci (SNP_416 and SNP_317) in the coding region resulted in premature termination of the codon and loss of function of the structural domain of the PLN03212 superfamily. Moreover, our research indicated that the subgynoecy trait mediated by CqMYB62 in chieh-qua is potentially regulated by gibberellic acid (GA). Two efficient dCAPS markers were developed to distinguish subgynoecy. In summary, these findings highlight the critical role of CqMYB62 in subgynoecy trait regulation, offering potential implications for chieh-qua breeding programs.
Collapse
Affiliation(s)
- Yin Gao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiazhu Peng
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China
| | - Yanchun Qiao
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianpo Zhan
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| | - Wensheng Zhang
- Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, 510335, China.
| |
Collapse
|
2
|
Wang C, Wang Y, Wang G, Zhang K, Liu Z, Li X, Xu W, Li Z, Qu S. The calcium-dependent protein kinase CmaCPK4 regulates sex determination in pumpkin (Cucurbita maxima D.). PLANT PHYSIOLOGY 2025; 197:kiae666. [PMID: 39700433 DOI: 10.1093/plphys/kiae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 12/21/2024]
Abstract
Pumpkin (Cucurbita maxima D.) is typically monoecious with individual male and female flowers, and its yield is associated with the degree of femaleness, i.e. the ratio of female to male flowers produced by the plant. Subgynoecy represents a sex form with a high degree of femaleness, but the regulatory mechanisms in pumpkin remain poorly understood. In this study, using the F2 population crossed from the subgynoecious line 2013-12 and the monoecious line 9-6, we initially identified a recessive locus to control the subgynoecious trait and named it sg1. After bulked segregant analysis with whole-genome resequencing and molecular marker linkage analysis, the sg1 locus was mapped to pumpkin Chromosome 2. Genetic sequence analysis found a pumpkin calcium-dependent protein kinase (CPK) gene, CmaCPK4, in the mapping interval as the candidate gene. A retrotransposon insertion identified within the promoter elevated CmaCPK4 expression in 2013-12. Morphological characterization of near-isogenic lines containing the sg1 allele showed increases in the ratio of female flowers and high ethylene contents in terminal buds compared with the receptor parent. Heterologous overexpression of CmaCPK4 significantly increased the ratio of female flowers in cucumber (Cucumis sativus). Furthermore, CmaCPK4 directly interacts with and phosphorylates 1-aminocyclopropane-1-carboxylate synthase 5 (CmaACS5) and 1-aminocyclopropane-1-carboxylate synthase 7 (CmaACS7), resulting in increased ethylene content in 2013-12, which affected pumpkin sex determination. These findings provide insights into the role of the CmaCPK4-CmaACS5/CmaACS7 module in ethylene-induced sex determination in pumpkin.
Collapse
Affiliation(s)
- Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhe Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaopeng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Wang M, Cao Z, Jiang B, Wang K, Xie D, Chen L, Shi S, Yang S, Lu H, Peng Q. Chromosome-level genome assembly and population genomics reveals crucial selection for subgynoecy development in chieh-qua. HORTICULTURE RESEARCH 2024; 11:uhae113. [PMID: 38898961 PMCID: PMC11186066 DOI: 10.1093/hr/uhae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 06/21/2024]
Abstract
Chieh-qua is an important cucurbit crop and very popular in South China and Southeast Asia. Despite its significance, its genetic basis and domestication history are unclear. In this study, we have successfully generated a chromosome-level reference genome assembly for the chieh-qua 'A36' using a hybrid assembly strategy that combines PacBio long reads and Illumina short reads. The assembled genome of chieh-qua is approximately 953.3 Mb in size and is organized into 12 chromosomes, with contig N50 of 6.9 Mb and scaffold N50 of 68.2 Mb. Notably, the chieh-qua genome is comparable in size to the wax gourd genome. Through gene prediction analysis, we have identified a total of 24 593 protein-coding genes in the A36 genome. Additionally, approximately 56.6% (539.3 Mb) of the chieh-qua genome consists of repetitive sequences. Comparative genome analysis revealed that chieh-qua and wax gourd are closely related, indicating a close evolutionary relationship between the two species. Population genomic analysis, employing 129 chieh-qua accessions and 146 wax gourd accessions, demonstrated that chieh-qua exhibits greater genetic diversity compared to wax gourd. We also employed the GWAS method to identify related QTLs associated with subgynoecy, an interested and important trait in chieh-qua. The MYB59 (BhiCQ0880026447) exhibited relatively high expression levels in the shoot apex of four subgynoecious varieties compared with monoecious varieties. Overall, this research provides insights into the domestication history of chieh-qua and offers valuable genomic resources for further molecular research.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Kejian Wang
- China National Rice Research Institute, Hangzhou 310012, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Shaoqi Shi
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Hongwei Lu
- China National Rice Research Institute, Hangzhou 310012, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| |
Collapse
|
4
|
Anankul N, Sattayachiti W, Onmanee N, Chanmoe S, Bundithya W, Kumchai J. Genetic mapping and quantitative trait loci analysis for pistillate flowers per node and multi-pistillate flower traits in the F 2 cucumber population. BREEDING SCIENCE 2024; 74:204-213. [PMID: 39555008 PMCID: PMC11561411 DOI: 10.1270/jsbbs.23070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 11/19/2024]
Abstract
This study focused on cucumbers' multi-pistillate flower (MPF) trait, which is essential for high yields. A genetic linkage map was constructed using a population of 219 F2 plants to analyze quantitative trait loci (QTL) associated with MPF traits. Crossbreeding of EWSCU-809 (MPF) with EWSCU-989 (single pistillate flower: SPF) generated an F1 hybrid that self-pollinated to form an F2 population. Based on 244 single nucleotide polymorphic markers across seven cucumber chromosomes, a linkage map facilitated QTL analysis considering average pistillate flowers (PFs) per node and nodes with MPF traits. The results indicated a 9:6:1 epistatic ratio in the F2 populations, revealing recessive allele control of the MPF trait in gynoecious plants. Three QTLs (qMP2.1, qMP3, qMP7) on chromosomes 2, 3, and 7 were associated with average PFs per node, explaining 5.6 to 10.3% of phenotypic variation. Four QTLs (qMP2.2, qMP3, qMP4, qMP7) on chromosomes 2, 3, 4, and 7 were linked to the presence of nodes with MPF traits, explaining 5.8 to 10.6% of phenotypic variance. Notably, QTL regions overlapped between the two datasets, suggesting pleiotropic effects, particularly on chromosomes 3 and 7. These reliable QTLs have the potential to improve breeding programs, enhance PF development, and increase cucumber yields.
Collapse
Affiliation(s)
- Nattawat Anankul
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Hortigenetics Research (S.E. Asia) Company Limited, Chiang Mai, 50290, Thailand
| | | | - Namfon Onmanee
- Hortigenetics Research (S.E. Asia) Company Limited, Chiang Mai, 50290, Thailand
| | - Saengchit Chanmoe
- Hortigenetics Research (S.E. Asia) Company Limited, Chiang Mai, 50290, Thailand
| | - Weenun Bundithya
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jutamas Kumchai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Nashiki A, Matsuo H, Takano K, Fitriyah F, Isobe S, Shirasawa K, Yoshioka Y. Identification of novel sex determination loci in Japanese weedy melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:136. [PMID: 37231314 DOI: 10.1007/s00122-023-04381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Japanese weedy melon exhibits unique sex expression with interactions between previously reported sex determination genes and two novel loci. Sex expression contributes to fruit quality and yield in the Cucurbitaceae. In melon, orchestrated regulation by sex determination genes explains the mechanism of sex expression, resulting in a great variety of sexual morphologies. In this study, we examined the Japanese weedy melon UT1, which does not follow the reported model of sex expression. We conducted QTL analysis using F2 plants for flower sex on the main stem and the lateral branch and mapped "occurrence of pistil-bearing flower on the main stem" locus on Chr. 3 (Opbf3.1) and "type of pistil-bearing flower" (female or bisexual) loci on Chr. 2 (tpbf2.1) and Chr. 8 (tpbf8.1). The Opbf3.1 included the known sex determination gene CmACS11. Sequence comparison of CmACS11 between parental lines revealed three nonsynonymous SNPs. A CAPS marker developed from one of the SNPs was closely linked to the occurrence of pistil-bearing flowers on the main stem in two F2 populations with different genetic backgrounds. The UT1 allele on Opbf3.1 was dominant in F1 lines from crosses between UT1 and diverse cultivars and breeding lines. This study suggests that Opbf3.1 and tpbf8.1 may promote the development of pistil and stamen primordia by inhibiting CmWIP1 and CmACS-7 functions, respectively, making the UT1 plants hermaphrodite. The results of this study provide new insights into the molecular mechanisms of sex determination in melons and considerations for the application of femaleness in melon breeding.
Collapse
Affiliation(s)
- Akito Nashiki
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroki Matsuo
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kota Takano
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Fauziatul Fitriyah
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Yosuke Yoshioka
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
6
|
Feng S, Zhang J, Mu Z, Wang Y, Wen C, Wu T, Yu C, Li Z, Wang H. Recent progress on the molecular breeding of Cucumis sativus L. in China. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1777-1790. [PMID: 31754760 DOI: 10.1007/s00122-019-03484-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular breeding of Cucumis sativus L. is based on traditional breeding techniques and modern biological breeding in China. There are opportunities for further breeding improvement by molecular design breeding and the automation of phenotyping technology using untapped sources of genetic diversity. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide. It bears fruits of light fragrance, and crisp texture with high nutrition. China is the largest producer and consumer of cucumber, accounting for 70% of the world's total production. With increasing consumption demand, the production of Cucurbitaceae crops has been increasing yearly. Thus, new cultivars that can produce high-quality cucumber with high yield and easy cultivation are in need. Conventional genetic breeding has played an essential role in cucumber cultivar innovation over the past decades. However, its progress is slow due to the long breeding period, and difficulty in selecting stable genetic characters or genotypes, prompting researchers to apply molecular biotechnologies in cucumber breeding. Here, we first summarize the achievements of conventional cucumber breeding such as crossing and mutagenesis, and then focus on the current status of molecular breeding of cucumber in China, including the progress and achievements on cucumber genomics, molecular mechanism underlying important agronomic traits, and also on the creation of high-quality multi-resistant germplasm resources, new variety breeding and ecological breeding. Future development trends and prospects of cucumber molecular breeding in China are also discussed.
Collapse
Affiliation(s)
- Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Juping Zhang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zihan Mu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuji Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Yu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Huasen Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Li Z, Han Y, Niu H, Wang Y, Jiang B, Weng Y. Gynoecy instability in cucumber ( Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femaleness ( F) locus. HORTICULTURE RESEARCH 2020; 7:32. [PMID: 32194968 PMCID: PMC7072070 DOI: 10.1038/s41438-020-0251-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 05/06/2023]
Abstract
Cucumber, Cucumis sativus is an important vegetable crop, and gynoecy has played a critical role in yield increase of hybrid cucumber production. Cucumber has a unique genetic system for gynoecious sex expression, which is determined by the copy number variation (CNV)-based, dominant, and dosage-dependent femaleness (F) locus. However, this gynoecy expression system seems unstable since monecious plants could often be found in F-dependent gynoecious cucumber inbreds. We hypothesized that gynoecy instability (gynoecy loss) may be due to unequal crossing over (UCO) during meiosis among repeat units of the CNV. In this study, using high throughput genome resequencing, fiber-FISH and genomic qPCR analyses, we first confirmed and refined the structure of the F locus, which was a CNV of a 30.2-kb tandem repeat. Gynoecious plants contained three genes: CsACS1, CsACS1G, and CsMYB, of which CsACS1G is a duplication of CsACS1 but with a recombinant distal promoter that may contribute to gynoecy sex expression. In two large populations from self-pollinated gynoecious inbred lines, 'gynoecy loss' mutants were identified with similar mutation rates (~0.12%). We show that these monecious mutants have lost CsACS1G. In addition, we identified gynoecious lines in natural populations that carry two copies of CSACS1G. We proposed a model to explain gynoecy instability in F-dependent cucumbers, which is caused by UCO among CSACS1/G units during meiosis. The findings present a convincing case that the phenotypic variation of an economically important trait is associated with the dynamic changes of copy numbers at the F locus. This work also has important implications in cucumber breeding.
Collapse
Affiliation(s)
- Zheng Li
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yonghua Han
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 China
| | - Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
| | - Biao Jiang
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, Guangdong 510640 China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI 53706 USA
| |
Collapse
|
8
|
Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. HORTICULTURE RESEARCH 2020; 7:3. [PMID: 31908806 PMCID: PMC6938495 DOI: 10.1038/s41438-019-0226-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/05/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Cucumber, Cucumis sativus L. (2n = 2x = 14), is an important vegetable crop worldwide. It was the first specialty crop with a publicly available draft genome. Its relatively small, diploid genome, short life cycle, and self-compatible mating system offers advantages for genetic studies. In recent years, significant progress has been made in molecular mapping, and identification of genes and QTL responsible for key phenotypic traits, but a systematic review of the work is lacking. Here, we conducted an extensive literature review on mutants, genes and QTL that have been molecularly mapped or characterized in cucumber. We documented 81 simply inherited trait genes or major-effect QTL that have been cloned or fine mapped. For each gene, detailed information was compiled including chromosome locations, allelic variants and associated polymorphisms, predicted functions, and diagnostic markers that could be used for marker-assisted selection in cucumber breeding. We also documented 322 QTL for 42 quantitative traits, including 109 for disease resistances against seven pathogens. By alignment of these QTL on the latest version of cucumber draft genomes, consensus QTL across multiple studies were inferred, which provided insights into heritable correlations among different traits. Through collaborative efforts among public and private cucumber researchers, we identified 130 quantitative traits and developed a set of recommendations for QTL nomenclature in cucumber. This is the first attempt to systematically summarize, analyze and inventory cucumber mutants, cloned or mapped genes and QTL, which should be a useful resource for the cucurbit research community.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Junsong Pan
- Department of Plant Sciences, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yuhong Li
- Horticulture College, Northwest A&F University, Yangling, 712100 China
| | - Jinfeng Chen
- Horticulture College, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xuehao Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706 USA
| |
Collapse
|
9
|
Win KT, Zhang C, Silva RR, Lee JH, Kim YC, Lee S. Identification of quantitative trait loci governing subgynoecy in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1505-1521. [PMID: 30710191 DOI: 10.1007/s00122-019-03295-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/28/2019] [Indexed: 05/13/2023]
Abstract
QTL-seq analysis identified three major QTLs conferring subgynoecy in cucumbers. Furthermore, sequence and expression analyses predicted candidate genes controlling subgynoecy. The cucumber (Cucumis sativus L.) is a typical monoecious having individual male and female flowers, and sex differentiation is an important developmental process that directly affects its fruit yield. Subgynoecy represents a sex form with a high degree of femaleness and would have alternative use as gynoecy under limited resource conditions. Recently, many studies have been reported that QTL-seq, which integrates the advantages of bulked segregant analysis and high-throughput whole-genome resequencing, can be a rapid and cost-effective way of mapping QTLs. Segregation analysis in the F2 and BC1 populations derived from a cross between subgynoecious LOSUAS and monoecious BMB suggested the quantitative nature of subgynoecy in cucumbers. Both genome-wide SNP profiling of subgynoecious and monoecious bulks constructed from F2 and BC1 plants consistently identified three significant genomic regions, one on chromosome 3 (sg3.1) and another two on short and long arms of chromosome 1 (sg1.1 and sg1.2). Classical QTL analysis using the F2 confirmed sg3.1 (R2 = 42%), sg1.1 (R2 = 29%) and sg1.2 (R2 = 18%) as major QTLs. These results revealed the unique genetic inheritance of subgynoecious line LOSUAS through two distinct major QTLs, sg3.1 and sg1.1, which mainly increase degree of femaleness, while another QTL, sg1.2, contributes to decrease it. This study demonstrated that QTL-seq allows rapid and powerful detection of QTLs using preliminary generation mapping populations such as F2 or BC1 population and further that the identified QTLs could be useful for molecular breeding of cucumber lines with high yield potential.
Collapse
Affiliation(s)
- Khin Thanda Win
- Plant Genomics Laboratory, Department of Plant Biotechnology, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 143-747, Republic of Korea
| | - Chunying Zhang
- Plant Genomics Laboratory, Department of Plant Biotechnology, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 143-747, Republic of Korea
| | | | - Jeong Hwan Lee
- Division of Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Young-Cheon Kim
- Plant Genomics Laboratory, Department of Plant Biotechnology, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 143-747, Republic of Korea
| | - Sanghyeob Lee
- Plant Genomics Laboratory, Department of Plant Biotechnology, College of Life Sciences, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 143-747, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Gwanjing-gu, Seoul, 143-747, Republic of Korea.
| |
Collapse
|
10
|
Li D, Sheng Y, Niu H, Li Z. Gene Interactions Regulating Sex Determination in Cucurbits. FRONTIERS IN PLANT SCIENCE 2019; 10:1231. [PMID: 31649699 PMCID: PMC6796545 DOI: 10.3389/fpls.2019.01231] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/05/2019] [Indexed: 05/13/2023]
Abstract
The family Cucurbitaceae includes many economically important crops, such as cucumber (Cucumis sativus), melon (Cucumis melo), watermelon (Citrullus lanatus), and zucchini (Cucurbita pepo), which share homologous gene pathways that control similar phenotypes. Sex determination is a research hotspot associated with yield and quality, and the genes involved are highly orthologous and conserved in cucurbits. In the field, six normal sex types have been categorized according to the distribution of female, male, or bisexual flowers in a given plant. To date, five orthologous genes involved in sex determination have been cloned, and their various combinations and expression patterns can explain all the identified sex types. In addition to genetic mechanisms, ethylene controls sex expression in this family. Two ethylene signaling components have been identified recently, which will help us to explore the ethylene signaling-mediated interactions among sex-related genes. This review discusses recent advances relating to the mechanism of sex determination in cucurbits and the prospects for research in this area.
Collapse
Affiliation(s)
- Dandan Li
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Yunyan Sheng
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agriculture University, Daqing, China
| | - Huanhuan Niu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Hua Y, Zhou T, Ding G, Yang Q, Shi L, Xu F. Physiological, genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5769-5784. [PMID: 27639094 PMCID: PMC5066495 DOI: 10.1093/jxb/erw342] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Allotetraploid rapeseed (Brassica napus L. AnAnCnCn, 2n=4x=38) is highly susceptible to boron (B) deficiency, a widespread limiting factor that causes severe losses in seed yield. The genetic variation in the sensitivity to B deficiency found in rapeseed genotypes emphasizes the complex response architecture. In this research, a B-inefficient genotype, 'Westar 10' ('W10'), responded to B deficiencies during vegetative and reproductive development with an over-accumulation of reactive oxygen species, severe lipid peroxidation, evident plasmolysis, abnormal floral organogenesis, and widespread sterility compared to a B-efficient genotype, 'Qingyou 10' ('QY10'). Whole-genome re-sequencing (WGS) of 'QY10' and 'W10' revealed a total of 1 605 747 single nucleotide polymorphisms and 218 755 insertions/deletions unevenly distributed across the allotetraploid rapeseed genome (~1130Mb). Digital gene expression (DGE) profiling identified more genes related to B transporters, antioxidant enzymes, and the maintenance of cell walls and membranes with higher transcript levels in the roots of 'QY10' than in 'W10' under B deficiency. Furthermore, based on WGS and bulked segregant analysis of the doubled haploid (DH) line pools derived from 'QY10' and 'W10', two significant quantitative trait loci (QTLs) for B efficiency were characterized on chromosome C2, and DGE-assisted QTL-seq analyses then identified a nodulin 26-like intrinsic protein gene and an ATP-binding cassette (ABC) transporter gene as the corresponding candidates regulating B efficiency. This research facilitates a more comprehensive understanding of the differential physiological and transcriptional responses to B deficiency and abundant genetic diversity in rapeseed genotypes, and the DGE-assisted QTL-seq analyses provide novel insights regarding the rapid dissection of quantitative trait genes in plant species with complex genomes.
Collapse
Affiliation(s)
- Yingpeng Hua
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyong Yang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|