1
|
Jung WJ, Jeong JH, Yoon JS, Seo YW. Investigation of wheat cold response pathway regulated by TaICE41 and TaCBFⅣd-B9 through Brachypodium distachyon transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112513. [PMID: 40252980 DOI: 10.1016/j.plantsci.2025.112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Wheat (Triticum aestivum L.), a major global crop, is vulnerable to freezing stress, particularly during late spring frosts. Enhancing freezing tolerance through cold acclimation, primarily via the ICE-CBF-COR pathway, is crucial for improving wheat productivity. This study focuses on identifying genes regulated by the ICE-CBF pathway and those that function independently in response to freezing stress. TaICE41 and TaCBFⅣd-B9, two key genes associated with cold tolerance, were cloned and analyzed for their phylogenetic characteristics and subcellular localization. Transgenic Brachypodium distachyon overexpressing these genes demonstrated enhanced freezing tolerance, with increased survival rates and proline content, compared to wild-type plants. RNA-seq analysis revealed distinct gene expression profiles under cold stress, highlighting both shared and unique pathways regulated by ICE41 and CBF. Notably, the TaICE41-overexpressing lines exhibited upregulation of genes involved in phenylpropanoid biosynthesis and starch-sucrose metabolism, contributing to stress response. This study provides new insights into the ICE-CBF pathway and its role in cold tolerance, emphasizing the importance of understanding both ICE-CBF-regulated and independent cold-responsive genes for improving freezing tolerance in crops.
Collapse
Affiliation(s)
- Woo Joo Jung
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, South Korea
| | - Ji Hyeon Jeong
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jin Seok Yoon
- Ojeong Plant Breeding Research Center, Korea University, Seoul 02841, South Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul 02841, South Korea; Ojeong Plant Breeding Research Center, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
2
|
Arend M, Paulitz E, Hsieh YE, Nikoloski Z. Scaling metabolic model reconstruction up to the pan-genome level: A systematic review and prospective applications to photosynthetic organisms. Metab Eng 2025; 90:67-77. [PMID: 40081464 DOI: 10.1016/j.ymben.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Advances in genomics technologies have generated large data sets that provide tremendous insights into the genetic diversity of taxonomic groups. However, it remains challenging to pinpoint the effect of genetic diversity on different traits without performing resource-intensive phenotyping experiments. Pan-genome-scale metabolic models (panGEMs) extend traditional genome-scale metabolic models by considering the entire reaction repertoire that enables the prediction and comparison of metabolic capabilities within a taxonomic group. Here, we systematically review the state-of-the-art methodologies for constructing panGEMs, focusing on used tools, databases, experimental datasets, and orthology relationships. We highlight the unique advantages of panGEMs compared to single-species GEMs in predicting metabolic phenotypes and in guiding the experimental validation of genome annotations. In addition, we emphasize the disparity between the available (pan-)genomic data on photosynthetic organisms and their under-representation in current (pan)GEMs. Finally, we propose a perspective for tackling the reconstruction of panGEMs for photosynthetic eukaryotes that can help advance our understanding of the metabolic diversity in this taxonomic group.
Collapse
Affiliation(s)
- Marius Arend
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Emilian Paulitz
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Yunli Eric Hsieh
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; School of BioSciences, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Zoran Nikoloski
- Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany; Bioinformatics and Mathematical Modeling Department, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
3
|
Prášil IT, Musilová J, Prášilová P, Janáček J, Coufová M, Kosová K, Klíma M, Hermuth J, Holubec V, Vítámvás P. Effect of geographical origin, regional adaptation, genotype, and release year on winter hardiness of wheat and triticale accessions evaluated for six decades in trials. Sci Rep 2025; 15:5961. [PMID: 39966594 PMCID: PMC11836321 DOI: 10.1038/s41598-025-89291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
The overwintering of accessions of three wheat species (bread, durum, spelt) and triticale was evaluated annually from 1960 to 2020 at the Crop Research Institute in Prague by means of trials in wooden-boxes. The set of tested cereal accessions was regularly changed, so that the winter survival ratings of the accessions represented a highly unbalanced set of values. Out of 15,510 winter survival values, 1,991 accessions were classified using a generalized linear model with the logit link function and transformation of calculated coefficients into a nine-point scale to estimate their genotypic Winter Hardiness Potential (WHP 1 = least hardy; WHP 9 = most hardy). The WHP of the winter wheat accessions depended on their geographical origin: for European countries, the mean ranged from WHP 7 for north-eastern countries to WHP 3 for south-western countries. There was a decrease in WHP for accessions released in the 21st century in the Central European region. A significant correlation was found between the cultivar WHPs and their survival in the field after severe winters, and registration of new, more cold tender cultivars increased after warm winters. Dependence of the overwintering index on climatic changes in the period 1960 to 2020 is discussed.
Collapse
Affiliation(s)
- Ilja Tom Prášil
- Team of Plant Stress Biology and Biotechnology in Breeding, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic.
| | - Jana Musilová
- Team of Plant Stress Biology and Biotechnology in Breeding, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| | - Pavla Prášilová
- Team of Plant Stress Biology and Biotechnology in Breeding, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| | - Jiří Janáček
- Laboratory of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 142 00, Czech Republic
| | - Marie Coufová
- Team of Plant Stress Biology and Biotechnology in Breeding, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| | - Klára Kosová
- Team of Plant Stress Biology and Biotechnology in Breeding, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| | - Miroslav Klíma
- Team of Plant Stress Biology and Biotechnology in Breeding, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| | - Jiří Hermuth
- Team of Gene Bank, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| | - Vojtěch Holubec
- Team of Gene Bank, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| | - Pavel Vítámvás
- Team of Plant Stress Biology and Biotechnology in Breeding, Crop Research Institute, Drnovská 507, Prague, 161 06, Czech Republic
| |
Collapse
|
4
|
Catlin NS, Agha HI, Platts AE, Munasinghe M, Hirsch CN, Josephs EB. Structural Variants Contribute to Phenotypic Variation in Maize. Mol Ecol 2025:e17662. [PMID: 39945381 DOI: 10.1111/mec.17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 02/19/2025]
Abstract
Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.
Collapse
Affiliation(s)
- Nathan S Catlin
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Husain I Agha
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Adrian E Platts
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Polkhovskaya E, Moskalev E, Merkulov P, Dudnikova K, Dudnikov M, Gruzdev I, Demurin Y, Soloviev A, Kirov I. Cost-Effective Detection of SNPs and Structural Variations in Full-Length Genes of Wheat and Sunflower Using Multiplex PCR and Rapid Nanopore Kit. BIOLOGY 2025; 14:138. [PMID: 40001906 PMCID: PMC11851361 DOI: 10.3390/biology14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The rapid identification of allele variants in target genes is crucial for accelerating marker-assisted selection (MAS) in plant breeding. Although current high-throughput genotyping methods are efficient in detecting known polymorphisms, they are limited when multiple variant sites are scattered along the gene. This study presents a target amplicon sequencing approach using Oxford Nanopore Technologies (ONT-TAS) to rapidly sequence full-length genes and identify allele variants in sunflower and wheat collections. This procedure combines multiplex PCR and a rapid sequencing kit, significantly reducing the time and cost compared to previous methods. The efficiency of the approach was demonstrated by sequencing four genes (Ahasl1, Ahasl2, Ahasl3, and FAD2) in 40 sunflower genotypes and three genes (Ppo, Wx, and Lox) in 30 wheat genotypes. The ONT-TAS revealed a complete picture of SNPs and InDels distributed over the individual alleles, enabling rapid (4.5 h for PCR and sequencing) characterization of the genetic diversity of the target genes in the germplasm collections. The results showed a significant diversity of the Ahasl1/Ahasl3 and Wx-A/Lox-B genes in the sunflower and wheat collections, respectively. This method offers a high-throughput, cost-effective (USD 3.4 per gene) solution for genotyping and identifying novel allele variants in plant breeding programs.
Collapse
Affiliation(s)
- Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Evgeniy Moskalev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Ksenia Dudnikova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Ivan Gruzdev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038 Krasnodar, Russia;
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
- All-Russia Center for Plant Quarantine, 140150 Ramenski, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (E.P.); (E.M.); (P.M.); (K.D.); (M.D.); (I.G.); (A.S.)
| |
Collapse
|
6
|
Park S, Shi A, Mou B. Low frequency of the wild-type freezing-tolerance LsCBF7 allele among lettuce population suggests a negative selection during domestication and breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:135. [PMID: 38761248 PMCID: PMC11420307 DOI: 10.1007/s00122-024-04643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
KEY MESSAGE Sustainable winter production in lettuce requires freezing tolerant varieties. This study identified a wild-type allele of LsCBF7 that could contribute to freezing tolerance improvement in lettuce. Lettuce is one of the most consumed vegetables globally. While ideally grown in 13-21 °C, its cultivation extends into winter in milder climates. However, occasional freezing temperatures can significantly reduce yields. Therefore, the development of freezing-tolerant lettuce varieties has become a long-term goal of lettuce breeding programs. Despite its significance, our understanding of freezing tolerance in lettuce remains limited. Plants have evolved a coping mechanism against freezing, known as cold acclimation, whereby they can increase freezing tolerance when pre-exposed to low nonfreezing temperatures. The CBF pathway is well-known for its central role in cold acclimation. Previously, we identified 14 CBF genes in lettuce and discovered that one of them, LsCBF7, had a loss-of-function mutation. In this study, we uncovered that accessions from colder regions carried the wild-type allele of LsCBF7 and this allele likely contributed to increased freezing tolerance, with 14% of the lettuce population carrying this allele. Interestingly, in wild lettuce (L. serriola) that is considered a progenitor of cultivated lettuce, this wild-type allele was much more common, with a frequency of 90%. This finding suggests that this wild-type allele may have undergone negative selection during the domestication or breeding of lettuce. Our data strongly indicate that this allele could be linked to early bolting, an undesirable trait in lettuce, which may have driven the negative selection. While this wild-type allele shows promise for improving freezing tolerance in lettuce, it is crucial to decouple it from the early bolting trait to fully harness its potential in lettuce breeding.
Collapse
Affiliation(s)
- Sunchung Park
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Ainong Shi
- Horticulture Dept, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- U.S. Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| |
Collapse
|
7
|
Wang Y, Wang Z, Chen Y, Lan T, Wang X, Liu G, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Guo W, Peng H. Genomic insights into the origin and evolution of spelt (Triticum spelta L.) as a valuable gene pool for modern wheat breeding. PLANT COMMUNICATIONS 2024; 5:100883. [PMID: 38491771 PMCID: PMC11121738 DOI: 10.1016/j.xplc.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Spelt (Triticum aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource. However, relatively little is known about the origins and maintenance of spelt populations. Here, using resequencing data from 416 worldwide wheat accessions, including representative spelt wheat, we demonstrate that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We propose a haplotype-based "spelt index" to identify spelt-type wheat varieties and to quantify utilization of the spelt gene pool in modern wheat cultivars. This study reveals the genetic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.
Collapse
Affiliation(s)
- Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Tianyu Lan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Institute for Plant Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Gang Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Dipta B, Sood S, Mangal V, Bhardwaj V, Thakur AK, Kumar V, Singh B. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Mol Biol Rep 2024; 51:508. [PMID: 38622474 DOI: 10.1007/s11033-024-09455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Advances in plant molecular breeding have resulted in the development of new varieties with superior traits, thus improving the crop germplasm. Breeders can screen a large number of accessions without rigorous and time-consuming phenotyping by marker-assisted selection (MAS). Molecular markers are one of the most imperative tools in plant breeding programmes for MAS to develop new cultivars possessing multiple superior traits. Single nucleotide polymorphisms (SNPs) are ideal for MAS due to their low cost, low genotyping error rates, and reproducibility. Kompetitive Allele Specific PCR (KASP) is a globally recognized technology for SNP genotyping. KASP is an allele-specific oligo extension-based PCR assay that uses fluorescence resonance energy transfer (FRET) to detect genetic variations such as SNPs and insertions/deletions (InDels) at a specific locus. Additionally, KASP allows greater flexibility in assay design, which leads to a higher success rate and the capability to genotype a large population. Its versatility and ease of use make it a valuable tool in various fields, including genetics, agriculture, and medical research. KASP has been extensively used in various plant-breeding applications, such as the identification of germplasm resources, quality control (QC) analysis, allele mining, linkage mapping, quantitative trait locus (QTL) mapping, genetic map construction, trait-specific marker development, and MAS. This review provides an overview of the KASP assay and emphasizes its validation in crop improvement related to various biotic and abiotic stress tolerance and quality traits.
Collapse
Affiliation(s)
- Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-National Research Centre on Seed Spices, Tabiji, Ajmer, Rajasthan, 305206, India
| | - Ajay Kumar Thakur
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
9
|
Lim I, Park YJ, Ha J. Evolutionary and synteny analysis of HIS1, BADH2, GBSS1, and GBSS2 in rice: insights for effective introgression breeding strategies. Sci Rep 2024; 14:5226. [PMID: 38433262 PMCID: PMC10909864 DOI: 10.1038/s41598-024-55581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
The key genes BADH2, GBSS1, GBSS2, and HIS1 regulate the fragrance, starch synthesis, and herbicide resistance in rice. Although the molecular functions of four genes have been investigated in the Oryza sativa species, little is known regarding their evolutionary history in the Oryza genus. Here, we studied the evolution of four focal genes in 10 Oryza species using phylogenetic and syntenic approaches. The HIS1 family underwent several times of tandem duplication events in the Oryza species, resulting in copy number variation ranging from 2 to 7. At most one copy of BADH2, GBSS1, and GBSS2 orthologs were identified in each Oryza species, and gene loss events of BADH2 and GBSS2 were identified in three Oryza species. Gene transfer analysis proposed that the functional roles of GBSS1 and GBSS2 were developed in the Asian and African regions, respectively, and most allelic variations of BADH2 in japonica rice emerged after the divergence between the Asian and African rice groups. These results provide clues to determine the origin and evolution of the key genes in rice breeding as well as valuable information for molecular breeders and scientists to develop efficient strategies to simultaneously improve grain quality and yield potential in rice.
Collapse
Affiliation(s)
- Insu Lim
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea
| | - Yong-Jin Park
- Department of Plant Sciences, Kongju National University, Yesan, 340-702, Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea.
| |
Collapse
|
10
|
Pan X, Nie X, Gao W, Yan S, Feng H, Cao J, Lu J, Shao H, Ma C, Chang C, Zhang H. Identification of genetic loci and candidate genes underlying freezing tolerance in wheat seedlings. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:57. [PMID: 38402327 DOI: 10.1007/s00122-024-04564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/27/2024] [Indexed: 02/26/2024]
Abstract
KEY MESSAGE Ten stable loci for freezing tolerance (FT) in wheat were detected by genome-wide association analysis. The putative candidate gene TaRPM1-7BL underlying the major locus QFT.ahau-7B.2 was identified and validated. Frost damage restricts wheat growth, development, and geographical distribution. However, the genetic mechanism of freezing tolerance (FT) remains unclear. Here, we evaluated FT phenotypes of 245 wheat varieties and lines, and genotyped them using a Wheat 90 K array. The association analysis showed that ten stable loci were significantly associated with FT (P < 1 × 10-4), and explained 6.45-26.33% of the phenotypic variation. In particular, the major locus QFT.ahau-7B.2 was consistently related to all nine sets of FT phenotypic data. Based on five cleaved amplified polymorphic sequence (CAPS) markers closely linked to QFT.ahau-7B.2, we narrowed down the target region to the 570.67-571.16 Mb interval (0.49 Mb) on chromosome 7B, in which four candidate genes were annotated. Of these, only TaRPM1-7BL exhibited consistent differential expression after low temperature treatment between freezing-tolerant and freezing-sensitive varieties. The results of cloning and whole-exome capture sequencing indicated that there were two main haplotypes for TaRPM1-7BL, including freezing-tolerant Hap1 and freezing-sensitive Hap2. Based on the representative SNP (+1956, A/G), leading to an amino acid change in the NBS domain, a CAPS marker (CAPS-TaRPM1-7BL) was developed and validated in 431 wheat varieties (including the above 245 materials) and 318 F2 lines derived from the cross of 'Annong 9267' (freezing-tolerant) × 'Yumai 9' (freezing-sensitive). Subsequently, the TaRPM1-7BL gene was silenced in 'Yumai 9' by virus-induced gene silencing (VIGS), and these silenced wheat seedlings exhibited enhanced FT phenotypes, suggesting that TaRPM1-7BL negatively regulates FT. These findings are valuable for understanding the complex genetic basis of FT in wheat.
Collapse
Affiliation(s)
- Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Xianlai Nie
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hansheng Feng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Hui Shao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture, Hefei, 230036, Anhui, China.
| |
Collapse
|
11
|
Rubab M, Jannat S, Freeg H, Abbas H, Attia KA, Fiaz S, Zahra N, Uzair M, Inam S, Shah AH, Kimiko I, Naeem MK, Khan MR. Evaluation of functional kompetitive allele-specific PCR (KASP) markers for selection of drought-tolerant wheat ( Triticum aestivum) genotypes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37308134 DOI: 10.1071/fp23032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/06/2023] [Indexed: 06/14/2023]
Abstract
Wheat (Triticum aestivum ) is a major crop around the globe and different techniques are being used for its productivity enhancement. Germplasm evaluation to improve crop productivity mainly depends on accurate phenotyping and selection of genotypes with a high frequency of superior alleles related to the trait of interest. Therefore, applying functional kompetitive allele-specific PCR (KASP) markers for drought-related genes is essential to characterise the genotypes for developing future climate-resilient wheat crop. In this study, eight functional KASP markers and nine morphological traits were employed to evaluate the 40 wheat genotypes for drought tolerance. Morphological traits showed significant variation (P ≤0.05) among the genotypes, except tiller count (TC), fresh root weight (FRW) and dry root weight (DRW). PCA biplot showed that 63.3% phenotypic variation was explained by the first two PCs under control treatment, while 70.8% variation was explained under drought treatment. It also indicated that root length (RL) and primary root (PR) have considerable variations among the genotypes under both treatments and are positively associated with each other. Hence, the findings of this study suggested that both these traits could be used as a selection criterion to classify the drought-tolerant wheat genotypes. KASP genotyping accompanied by morphological data revealed that genotypes Markaz, Bhakar Star, China 2, Aas and Chakwal-50 performed better under drought stress. These outperforming genotypes could be used as parents in developing drought-tolerant wheat genotypes. Hence, KASP genotyping assay for functional genes or significant haplotypes and phenotypic evaluation are prerequisites for a modern breeding program.
Collapse
Affiliation(s)
- Marya Rubab
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan; and Department of Biotechnology, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Summiya Jannat
- Department of Biotechnology, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Haytham Freeg
- Rice Biotechnology Lab., Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh 33717, Egypt
| | - Hina Abbas
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, POX 2455-11451, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Nageen Zahra
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Asad Hussain Shah
- Department of Biotechnology, University of Kotli, Kotli, Azad Jammu and Kashmir, Pakistan
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad 45500, Pakistan
| |
Collapse
|
12
|
Caccialupi G, Milc J, Caradonia F, Nasar MF, Francia E. The Triticeae CBF Gene Cluster-To Frost Resistance and Beyond. Cells 2023; 12:2606. [PMID: 37998341 PMCID: PMC10670769 DOI: 10.3390/cells12222606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The pivotal role of CBF/DREB1 transcriptional factors in Triticeae crops involved in the abiotic stress response has been highlighted. The CBFs represent an important hub in the ICE-CBF-COR pathway, which is one of the most relevant mechanisms capable of activating the adaptive response to cold and drought in wheat, barley, and rye. Understanding the intricate mechanisms and regulation of the cluster of CBF genes harbored by the homoeologous chromosome group 5 entails significant potential for the genetic improvement of small grain cereals. Triticeae crops seem to share common mechanisms characterized, however, by some peculiar aspects of the response to stress, highlighting a combined landscape of single-nucleotide variants and copy number variation involving CBF members of subgroup IV. Moreover, while chromosome 5 ploidy appears to confer species-specific levels of resistance, an important involvement of the ICE factor might explain the greater tolerance of rye. By unraveling the genetic basis of abiotic stress tolerance, researchers can develop resilient varieties better equipped to withstand extreme environmental conditions. Hence, advancing our knowledge of CBFs and their interactions represents a promising avenue for improving crop resilience and food security.
Collapse
Affiliation(s)
- Giovanni Caccialupi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; (J.M.); (F.C.); (M.F.N.); (E.F.)
| | | | | | | | | |
Collapse
|
13
|
Ahad A, Gul A, Batool TS, Huda NU, Naseeer F, Abdul Salam U, Abdul Salam M, Ilyas M, Turkyilmaz Unal B, Ozturk M. Molecular and genetic perspectives of cold tolerance in wheat. Mol Biol Rep 2023; 50:6997-7015. [PMID: 37378744 DOI: 10.1007/s11033-023-08584-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Environmental variation is the most crucial problem as it is causing food insecurity and negatively impacts food availability, utilization, assessment, and stability. Wheat is the largest and extensively cultivated staple food crop for fulfilling global food requirements. Abiotic stresses including salinity, heavy metal toxicity, drought, extreme temperatures, and oxidative stresses being the primary cause of productivity loss are a serious threat to agronomy. Cold stress is a foremost ecological constraint that is extremely influencing plant development, and yield. It is extremely hampering the propagative development of plant life. The structure and function of plant cells depend on the cell's immune system. The stresses due to cold, affect fluid in the plasma membrane and change it into crystals or a solid gel phase. Plants being sessile in nature have evolved progressive systems that permit them to acclimatize the cold stress at the physiological as well as molecular levels. The phenomenon of acclimatisation of plants to cold stress has been investigated for the last 10 years. Studying cold tolerance is critical for extending the adaptability zones of perennial grasses. In the present review, we have elaborated the current improvement of cold tolerance in plants from molecular and physiological viewpoints, such as hormones, the role of the posttranscriptional gene, micro RNAs, ICE-CBF-COR signaling route in cold acclimatization and how they are stimulating the expression of underlying genes encoding osmoregulatory elements and strategies to improve cold tolerance in wheat.
Collapse
Affiliation(s)
- Arzoo Ahad
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Tuba Sharf Batool
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Noor-Ul Huda
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faiza Naseeer
- Department of Industrial Biotechnology, ASAB, NUST, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, SCPS, STMU, Islamabad, Pakistan
| | - Uzma Abdul Salam
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Abdul Salam
- Department of Microbiology, Quaid-I-Azam University (QAU), Islamabad, Pakistan
| | - Mahnoor Ilyas
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Arts & Sciences, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| |
Collapse
|
14
|
Wu N, He Z, Fang J, Liu X, Shen X, Zhang J, Lei Y, Xia Y, He H, Liu W, Chu C, Wang C, Qi Z. Chromosome diversity in Dasypyrum villosum, an important genetic and trait resource for hexaploid wheat engineering. ANNALS OF BOTANY 2023; 131:185-198. [PMID: 35451455 PMCID: PMC9904354 DOI: 10.1093/aob/mcac054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Dasypyrum villosum (2n = 2x = 14) harbours potentially beneficial genes for hexaploid and tetraploid wheat improvement. Highly diversified chromosome variation exists among and within accessions due to its open-pollination nature. The wheat-D. villosum T6VS·6AL translocation was widely used in breeding mainly because gene Pm21 in the 6VS segment conferred high and lasting powdery mildew resistance. However, the widespread use of this translocation may narrow the genetic base of wheat. A better solution is to utilize diversified D. villosum accessions as the genetic source for wheat breeding. Analysis of cytological and genetic polymorphisms among D. villosum accessions also provides genetic evolution information on the species. Using cytogenetic and molecular tools we analysed genetic polymorphisms among D. villosum accessions and developed consensus karyotypes to assist the introgression of beneficial genes from D. villosum into wheat. METHODS A multiplex probe of repeats for FISH, GISH and molecular markers were used to detect chromosome polymorphisms among D. villosum accessions. Polymorphic signal block types, chromosome heterogeneity and heterozygosity, and chromosome polymorphic information content were used in genetic diversity analysis. KEY RESULTS Consensus karyotypes of D. villosum were developed, and the homoeologous statuses of individual D. villosum chromosomes relative to wheat were determined. Tandem repeat probes of pSc119.2, (GAA)10 and the AFA family produced high-resolution signals and not only showed different signal patterns in D. villosum chromosomes but also revealed the varied distribution of tandem repeats among chromosomes and accessions. A total of 106 polymorphic chromosomes were identified from 13 D. villosum accessions and high levels of chromosomal heterozygosity and heterogeneity were observed. A subset of 56 polymorphic chromosomes was transferred into durum wheat through wide crosses, and seven polymorphic chromosomes are described in two newly developed durum-D. villosum amphidiploids. CONCLUSIONS Consensus karyotypes of D. villosum and oligonucleotide FISH facilitated identification of polymorphic signal blocks and a high level of chromosomal heterozygosity and heterogeneity among D. villosum accessions, seen in newly developed amphiploids. The abundant genetic diversity of D. villosum and range of alleles, exploitable through interploid crosses, backcrosses and recombination (chromosome engineering), allow introduction of biotic and abiotic stress resistances into wheat, translating into increasing yield, end-use quality and crop sustainability.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziming He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhong Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chenggen Chu
- USDA-ARS, Sugarbeet & Potato Research Unit, Fargo, ND 58102, USA
| | - Conglei Wang
- Tianjin Crops Research Institute, Tianjin 300384, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Su H, Tan C, Liu Y, Chen X, Li X, Jones A, Zhu Y, Song Y. Physiology and Molecular Breeding in Sustaining Wheat Grain Setting and Quality under Spring Cold Stress. Int J Mol Sci 2022; 23:ijms232214099. [PMID: 36430598 PMCID: PMC9693015 DOI: 10.3390/ijms232214099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Spring cold stress (SCS) compromises the reproductive growth of wheat, being a major constraint in achieving high grain yield and quality in winter wheat. To sustain wheat productivity in SCS conditions, breeding cultivars conferring cold tolerance is key. In this review, we examine how grain setting and quality traits are affected by SCS, which may occur at the pre-anthesis stage. We have investigated the physiological and molecular mechanisms involved in floret and spikelet SCS tolerance. It includes the protective enzymes scavenging reactive oxygen species (ROS), hormonal adjustment, and carbohydrate metabolism. Lastly, we explored quantitative trait loci (QTLs) that regulate SCS for identifying candidate genes for breeding. The existing cultivars for SCS tolerance were primarily bred on agronomic and morphophysiological traits and lacked in molecular investigations. Therefore, breeding novel wheat cultivars based on QTLs and associated genes underlying the fundamental resistance mechanism is urgently needed to sustain grain setting and quality under SCS.
Collapse
Affiliation(s)
- Hui Su
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Cheng Tan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yonghua Liu
- School of Horticulture, Hainan University, Haikou 570228, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xinrui Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yulei Zhu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.Z.); (Y.S.)
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence: (Y.Z.); (Y.S.)
| |
Collapse
|
16
|
Carrillo-Perdomo E, Magnin-Robert JB, Raffiot B, Deulvot C, Floriot M, Lejeune-Hénaut I, Marget P, Burstin J, Tayeh N, Aubert G. A QTL approach in faba bean highlights the conservation of genetic control of frost tolerance among legume species. FRONTIERS IN PLANT SCIENCE 2022; 13:970865. [PMID: 36340396 PMCID: PMC9627038 DOI: 10.3389/fpls.2022.970865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Frost is a major abiotic stress of winter type faba beans (Vica faba L.) and has adverse effects on crop yield. Climate change, far from reducing the incidence of frost events, is making these phenomena more and more common, severe, and prolonged. Despite the important interaction that the environment has in the tolerance of faba bean to frost, this trait seems to have good levels of heritability. Several QTLs for frost tolerance have already been reported, however, a more robust identification is needed to more precisely identify the genomic regions involved in faba bean tolerance to sub-zero temperatures. Several pea (Pisum sativum L.) and barrel medic (Medicago truncatula L.) frost tolerance QTLs appear to be conserved between these two species, furthering the hypothesis that the genetic control of frost tolerance in legume species might be more generally conserved. In this work, the QTL mapping in two faba bean recombinant inbred line (RIL) populations connected by a common winter-type parent has led to the identification of five genomic regions involved in the control of frost tolerance on linkage groups I, III, IV, and V. Among them, a major and robust QTL of great interest for marker-assisted selection was identified on the lower part of the long-arm of LGI. The synteny between the faba bean frost tolerance QTLs and those previously identified in other legume species such as barrel medic, pea or soybean highlighted at least partial conservation of the genetic control of frost tolerance among different faba bean genetic pools and legume species. Four novel RILs showing high and stable levels of tolerance and the ability to recover from freezing temperatures by accumulating frost tolerance QTLs are now available for breeding programs.
Collapse
Affiliation(s)
- Estefanía Carrillo-Perdomo
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, San Giuliano, France
| | | | - Blandine Raffiot
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Terres Inovia, Thiverval-Grignon, France
| | - Chrystel Deulvot
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Isabelle Lejeune-Hénaut
- Département de génétique et protection des cultures, BioEcoAgro Joint Research Unit, INRAE, Université de Lille, Université de Liège, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Pascal Marget
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- INRAE, UE115 Domaine Expérimental d’Epoisses, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
17
|
Lv L, Dong C, Liu Y, Zhao A, Zhang Y, Li H, Chen X. Transcription-associated metabolomic profiling reveals the critical role of frost tolerance in wheat. BMC PLANT BIOLOGY 2022; 22:333. [PMID: 35820806 PMCID: PMC9275158 DOI: 10.1186/s12870-022-03718-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Low temperature is a crucial stress factor of wheat (Triticum aestivum L.) and adversely impacts on plant growth and grain yield. Multi-million tons of grain production are lost annually because crops lack the resistance to survive in winter. Particularlly, winter wheat yields was severely damaged under extreme cold conditions. However, studies about the transcriptional and metabolic mechanisms underlying cold stresses in wheat are limited so far. RESULTS In this study, 14,466 differentially expressed genes (DEGs) were obtained between wild-type and cold-sensitive mutants, of which 5278 DEGs were acquired after cold treatment. 88 differential accumulated metabolites (DAMs) were detected, including P-coumaroyl putrescine of alkaloids, D-proline betaine of mino acids and derivativ, Chlorogenic acid of the Phenolic acids. The comprehensive analysis of metabolomics and transcriptome showed that the cold resistance of wheat was closely related to 13 metabolites and 14 key enzymes in the flavonol biosynthesis pathway. The 7 enhanced energy metabolites and 8 up-regulation key enzymes were also compactly involved in the sucrose and amino acid biosynthesis pathway. Moreover, quantitative real-time PCR (qRT-PCR) revealed that twelve key genes were differentially expressed under cold, indicating that candidate genes POD, Tacr7, UGTs, and GSTU6 which were related to cold resistance of wheat. CONCLUSIONS In this study, we obtained the differentially expressed genes and differential accumulated metabolites in wheat under cold stress. Using the DEGs and DAMs, we plotted regulatory pathway maps of the flavonol biosynthesis pathway, sucrose and amino acid biosynthesis pathway related to cold resistance of wheat. It was found that candidate genes POD, Tacr7, UGTs and GSTU6 are related to cold resistance of wheat. This study provided valuable molecular information and new genetic engineering clues for the further study on plant resistance to cold stress.
Collapse
Affiliation(s)
- Liangjie Lv
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang, 050000 China
| | - Ce Dong
- Handan Academy of Agricultural Sciences, Handan, 056000 Hebei China
| | - Yuping Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang, 050000 China
| | - Aiju Zhao
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang, 050000 China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang, 050000 China
| | - Hui Li
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang, 050000 China
| | - Xiyong Chen
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang, 050000 China
| |
Collapse
|
18
|
Abstract
Winter wheat growing areas in the Northern hemisphere are regularly exposed to heavy frost. Due to the negative impact on yield, the identification of genetic factors controlling frost tolerance (FroT) and development of tools for breeding is of prime importance. Here, we detected QTL associated with FroT by genome wide association studies (GWAS) using a diverse panel of 276 winter wheat genotypes that was phenotyped at five locations in Germany and Russia in three years. The panel was genotyped using the 90 K iSelect array and SNPs in FroT candidate genes. In total, 17,566 SNPs were used for GWAS resulting in the identification of 53 markers significantly associated (LOD ≥ 4) to FroT, corresponding to 23 QTL regions located on 11 chromosomes (1A, 1B, 2A, 2B, 2D, 3A, 3D, 4A, 5A, 5B and 7D). The strongest QTL effect confirmed the importance of chromosome 5A for FroT. In addition, to our best knowledge, eight FroT QTLs were discovered for the first time in this study comprising one QTL on chromosomes 3A, 3D, 4A, 7D and two on chromosomes 1B and 2D. Identification of novel FroT candidate genes will help to better understand the FroT mechanism in wheat and to develop more effective combating strategies.
Collapse
|
19
|
Tay Fernandez CG, Marsh JI, Nestor BJ, Gill M, Golicz AA, Bayer PE, Edwards D. An SGSGeneloss-Based Method for Constructing a Gene Presence-Absence Table Using Mosdepth. Methods Mol Biol 2022; 2512:73-80. [PMID: 35818000 DOI: 10.1007/978-1-0716-2429-6_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Presence-absence variants (PAV) are genomic regions present in some individuals of a species, but not others. PAVs have been shown to contribute to genomic diversity, especially in bacteria and plants. These structural variations have been linked to traits and can be used to track a species' evolutionary history. PAVs are usually called by aligning short read sequence data from one or more individuals to a reference genome or pangenome assembly, and then comparing coverage. Regions where reads do not align define absence in that individual, and the regions are classified as PAVs. The method below details how to align sequence reads to a reference and how to use the sequencing-coverage calculator Mosdepth to identify PAVs and construct a PAV table for use in downstream comparative genome analysis.
Collapse
Affiliation(s)
- Cassandria G Tay Fernandez
- Applied Bioinformatics Group, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jacob I Marsh
- Applied Bioinformatics Group, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Benjamin J Nestor
- Applied Bioinformatics Group, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Mitchell Gill
- Applied Bioinformatics Group, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Agnieszka A Golicz
- Department of Plant Breeding, Justus Liebig University Gießen, Gießen, Germany
| | - Philipp E Bayer
- Applied Bioinformatics Group, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - David Edwards
- Applied Bioinformatics Group, School of Biological Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
20
|
Zheng Y, Li S, Huang J, Fu H, Zhou L, Furusawa Y, Shu Q. Identification and characterization of inheritable structural variations induced by ion beam radiations in rice. Mutat Res 2021; 823:111757. [PMID: 34271440 DOI: 10.1016/j.mrfmmm.2021.111757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/01/2022]
Abstract
High energy ion beams are effective physical mutagens for mutation induction in plants. Due to their high linear energy transfer (LET) property, they are known to generate single nucleotide variations (SNVs) and insertion/deletions (InDels, <50 bp) as well as structural variations (SVs). However, due to the technical difficulties to identify SVs, studies on ion beam induced SVs by genome sequencing have so far been limited in numbers and inadequate in nature, and knowledge of SVs is scarce with regards to their characteristics. In the present study, we identified and validated SVs in six M4 plants (designated as Ar_50, Ar_100, C_150, C_200, Ne_50 and Ne_100 according to ion beam types and irradiation doses), two each induced by argon (40Ar18+), carbon (12C6+) and neon (20Ne10+) ion beams and performed in depth analyses of their characteristics. In total, 22 SVs were identified and validated, consisting of 11 deletions, 1 duplication, and 4 intra-chromosomal and 6 inter-chromosomal translocations. There were several SVs larger than 1 kbp. The SVs were distributed across the whole genome with an aggregation with SNVs and InDels only in the Ne_50 mutants. An enrichment of a 11-bp wide G-rich DNA motif 'GAAGGWGGRGG' was identified around the SV breakpoints. Three mechanisms might be involved in the SV formation, i.e., the expansion of tandem repeats, transposable element insertion, and non-allelic homologous recombination. Put together, the present study provides a preliminary view of SVs induced by Ar, C and Ne ion beam radiations, and as a pilot study, it contributes to our understanding of how SVs might form after ion beam irradiation in rice.
Collapse
Affiliation(s)
- Yunchao Zheng
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shan Li
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| | - Jianzhong Huang
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Haowei Fu
- Jiaxing Academy of Agricultural Science, Jiaxing, Zhejiang, 314016, China.
| | - Libin Zhou
- Biophysics Group, Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000, China.
| | - Yoshiya Furusawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Song H, Kim H, Hwang BH, Yi H, Hur Y. Natural variation in glycine-rich region of Brassica oleracea cold shock domain protein 5 (BoCSDP5) is associated with low temperature tolerance. Genes Genomics 2020; 42:1407-1417. [PMID: 33094377 DOI: 10.1007/s13258-020-01010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Low temperature (LT) or cold stress is a major environmental stress that seriously affects plant growth and development, limiting crop productivity. Cold shock domain proteins (CSDPs), which are present in most living organism, are involved in RNA metabolisms influencing abiotic stress tolerance. OBJECTIVE The aims of this study are to identify target gene for LT-tolerance, like CSDPs, characterize genetics, and develop molecular marker distinguishing LT-tolerance in cabbage (Brassica oleracea var. capitata). METHODS Semi-quantitative RT-PCR or qRT-PCR was used in gene expression study. LT-tolerance was determined by electrolyte leakage and PCR with allelic specific primers. RESULTS Allelic variation was found in BoCSDP5 coding sequence (CDs) between LT-tolerant (BN106 and BN553) and -susceptible inbred lines (BN107 and BN554). LT-tolerant inbred lines contained variant type of BoCSDP5 (named as BoCSDP5v) which encodes extra CCHC zinc finger domain at C-terminus. Association of LT-tolerance with BoCSDP5v was confirmed by electrolyte leakage and segregation using genetic population derived from BN553 and BN554 cross. Allelic variation in BoCSDP5 gene does not influence the rate of gene expression, but produces different proteins with different number of CCHC zinc finger domains. LT-tolerance marker designed on the basis of polymorphism between BoCSDP5 and BoCSDP5v was confirmed with samples used in previous B. oleracea CIRCADIAN CLOCK ASSOCIATED 1 (BoCCA1) marker validation. CONCLUSIONS LT-tolerant allele (BoCSDP5v) is dominant and independent of CBF pathway, and sufficient to generate molecular markers to identify LT-tolerant cabbage when it is used in combination with another marker, like BoCCA1-derived one. Production and analysis of overexpressing plants of BoCSDP1, BoCSDP3, BoCSDP5 and BoCSDP5v will be required for elucidating the function of CCHC zinc finger domains in LT-tolerance.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - HyeRan Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Byung-Ho Hwang
- Biotechnology and Breeding Institute of Asia Seed Co., Icheon-si, Gyeonggi-do, 17414, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Yoonkang Hur
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
22
|
Bretani G, Rossini L, Ferrandi C, Russell J, Waugh R, Kilian B, Bagnaresi P, Cattivelli L, Fricano A. Segmental duplications are hot spots of copy number variants affecting barley gene content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1073-1088. [PMID: 32338390 PMCID: PMC7496488 DOI: 10.1111/tpj.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 05/31/2023]
Abstract
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low-copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD-rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome-wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.
Collapse
Affiliation(s)
- Gianluca Bretani
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Laura Rossini
- Università degli Studi di Milano – DiSAAVia Celoria 220133MilanoItaly
| | - Chiara Ferrandi
- Parco Tecnologico PadanoLoc. C.na CodazzaVia Einstein26900LodiItaly
| | | | - Robbie Waugh
- James Hutton Institute, InvergowrieDundeeDD2 5DAUK
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 306466GaterslebenGermany
- Global Crop Diversity TrustPlatz der Vereinten Nationen 753113BonnGermany
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| | - Agostino Fricano
- Council for Agricultural Research and Economics – Research Centre for Genomics & BioinformaticsVia San Protaso 30229017Fiorenzuola d'Arda (PC)Italy
| |
Collapse
|
23
|
Influence of variety and growing location on carotenoid and vitamin E contents of 184 different durum wheat varieties (Triticum turgidum ssp. durum) in Germany. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03557-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe influence of variety and growing location on the carotenoid and vitamin E content of 184 different varieties of durum wheat of each of the German locations Hohenheim and Seligenstadt was analyzed by HPLC. In addition, the yellow pigment content was measured as b value using a chroma meter. The results showed that the measured parameters vary both between sites and varieties, with higher variance between varieties. Finally, we elaborated a high genetic variance and heritability for lutein and total carotenoids and no negative correlations to important agronomic and quality traits in durum wheat. Thus, future durum breeding could produce varieties with improved agronomy, quality, and increased contents of lutein and total carotenoids. Vitamin E has only a minor importance due to the low contents in durum wheat. Due to the high correlation between the b value and the total carotenoid content, the b value could be used as a cheap and rapid method to initially screen high numbers of breeding lines before testing individual promising breeding lines with HPLC, warranting efficient and accurate selection of durum lines with increased carotenoid content.
Collapse
|
24
|
Gabur I, Chawla HS, Lopisso DT, von Tiedemann A, Snowdon RJ, Obermeier C. Gene presence-absence variation associates with quantitative Verticillium longisporum disease resistance in Brassica napus. Sci Rep 2020; 10:4131. [PMID: 32139810 PMCID: PMC7057980 DOI: 10.1038/s41598-020-61228-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Although copy number variation (CNV) and presence-absence variation (PAV) have been discovered in selected gene families in most crop species, the global prevalence of these polymorphisms in most complex genomes is still unclear and their influence on quantitatively inherited agronomic traits is still largely unknown. Here we analyze the association of gene PAV with resistance of oilseed rape (Brassica napus) against the important fungal pathogen Verticillium longisporum, as an example for a complex, quantitative disease resistance in the strongly rearranged genome of a recent allopolyploid crop species. Using Single Nucleotide absence Polymorphism (SNaP) markers to efficiently trace PAV in breeding populations, we significantly increased the resolution of loci influencing V. longisporum resistance in biparental and multi-parental mapping populations. Gene PAV, assayed by resequencing mapping parents, was observed in 23-51% of the genes within confidence intervals of quantitative trait loci (QTL) for V. longisporum resistance, and high-priority candidate genes identified within QTL were all affected by PAV. The results demonstrate the prominent role of gene PAV in determining agronomic traits, suggesting that this important class of polymorphism should be exploited more systematically in future plant breeding.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Daniel Teshome Lopisso
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Andreas von Tiedemann
- Section of General Plant Pathology and Crop Protection, Georg August University Göttingen, 37077, Göttingen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
25
|
Mareri L, Milc J, Laviano L, Buti M, Vautrin S, Cauet S, Mascagni F, Natali L, Cavallini A, Bergès H, Pecchioni N, Francia E. Influence of CNV on transcript levels of HvCBF genes at Fr-H2 locus revealed by resequencing in resistant barley cv. 'Nure' and expression analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110305. [PMID: 31779917 DOI: 10.1016/j.plantsci.2019.110305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Resequencing in resistant cultivar 'Nure' and structural comparison with the same region of susceptible 'Morex' was performed in order to gain a better insight into barley Frost-resistance-H2 locus. Accurate annotation showed copy number variation (CNV) in the proximal part of the locus. In 'Nure', two exact copies of the HvCBF4-HvCBF2A region and one of the HvCBF4-HvCBF2B segment were observed, while in 'Morex' the corresponding region harboured a single HvCBF4-HvCBF2A (22 kb) segment. Abundance and diversity of repetitive element classes, gene function gain/losses, regulatory motifs and SNPs in gene sequences were identified. An expression study of key HvCBFs with/without CNV on selected genotypes contrasting for frost resistance and estimated HvCBF4-HvCBF2B copy number (2-10 copies) was also performed. Under light stimulus at warm temperature (23 °C), CNV of HvCBF2A and HvCBF4 correlated with their expression levels and reported frost resistance of genotypes; moreover, expression levels of HvCBF2A and HvCBF14 were strongly correlated (r = 0.908, p < 0.01). On the other hand, frost resistance correlated to HvCBF14 expression (r = 0.871, p < 0.01) only after cold induction (6°C) in the dark. A complex interplay of HvCBFs expression levels under different light/temperature stimuli is discussed in light of CNV and presence/number of regulatory elements that integrate different signal transduction pathways.
Collapse
Affiliation(s)
- Lavinia Mareri
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, Reggio Emilia, I-42122, Italy
| | - Justyna Milc
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, Reggio Emilia, I-42122, Italy
| | - Luca Laviano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, Reggio Emilia, I-42122, Italy
| | - Matteo Buti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, Reggio Emilia, I-42122, Italy
| | - Sonia Vautrin
- Centre National de Ressources Génomiques Végétales (CNRGV), Chemin de Borde Rouge 24-Auzeville CS 52627, Castanet Tolosan Cedex, F-31326, France
| | - Stéphane Cauet
- Centre National de Ressources Génomiques Végétales (CNRGV), Chemin de Borde Rouge 24-Auzeville CS 52627, Castanet Tolosan Cedex, F-31326, France
| | - Flavia Mascagni
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, via del Borghetto 80, Pisa, I-56124, Italy
| | - Lucia Natali
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, via del Borghetto 80, Pisa, I-56124, Italy
| | - Andrea Cavallini
- Department of Agricultural, Food, and Environmental Sciences, University of Pisa, via del Borghetto 80, Pisa, I-56124, Italy
| | - Hélène Bergès
- Centre National de Ressources Génomiques Végétales (CNRGV), Chemin de Borde Rouge 24-Auzeville CS 52627, Castanet Tolosan Cedex, F-31326, France
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops (CREA-CI), S.S. 673, Km 25,200, Foggia, I-71122, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, Reggio Emilia, I-42122, Italy
| | - Enrico Francia
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, Reggio Emilia, I-42122, Italy.
| |
Collapse
|
26
|
Lampei C, Wunder J, Wilhalm T, Schmid KJ. Microclimate predicts frost hardiness of alpine Arabidopsis thaliana populations better than elevation. Ecol Evol 2019; 9:13017-13029. [PMID: 31871626 PMCID: PMC6912909 DOI: 10.1002/ece3.5659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 01/17/2023] Open
Abstract
In mountain regions, topological differences on the microscale can strongly affect microclimate and may counteract the average effects of elevation, such as decreasing temperatures. While these interactions are well understood, their effect on plant adaptation is understudied. We investigated winter frost hardiness of Arabidopsis thaliana accessions originating from 13 sites along altitudinal gradients in the Southern Alps during three winters on an experimental field station on the Swabian Jura and compared levels of frost damage with the observed number of frost days and the lowest temperature in eight collection sites. We found that frost hardiness increased with elevation in a log-linear fashion. This is consistent with adaptation to a higher frequency of frost conditions, but also indicates a decreasing rate of change in frost hardiness with increasing elevation. Moreover, the number of frost days measured with temperature loggers at the collection sites correlated much better with frost hardiness than the elevation of collection sites, suggesting that populations were adapted to their local microclimate. Notably, the variance in frost days across sites increased exponentially with elevation. Together, our results suggest that strong microclimate heterogeneity of high alpine environments can preserve functional genetic diversity among small populations. Synthesis: Here, we tested how plant populations differed in their adaptation to frost exposure along an elevation gradient and whether microsite temperatures improve the prediction of frost hardiness. We found that local temperatures, particularly the number of frost days, are a better predictor of the frost hardiness of plants than elevation. This reflects a substantial variance in frost frequency between sites at similar high elevations. We conclude that high mountain regions harbor microsites that differ in their local microclimate and thereby can preserve a high functional genetic diversity among them. Therefore, high mountain regions have the potential to function as a refugium in times of global change.
Collapse
Affiliation(s)
- Christian Lampei
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
- Institute of Landscapes EcologyUniversity of MünsterMünsterGermany
| | - Jörg Wunder
- Max Planck Institute for Plant Breeding ResearchKölnGermany
| | | | - Karl J. Schmid
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| |
Collapse
|
27
|
Würschum T, Rapp M, Miedaner T, Longin CFH, Leiser WL. Copy number variation of Ppd-B1 is the major determinant of heading time in durum wheat. BMC Genet 2019; 20:64. [PMID: 31357926 PMCID: PMC6664704 DOI: 10.1186/s12863-019-0768-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background Heading time is an important adaptive trait in durum wheat. In hexaploid wheat, Photoperiod-1 (Ppd) loci are essential regulators of heading time, with Ppd-B1 conferring photoperiod insensitivity through copy number variations (CNV). In tetraploid wheat, the D-genome Ppd-D1 locus is absent and generally, our knowledge on the genetic architecture underlying heading time lacks behind that of bread wheat. Results In this study, we employed a panel of 328 diverse European durum genotypes that were evaluated for heading time at five environments. Genome-wide association mapping identified six putative QTL, with a major QTL on chromosome 2B explaining 26.2% of the genotypic variance. This QTL was shown to correspond to copy number variation at Ppd-B1, for which two copy number variants appear to be present. The higher copy number confers earlier heading and was more frequent in the heat and drought prone countries of lower latitude. In addition, two other QTL, corresponding to Vrn-B3 (TaFT) and Ppd-A1, were found to explain 9.5 and 5.3% of the genotypic variance, respectively. Conclusions Our results revealed the yet unknown role of copy number variation of Ppd-B1 as the major source underlying the variation in heading time in European durum wheat. The observed geographic patterns underline the adaptive value of this polymorphism and suggest that it is already used in durum breeding to tailor cultivars to specific target environments. In a broader context our findings provide further support for a more widespread role of copy number variation in mediating abiotic and biotic stress tolerance in plants. Electronic supplementary material The online version of this article (10.1186/s12863-019-0768-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Matthias Rapp
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
28
|
A comprehensive genomic scan reveals gene dosage balance impacts on quantitative traits in Populus trees. Proc Natl Acad Sci U S A 2019; 116:13690-13699. [PMID: 31213538 DOI: 10.1073/pnas.1903229116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gene dosage variation and the associated changes in gene expression influence a wide variety of traits, ranging from cancer in humans to yield in plants. It is also expected to affect important traits of ecological and agronomic importance in forest trees, but this variation has not been systematically characterized or exploited. Here we performed a comprehensive scan of the Populus genome for dosage-sensitive loci affecting quantitative trait variation for spring and fall phenology and biomass production. The study population was a large collection of clonally propagated F1 hybrid lines of Populus that saturate the genome 10-fold with deletions and insertions (indels) of known sizes and positions. As a group, the phenotypic means of the indel lines consistently differed from control nonindel lines, with an overall negative effect of both insertions and deletions on all biomass-related traits but more diverse effects and an overall wider phenotypic distribution of the indel lines for the phenology-related traits. We also investigated the correlation between gene dosage at specific chromosomal locations and phenotype, to identify dosage quantitative trait loci (dQTL). Such dQTL were detected for most phenotypes examined, but stronger effect dQTL were identified for the phenology-related traits than for the biomass traits. Our genome-wide screen for dosage sensitivity in a higher eukaryote demonstrates the importance of global genomic balance and the impact of dosage on life history traits.
Collapse
|
29
|
Gabur I, Chawla HS, Snowdon RJ, Parkin IAP. Connecting genome structural variation with complex traits in crop plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:733-750. [PMID: 30448864 DOI: 10.1007/s00122-018-3233-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 05/05/2023]
Abstract
Structural genome variation is a major determinant of useful trait diversity. We describe how genome analysis methods are enabling discovery of trait-associated structural variants and their potential impact on breeding. As our understanding of complex crop genomes continues to grow, there is growing evidence that structural genome variation plays a major role in determining traits important for breeding and agriculture. Identifying the extent and impact of structural variants in crop genomes is becoming increasingly feasible with ongoing advances in the sophistication of genome sequencing technologies, particularly as it becomes easier to generate accurate long sequence reads on a genome-wide scale. In this article, we discuss the origins of structural genome variation in crops from ancient and recent genome duplication and polyploidization events and review high-throughput methods to assay such variants in crop populations in order to find associations with phenotypic traits. There is increasing evidence from such studies that gene presence-absence and copy number variation resulting from segmental chromosome exchanges may be at the heart of adaptive variation of crops to counter abiotic and biotic stress factors. We present examples from major crops that demonstrate the potential of pangenomic diversity as a key resource for future plant breeding for resilience and sustainability.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N OX2, Canada
| |
Collapse
|
30
|
Lyra DH, Galli G, Alves FC, Granato ÍSC, Vidotti MS, Bandeira E Sousa M, Morosini JS, Crossa J, Fritsche-Neto R. Modeling copy number variation in the genomic prediction of maize hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:273-288. [PMID: 30382311 DOI: 10.1007/s00122-018-3215-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Our study indicates that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids. Moreover, predicting hybrid phenotypes by combining additive-dominance effects with copy variants has the potential to be a viable predictive model. Non-additive effects resulting from the actions of multiple loci may influence trait variation in single-cross hybrids. In addition, complementation of allelic variation could be a valuable contributor to hybrid genetic variation, especially when crossing inbred lines with higher contents of copy gains. With this in mind, we aimed (1) to study the association between copy number variation (CNV) and hybrid phenotype, and (2) to compare the predictive ability (PA) of additive and additive-dominance genomic best linear unbiased prediction model when combined with the effects of CNV in two datasets of maize hybrids (USP and HELIX). In the USP dataset, we observed a significant negative phenotypic correlation of low magnitude between copy number loss and plant height, revealing a tendency that more copy losses lead to lower plants. In the same set, when CNV was combined with the additive plus dominance effects, the PA significantly increased only for plant height under low nitrogen. In this case, CNV effects explicitly capture relatedness between individuals and add extra information to the model. In the HELIX dataset, we observed a pronounced difference in PA between additive (0.50) and additive-dominance (0.71) models for predicting grain yield, suggesting a significant contribution of dominance. We conclude that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids, although the inclusion of CNVs into datasets does not return significant gains concerning PA.
Collapse
Affiliation(s)
- Danilo Hottis Lyra
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil.
- Department of Computational and Analytical Sciences, Rothamsted Research, West Common, Harpenden, AL52JQ, UK.
| | - Giovanni Galli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Filipe Couto Alves
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Ítalo Stefanine Correia Granato
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Miriam Suzane Vidotti
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Massaine Bandeira E Sousa
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Júlia Silva Morosini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), 06600, Texcoco, D.F, Mexico
| | - Roberto Fritsche-Neto
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
31
|
Michel S, Löschenberger F, Hellinger J, Strasser V, Ametz C, Pachler B, Sparry E, Bürstmayr H. Improving and Maintaining Winter Hardiness and Frost Tolerance in Bread Wheat by Genomic Selection. FRONTIERS IN PLANT SCIENCE 2019; 10:1195. [PMID: 31632427 PMCID: PMC6781858 DOI: 10.3389/fpls.2019.01195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 05/18/2023]
Abstract
Winter hardiness is a major constraint for autumn sown crops in temperate regions, and thus an important breeding goal in the development of new winter wheat varieties. Winter hardiness is though influenced by many environmental factors rendering phenotypic selection under field conditions a difficult task due to irregular occurrence or absence of winter damage in field trials. Controlled frost tolerance tests in growth chamber experiments are, on the other hand, even with few genotypes, often costly and laborious, which makes a genomic breeding strategy for early generation selection an attractive alternative. The aims of this study were thus to compare the merit of marker-assisted selection using the major frost tolerance QTL Fr-A2 with genomic prediction for winter hardiness and frost tolerance, and to assess the potential of combining both measures with a genomic selection index using a high density marker map or a reduced set of pre-selected markers. Cross-validation within two training populations phenotyped for frost tolerance and winter hardiness underpinned the importance of Fr-A2 for frost tolerance especially when upweighting its effect in genomic prediction models, while a combined genomic selection index increased the prediction accuracy for an independent validation population in comparison to training with winter hardiness data alone. The prediction accuracy could moreover be maintained with pre-selected marker sets, which is highly relevant when employing cost reducing fingerprinting techniques such as targeted genotyping-by-sequencing. Genomic selection showed thus large potential to improve or maintain the performance of winter wheat for these difficult, costly, and laborious to phenotype traits.
Collapse
Affiliation(s)
- Sebastian Michel
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- *Correspondence: Sebastian Michel,
| | | | - Jakob Hellinger
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Verena Strasser
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | | | | | | | - Hermann Bürstmayr
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| |
Collapse
|
32
|
Dolatabadian A, Patel DA, Edwards D, Batley J. Copy number variation and disease resistance in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2479-2490. [PMID: 29043379 DOI: 10.1007/s00122-017-2993-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 05/06/2023]
Abstract
Plant genome diversity varies from single nucleotide polymorphisms to large-scale deletions, insertions, duplications, or re-arrangements. These re-arrangements of sequences resulting from duplication, gains or losses of DNA segments are termed copy number variations (CNVs). During the last decade, numerous studies have emphasized the importance of CNVs as a factor affecting human phenotype; in particular, CNVs have been associated with risks for several severe diseases. In plants, the exploration of the extent and role of CNVs in resistance against pathogens and pests is just beginning. Since CNVs are likely to be associated with disease resistance in plants, an understanding of the distribution of CNVs could assist in the identification of novel plant disease-resistance genes. In this paper, we review existing information about CNVs; their importance, role and function, as well as their association with disease resistance in plants.
Collapse
Affiliation(s)
- Aria Dolatabadian
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Dhwani Apurva Patel
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
33
|
Carlow CE, Faultless JT, Lee C, Siddiqua M, Edge A, Nassuth A. Nuclear localization and transactivation by Vitis CBF transcription factors are regulated by combinations of conserved amino acid domains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:306-319. [PMID: 28675818 DOI: 10.1016/j.plaphy.2017.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 05/07/2023]
Abstract
The highly conserved CBF pathway is crucial in the regulation of plant responses to low temperatures. Extensive analysis of Arabidopsis CBF proteins revealed that their functions rely on several conserved amino acid domains although the exact function of each domain is disputed. The question was what functions similar domains have in CBFs from other, overwintering woody plants such as Vitis, which likely have a more involved regulation than the model plant Arabidopsis. A total of seven CBF genes were cloned and sequenced from V. riparia and the less frost tolerant V. vinifera. The deduced species-specific amino acid sequences differ in only a few amino acids, mostly in non-conserved regions. Amino acid sequence comparison and phylogenetic analysis showed two distinct groups of Vitis CBFs. One group contains CBF1, CBF2, CBF3 and CBF8 and the other group contains CBF4, CBF5 and CBF6. Transient transactivation assays showed that all Vitis CBFs except CBF5 activate via a CRT or DRE promoter element, whereby Vitis CBF3 and 4 prefer a CRT element. The hydrophobic domains in the C-terminal end of VrCBF6 were shown to be important for how well it activates. The putative nuclear localization domain of Vitis CBF1 was shown to be sufficient for nuclear localization, in contrast to previous reports for AtCBF1, and also important for transactivation. The latter highlights the value of careful analysis of domain functions instead of reliance on computer predictions and published data for other related proteins.
Collapse
Affiliation(s)
- Chevonne E Carlow
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - J Trent Faultless
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Christine Lee
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Mahbuba Siddiqua
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Alison Edge
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Annette Nassuth
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
34
|
Kruse EB, Carle SW, Wen N, Skinner DZ, Murray TD, Garland-Campbell KA, Carter AH. Genomic Regions Associated with Tolerance to Freezing Stress and Snow Mold in Winter Wheat. G3 (BETHESDA, MD.) 2017; 7:775-780. [PMID: 28143950 PMCID: PMC5345707 DOI: 10.1534/g3.116.037622] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022]
Abstract
Plants grown through the winter are subject to selective pressures that vary with each year's unique conditions, necessitating tolerance of numerous abiotic and biotic stress factors. The objective of this study was to identify molecular markers in winter wheat (Triticum aestivum L.) associated with tolerance of two of these stresses, freezing temperatures and snow mold-a fungal disease complex active under snow cover. A population of 155 F2:5 recombinant inbred lines from a cross between soft white wheat cultivars "Finch" and "Eltan" was evaluated for snow mold tolerance in the field, and for freezing tolerance under controlled conditions. A total of 663 molecular markers was used to construct a genetic linkage map and identify marker-trait associations. One quantitative trait locus (QTL) associated with both freezing and snow mold tolerance was identified on chromosome 5A. A second, distinct, QTL associated with freezing tolerance also was found on 5A, and a third on 4B. A second QTL associated with snow mold tolerance was identified on chromosome 6B. The QTL on 5A associated with both traits was closely linked with the Fr-A2 (Frost-Resistance A2) locus; its significant association with both traits may have resulted from pleiotropic effects, or from greater low temperature tolerance enabling the plants to better defend against snow mold pathogens. The QTL on 4B associated with freezing tolerance, and the QTL on 6B associated with snow mold tolerance have not been reported previously, and may be useful in the identification of sources of tolerance for these traits.
Collapse
Affiliation(s)
- Erika B Kruse
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| | - Scott W Carle
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| | - Nuan Wen
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| | - Daniel Z Skinner
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
- United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research, Washington State University, Pullman, Washington 99164
| | - Timothy D Murray
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Kimberly A Garland-Campbell
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
- United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research, Washington State University, Pullman, Washington 99164
| | - Arron H Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
35
|
Optimal Regulation of the Balance between Productivity and Overwintering of Perennial Grasses in a Warmer Climate. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Würschum T, Longin CFH, Hahn V, Tucker MR, Leiser WL. Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:764-773. [PMID: 27859852 DOI: 10.1111/tpj.13424] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 05/22/2023]
Abstract
Winter hardiness is important for the adaptation of wheat to the harsh winter conditions in temperate regions and is thus also an important breeding goal. Here, we employed a panel of 407 European winter wheat cultivars to dissect the genetic architecture of winter hardiness. We show that copy number variation (CNV) of CBF (C-repeat Binding Factor) genes at the Fr-A2 locus is the essential component for winter survival, with CBF-A14 CNV being the most likely causal polymorphism, accounting for 24.3% of the genotypic variance. Genome-wide association mapping identified several markers in the Fr-A2 chromosomal region, which even after accounting for the effects of CBF-A14 copy number explained approximately 15% of the genotypic variance. This suggests that additional, as yet undiscovered, polymorphisms are present at the Fr-A2 locus. Furthermore, CNV of Vrn-A1 explained an additional 3.0% of the genotypic variance. The allele frequencies of all loci associated with winter hardiness were found to show geographic patterns consistent with their role in adaptation. Collectively, our results from the candidate gene analysis, association mapping and genome-wide prediction show that winter hardiness in wheat is a quantitative trait, but with a major contribution of the Fr-A2 locus.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Volker Hahn
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
37
|
Jha UC, Bohra A, Jha R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. PLANT CELL REPORTS 2017; 36:1-35. [PMID: 27878342 DOI: 10.1007/s00299-016-2073-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 05/11/2023]
Abstract
Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Abhishek Bohra
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Rintu Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India
| |
Collapse
|