1
|
Danso Ofori A, Zheng T, Titriku JK, Appiah C, Xiang X, Kandhro AG, Ahmed MI, Zheng A. The Role of Genetic Resistance in Rice Disease Management. Int J Mol Sci 2025; 26:956. [PMID: 39940724 PMCID: PMC11817016 DOI: 10.3390/ijms26030956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/04/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Rice (Oryza sativa) is a crucial staple crop for global food security, particularly in Asia. However, rice production faces significant challenges from various diseases that can cause substantial yield losses. This review explores the role of genetic resistance in rice disease management, focusing on the molecular mechanisms underlying plant-pathogen interactions and strategies for developing resistant varieties. The paper discusses qualitative and quantitative resistance, emphasizing the importance of resistance (R) genes, defense-regulator genes, and quantitative trait loci (QTLs) in conferring broad-spectrum disease resistance. Gene-for-gene relationships in rice-pathogen interactions are examined, particularly for Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae. The review also covers recent advancements in breeding techniques, including marker-assisted selection, genetic engineering, and genome editing technologies like CRISPR-Cas. These approaches offer promising avenues for enhancing disease resistance in rice while maintaining yield potential. Understanding and exploiting genetic resistance mechanisms is crucial for developing durable and broad-spectrum disease-resistant rice varieties, essential for ensuring sustainable rice production and global food security in the face of evolving pathogen threats and changing environmental conditions.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Charlotte Appiah
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (J.K.T.); (C.A.)
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (A.D.O.); (T.Z.); (X.X.); (A.G.K.); (M.I.A.)
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Mourad AMI, Ahmed AAM, Baenziger PS, Börner A, Sallam A. Broad-spectrum resistance to fungal foliar diseases in wheat: recent efforts and achievements. FRONTIERS IN PLANT SCIENCE 2024; 15:1516317. [PMID: 39735771 PMCID: PMC11671272 DOI: 10.3389/fpls.2024.1516317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
Wheat (Triticum spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually. Out of these diseases, stripe rust, also known as yellow rust (Puccinia striiformis f. sp. tritici), stem rust (Puccinia graminis f. sp. tritici), leaf rust (Puccinia recondita), and powdery mildew (Blumeria graminis f. sp. tritici) are the most important fungal diseases that infect the foliar part of the plant. Many efforts were made to improve wheat resistance to these diseases. Due to the continuous advancement in sequencing methods and genomic tools, genome-wide association study has become available worldwide. This analysis enabled wheat breeders to detect genomic regions controlling the resistance in specific countries. In this review, molecular markers significantly associated with the resistance of the mentioned foliar diseases in the last five years were reviewed. Common markers that control broad-spectrum resistance in different countries were identified. Furthermore, common genes controlling the resistance of more than one of these foliar diseases were identified. The importance of these genes, their functional annotation, and the potential for gene enrichment are discussed. This review will be valuable to wheat breeders in producing genotypes with broad-spectrum resistance by applying genomic selection for the target common markers and associated genes.
Collapse
Affiliation(s)
- Amira M. I. Mourad
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Agronomy, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - Asmaa A. M. Ahmed
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| |
Collapse
|
3
|
Mourad AMI, Börner A, Esmail SM. Effectiveness and Genetic Control of Trichoderma spp. as a Biological Control of Wheat Powdery Mildew Disease. PHYTOPATHOLOGY 2024; 114:2221-2234. [PMID: 38970807 DOI: 10.1094/phyto-05-24-0157-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of Trichoderma in controlling WPM. Of the three species, T. asperellum T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.
Collapse
Affiliation(s)
- Amira M I Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Seeland, OT Gatersleben, Germany
| | - Samar M Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, 12619 Giza, Egypt
| |
Collapse
|
4
|
Miedaner T, Eckhoff W, Flath K, Schmitt AK, Schulz P, Schacht J, Boeven P, Akel W, Kempf H, Gruner P. Mapping rust resistance in European winter wheat: many QTLs for yellow rust resistance, but only a few well characterized genes for stem rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:215. [PMID: 39235622 PMCID: PMC11377555 DOI: 10.1007/s00122-024-04731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
KEY MESSAGE Stem rust resistance was mainly based on a few, already known resistance genes; for yellow rust resistance there was a combination of designated genes and minor QTLs. Yellow rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) and stem rust (SR) caused by Puccinia graminis f. sp. tritici (Pgt) are among the most damaging wheat diseases. Although, yellow rust has occurred regularly in Europe since the advent of the Warrior race in 2011, damaging stem rust epidemics are still unusual. We analyzed the resistance of seven segregating populations at the adult growth stage with the parents being selected for YR and SR resistances across three to six environments (location-year combinations) following inoculation with defined Pst and Pgt races. In total, 600 progenies were phenotyped and 563 were genotyped with a 25k SNP array. For SR resistance, three major resistance genes (Sr24, Sr31, Sr38/Yr17) were detected in different combinations. Additional QTLs provided much smaller effects except for a gene on chromosome 4B that explained much of the genetic variance. For YR resistance, ten loci with highly varying percentages of explained genetic variance (pG, 6-99%) were mapped. Our results imply that introgression of new SR resistances will be necessary for breeding future rust resistant cultivars, whereas YR resistance can be achieved by genomic selection of many of the detected QTLs.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Wera Eckhoff
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Kerstin Flath
- Institut für Pflanzenschutz in Ackerbau und Grünland, Julius Kühn-Institut (JKI), Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - Anne-Kristin Schmitt
- Institut für Pflanzenschutz in Ackerbau und Grünland, Julius Kühn-Institut (JKI), Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - Philipp Schulz
- Institut für Pflanzenschutz in Ackerbau und Grünland, Julius Kühn-Institut (JKI), Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | | | | | - Wessam Akel
- Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Hubert Kempf
- SECOBRA Saatzucht GmbH, Feldkirchen 3, 85368, Moosburg an der Isar, Germany
| | - Paul Gruner
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
- Sativa Rheinau, Chorbstr. 43, 8462, Rheinau, Switzerland
| |
Collapse
|
5
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
6
|
Liu S, Liu D, Zhang C, Zhang W, Wang X, Mi Z, Gao X, Ren Y, Lan C, Liu X, Zhao Z, Liu J, Li H, Yuan F, Su B, Kang Z, Li C, Han D, Wang C, Cao X, Wu J. Slow stripe rusting in Chinese wheat Jimai 44 conferred by Yr29 in combination with a major QTL on chromosome arm 6AL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:175. [PMID: 37498321 DOI: 10.1007/s00122-023-04420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
YrJ44, a more effective slow rusting gene than Yr29, was localized to a 3.5-cM interval between AQP markers AX-109373479 and AX-109563479 on chromosome 6AL. "Slow rusting" (SR) is a type of adult plant resistance (APR) that can provide non-specific durable resistance to stripe rust in wheat. Chinese elite wheat cultivar Jimai 44 (JM44) has maintained SR to stripe rust in China since its release despite exposure to a changing and variable pathogen population. An F2:6 population comprising 295 recombinant inbred lines (RILs) derived from a cross between JM44 and susceptible cultivar Jimai 229 (JM229) was used in genetic analysis of the SR. The RILs and parental lines were evaluated for stripe rust response in five field environments and genotyped using the Affymetrix Wheat55K SNP array and 13 allele-specific quantitative PCR-based (AQP) markers. Two stable QTL on chromosome arms 1BL and 6AL were identified by inclusive composite interval mapping. The 1BL QTL was probably the pleiotropic gene Lr46/Yr29/Sr58. QYr.nwafu-6AL (hereafter named YrJ44), mapped in a 3.5-cM interval between AQP markers AX-109373479 and AX-109563479, was more effective than Yr29 in reducing disease severity and relative area under the disease progress curve (rAUDPC). RILs harboring both YrJ44 and Yr29 displayed levels of SR equal to the resistant parent JM44. The AQP markers linked with YrJ44 were polymorphic and significantly correlated with stripe rust resistance in a panel of 1,019 wheat cultivars and breeding lines. These results suggested that adequate SR resistance can be obtained by combining YrJ44 and Yr29 and the AQP markers can be used in breeding for durable stripe rust resistance.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanliang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhiwen Mi
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Laboratory of Agricultural Information Perception and Intelligent Services, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xin Gao
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Yong Ren
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang Institute of Agricultural Science, Mianyang, 621023, Sichuan, China
| | - Caixia Lan
- College of Plant Science and Technology, Huazhong Agricultural University/Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiukun Liu
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Zhendong Zhao
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Jianjun Liu
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Haosheng Li
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Baofeng Su
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Laboratory of Agricultural Information Perception and Intelligent Services, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xinyou Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
7
|
Klymiuk V, Haile T, Ens J, Wiebe K, N’Diaye A, Fatiukha A, Krugman T, Ben-David R, Hübner S, Cloutier S, Pozniak CJ. Genetic architecture of rust resistance in a wheat ( Triticum turgidum) diversity panel. FRONTIERS IN PLANT SCIENCE 2023; 14:1145371. [PMID: 36998679 PMCID: PMC10043469 DOI: 10.3389/fpls.2023.1145371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Introduction Wheat rust diseases are widespread and affect all wheat growing areas around the globe. Breeding strategies focus on incorporating genetic disease resistance. However, pathogens can quickly evolve and overcome the resistance genes deployed in commercial cultivars, creating a constant need for identifying new sources of resistance. Methods We have assembled a diverse tetraploid wheat panel comprised of 447 accessions of three Triticum turgidum subspecies and performed a genome-wide association study (GWAS) for resistance to wheat stem, stripe, and leaf rusts. The panel was genotyped with the 90K Wheat iSelect single nucleotide polymorphism (SNP) array and subsequent filtering resulted in a set of 6,410 non-redundant SNP markers with known physical positions. Results Population structure and phylogenetic analyses revealed that the diversity panel could be divided into three subpopulations based on phylogenetic/geographic relatedness. Marker-trait associations (MTAs) were detected for two stem rust, two stripe rust and one leaf rust resistance loci. Of them, three MTAs coincide with the known rust resistance genes Sr13, Yr15 and Yr67, while the other two may harbor undescribed resistance genes. Discussion The tetraploid wheat diversity panel, developed and characterized herein, captures wide geographic origins, genetic diversity, and evolutionary history since domestication making it a useful community resource for mapping of other agronomically important traits and for conducting evolutionary studies.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teketel Haile
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N’Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrii Fatiukha
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Roi Ben-David
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO) – The Volcani Center, Rishon LeZion, Israel
| | - Sariel Hübner
- Galilee Research Institute (MIGAL), Tel Hai Academic College, Upper Galilee, Israel
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Shahinnia F, Geyer M, Schürmann F, Rudolphi S, Holzapfel J, Kempf H, Stadlmeier M, Löschenberger F, Morales L, Buerstmayr H, Sánchez JIY, Akdemir D, Mohler V, Lillemo M, Hartl L. Genome-wide association study and genomic prediction of resistance to stripe rust in current Central and Northern European winter wheat germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3583-3595. [PMID: 36018343 PMCID: PMC9519682 DOI: 10.1007/s00122-022-04202-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/17/2022] [Indexed: 05/03/2023]
Abstract
We found two loci on chromosomes 2BS and 6AL that significantly contribute to stripe rust resistance in current European winter wheat germplasm. Stripe or yellow rust, caused by the fungus Puccinia striiformis Westend f. sp. tritici, is one of the most destructive wheat diseases. Sustainable management of wheat stripe rust can be achieved through the deployment of rust resistant cultivars. To detect effective resistance loci for use in breeding programs, an association mapping panel of 230 winter wheat cultivars and breeding lines from Northern and Central Europe was employed. Genotyping with the Illumina® iSelect® 25 K Infinium® single nucleotide polymorphism (SNP) genotyping array yielded 8812 polymorphic markers. Structure analysis revealed two subpopulations with 92 Austrian breeding lines and cultivars, which were separated from the other 138 genotypes from Germany, Norway, Sweden, Denmark, Poland, and Switzerland. Genome-wide association study for adult plant stripe rust resistance identified 12 SNP markers on six wheat chromosomes which showed consistent effects over several testing environments. Among these, two marker loci on chromosomes 2BS (RAC875_c1226_652) and 6AL (Tdurum_contig29607_413) were highly predictive in three independent validation populations of 1065, 1001, and 175 breeding lines. Lines with the resistant haplotype at both loci were nearly free of stipe rust symptoms. By using mixed linear models with those markers as fixed effects, we could increase predictive ability in the three populations by 0.13-0.46 compared to a standard genomic best linear unbiased prediction approach. The obtained results facilitate an efficient selection for stripe rust resistance against the current pathogen population in the Northern and Central European winter wheat gene pool.
Collapse
Affiliation(s)
- Fahimeh Shahinnia
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany.
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | | | - Sabine Rudolphi
- SECOBRA Saatzucht GmbH, Lagesche Str. 250, 32657, Lemgo, Germany
| | - Josef Holzapfel
- SECOBRA Saatzucht GmbH, Feldkirchen 3, 85368, Moosburg, Germany
| | - Hubert Kempf
- SECOBRA Saatzucht GmbH, Feldkirchen 3, 85368, Moosburg, Germany
| | | | | | - Laura Morales
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln an der Donau, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln an der Donau, Austria
| | - Julio Isidro Y Sánchez
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Deniz Akdemir
- Center for International Blood and Marrow Transplant Research (CIBMTR), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, 85354, Freising, Germany.
| |
Collapse
|
9
|
Pal N, Jan I, Saini DK, Kumar K, Kumar A, Sharma PK, Kumar S, Balyan HS, Gupta PK. Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2385-2405. [PMID: 35699741 DOI: 10.1007/s00122-022-04119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
In wheat, multiple disease resistance meta-QTLs (MDR-MQTLs) and underlying candidate genes for the three rusts were identified which may prove useful for development of resistant cultivars. Rust diseases in wheat are a major threat to global food security. Therefore, development of multiple disease-resistant cultivars (resistant to all three rusts) is a major goal in all wheat breeding programs worldwide. In the present study, meta-QTLs and candidate genes for multiple disease resistance (MDR) involving all three rusts were identified using 152 individual QTL mapping studies for resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR). From these 152 studies, a total of 1,146 QTLs for resistance to three rusts were retrieved, which included 368 QTLs for LR, 291 QTLs for SR, and 487 QTLs for YR. Of these 1,146 QTLs, only 718 QTLs could be projected onto the consensus map saturated with 2, 34,619 markers. Meta-analysis of the projected QTLs resulted in the identification of 86 MQTLs, which included 71 MDR-MQTLs. Ten of these MDR-MQTLs were referred to as the 'Breeders' MQTLs'. Seventy-eight of the 86 MQTLs could also be anchored to the physical map of the wheat genome, and 54 MQTLs were validated by marker-trait associations identified during earlier genome-wide association studies. Twenty MQTLs (including 17 MDR-MQTLs) identified in the present study were co-localized with 44 known R genes. In silico expression analysis allowed identification of several differentially expressed candidate genes (DECGs) encoding proteins carrying different domains including the following: NBS-LRR, WRKY domains, F-box domains, sugar transporters, transferases, etc. The introgression of these MDR loci into high-yielding cultivars should prove useful for developing high yielding cultivars with resistance to all the three rusts.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
- Murdoch's Centre for Crop & Food Innovation, Murdoch University, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
10
|
Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:11. [PMID: 37309411 PMCID: PMC10248701 DOI: 10.1007/s11032-022-01282-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In wheat, meta-QTLs (MQTLs) and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103 QTLs; fusarium head blight (FHB), 184 QTLs; karnal bunt (KB), 66 QTLs; and loose smut (LS), 14 QTLs. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed candidate genes (DECGs). Among the DECGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping and cloning of MDR genes and marker-assisted breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01282-z.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttrakhand-263145 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
11
|
Miedaner T, Juroszek P. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1771-1785. [PMID: 33715023 PMCID: PMC8205889 DOI: 10.1007/s00122-021-03807-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/25/2021] [Indexed: 05/07/2023]
Abstract
Wheat productivity is threatened by global climate change. In several parts of NW Europe it will get warmer and dryer during the main crop growing period. The resulting likely lower realized on-farm crop yields must be kept by breeding for resistance against already existing and emerging diseases among other measures. Multi-disease resistance will get especially crucial. In this review, we focus on disease resistance breeding approaches in wheat, especially related to rust diseases and Fusarium head blight, because simulation studies of potential future disease risk have shown that these diseases will be increasingly relevant in the future. The long-term changes in disease occurrence must inevitably lead to adjustments of future resistance breeding strategies, whereby stability and durability of disease resistance under heat and water stress will be important in the future. In general, it would be important to focus on non-temperature sensitive resistance genes/QTLs. To conclude, research on the effects of heat and drought stress on disease resistance reactions must be given special attention in the future.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Peter Juroszek
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), 55545, Bad Kreuznach, Germany
| |
Collapse
|
12
|
Laidig F, Feike T, Hadasch S, Rentel D, Klocke B, Miedaner T, Piepho HP. Breeding progress of disease resistance and impact of disease severity under natural infections in winter wheat variety trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1281-1302. [PMID: 33713338 PMCID: PMC8081715 DOI: 10.1007/s00122-020-03728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/11/2020] [Indexed: 05/20/2023]
Abstract
Breeding progress of resistance to fungal wheat diseases and impact of disease severity on yield reduction in long-term variety trials under natural infection were estimated by mixed linear regression models. This study aimed at quantifying breeding progress achieved in resistance breeding towards varieties with higher yield and lower susceptibility for 6 major diseases, as well as estimating decreasing yields and increasing disease susceptibility of varieties due to ageing effects during the period 1983-2019. A further aim was the prediction of disease-related yield reductions during 2005-2019 by mixed linear regression models using disease severity scores as covariates. For yield and all diseases, overall progress of the fully treated intensity (I2) was considerably higher than for the intensity without fungicides and growth regulators (I1). The disease severity level was considerably reduced during the study period for mildew (MLD), tan spot (DTR) and Septoria nodorum blotch (ear) (SNB) and to a lesser extent for brown (leaf) rust (BNR) and Septoria tritici blotch (STB), however, not for yellow/stripe rust (YLR). Ageing effects increased susceptibility of varieties strongly for BNR and MLD, but were comparatively weak for SNB and DTR. Considerable yield reductions under high disease severity were predicted for STB (-6.6%), BNR (-6.5%) and yellow rust (YLR, -5.8%), but lower reductions for the other diseases. The reduction for resistant vs. highly susceptible varieties under high severity conditions was about halved for BNR and YLR, providing evidence of resistance breeding progress. The empirical evidence on the functional relations between disease severity, variety susceptibility and yield reductions based on a large-scale multiple-disease field trial data set in German winter wheat is an important contribution to the ongoing discussion on fungicide use and its environmental impact.
Collapse
Affiliation(s)
- F Laidig
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany.
| | - T Feike
- Institute for Strategies and Technology Assessment, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - S Hadasch
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany
| | - D Rentel
- Bundessortenamt, Osterfelddamm 60, 30627, Hannover, Germany
| | - B Klocke
- Institute for Strategies and Technology Assessment, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Stahnsdorfer Damm 81, 14532, Kleinmachnow, Germany
| | - T Miedaner
- University of Hohenheim, State Plant Breeding Institute, Fruwirthstrasse 21, 70599, Stuttgart, Germany
| | - H P Piepho
- Institute of Crop Science, Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany
| |
Collapse
|
13
|
Zakieh M, Gaikpa DS, Leiva Sandoval F, Alamrani M, Henriksson T, Odilbekov F, Chawade A. Characterizing Winter Wheat Germplasm for Fusarium Head Blight Resistance Under Accelerated Growth Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:705006. [PMID: 34512690 PMCID: PMC8425451 DOI: 10.3389/fpls.2021.705006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 05/16/2023]
Abstract
Fusarium head blight (FHB) is one of the economically important diseases of wheat as it causes severe yield loss and reduces grain quality. In winter wheat, due to its vernalization requirement, it takes an exceptionally long time for plants to reach the heading stage, thereby prolonging the time it takes for characterizing germplasm for FHB resistance. Therefore, in this work, we developed a protocol to evaluate winter wheat germplasm for FHB resistance under accelerated growth conditions. The protocol reduces the time required for plants to begin heading while avoiding any visible symptoms of stress on plants. The protocol was tested on 432 genotypes obtained from a breeding program and a genebank. The mean area under disease progress curve for FHB was 225.13 in the breeding set and 195.53 in the genebank set, indicating that the germplasm from the genebank set had higher resistance to FHB. In total, 10 quantitative trait loci (QTL) for FHB severity were identified by association mapping. Of these, nine QTL were identified in the combined set comprising both genebank and breeding sets, while two QTL each were identified in the breeding set and genebank set, respectively, when analyzed separately. Some QTLs overlapped between the three datasets. The results reveal that the protocol for FHB evaluation integrating accelerated growth conditions is an efficient approach for FHB resistance breeding in winter wheat and can be even applied to spring wheat after minor modifications.
Collapse
Affiliation(s)
- Mustafa Zakieh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - David S. Gaikpa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Marwan Alamrani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Firuz Odilbekov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- Lantmännen Lantbruk, Svalöv, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Aakash Chawade,
| |
Collapse
|
14
|
Miedaner T, Boeven ALGC, Gaikpa DS, Kistner MB, Grote CP. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int J Mol Sci 2020; 21:E9717. [PMID: 33352763 PMCID: PMC7766114 DOI: 10.3390/ijms21249717] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Ana Luisa Galiano-Carneiro Boeven
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - David Sewodor Gaikpa
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Maria Belén Kistner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), CC31, B2700WAA Pergamino, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Cathérine Pauline Grote
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| |
Collapse
|
15
|
Jia M, Yang L, Zhang W, Rosewarne G, Li J, Yang E, Chen L, Wang W, Liu Y, Tong H, He W, Zhang Y, Zhu Z, Gao C. Genome-wide association analysis of stripe rust resistance in modern Chinese wheat. BMC PLANT BIOLOGY 2020; 20:491. [PMID: 33109074 PMCID: PMC7590722 DOI: 10.1186/s12870-020-02693-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/12/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Stripe rust (yellow rust) is a significant disease for bread wheat (Triticum aestivum L.) worldwide. A genome-wide association study was conducted on 240 Chinese wheat cultivars and elite lines genotyped with the wheat 90 K single nucleotide polymorphism (SNP) arrays to decipher the genetic architecture of stripe rust resistance in Chinese germplasm. RESULTS Stripe rust resistance was evaluated at the adult plant stage in Pixian and Xindu in Sichuan province in the 2015-2016 cropping season, and in Wuhan in Hubei province in the 2013-2014, 2016-2017 and 2018-2019 cropping seasons. Twelve stable loci for stripe rust resistance were identified by GWAS using TASSEL and GAPIT software. These loci were distributed on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4B (3), 4D, 6D, and 7B and explained 3.6 to 10.3% of the phenotypic variation. Six of the loci corresponded with previously reported genes/QTLs, including Sr2/Yr30/Lr27, while the other six (QYr.hbaas-1BS, QYr.hbaas-2BL, QYr.hbaas-3AL, QYr.hbaas-4BL.3, QYr.hbaas-4DL, and QYr.hbaas-6DS) are probably novel. The results suggest high genetic diversity for stripe rust resistance in this population. The resistance alleles of QYr.hbaas-2AS, QYr.hbaas-3BS, QYr.hbaas-4DL, and QYr.hbaas-7BL were rare in the present panel, indicating their potential use in breeding for stripe rust resistance in China. Eleven penta-primer amplification refractory mutation system (PARMS) markers were developed from SNPs significantly associated with seven mapped QTLs. Twenty-seven genes were predicted for mapped QTLs. Six of them were considered as candidates for their high relative expression levels post-inoculation. CONCLUSION The resistant germplasm, mapped QTLs, and PARMS markers developed in this study are resources for enhancing stripe rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Mengjie Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, 58108-6050, USA
| | - Garry Rosewarne
- Department of Jobs, Precincts and Regions, Agriculture Victoria, 110 Natimuk Road, Horsham, Victoria, 3400, Australia
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico D.F., Mexico
| | - Junhui Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Enian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ling Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Wenxue Wang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Hanwen Tong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Weijie He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Yuqing Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China.
| | - Chunbao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan, 430064, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze university, Jingzhou, 434025, China.
| |
Collapse
|