1
|
Belludi R, Sharma A, Sharma SP, Ramesh GV, Gudi S. Leveraging chlorophyll fluorescence uncovers potato virus Y resistance in potato and its validation through viral quantification and yield loss studies. PLANT CELL REPORTS 2025; 44:100. [PMID: 40274639 DOI: 10.1007/s00299-025-03489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
KEY MESSAGE Chlorophyll fluorescence (CF) measurements have been demonstrated to be an efficient and non-invasive tool for identifying and developing PVY-resistant potato cultivars. The validity of CF measurements was confirmed through viral titer and yield-loss assays. In the quest to identify resistant sources for potato virus Y (PVY) within Indian potato germplasm, we developed a phenotyping approach leveraging plant physiological responses against PVY infection. The study evaluated 71 potato genotypes including cultivated and experimental clones, during the year 2021-2022 and 2022-23 through mechanical inoculation in experimental fields at the Punjab Agricultural University, Ludhiana. We employed a combination of serological and molecular screening, complemented with chlorophyll fluorescence (CF) measurements to classify resistant and susceptible genotypes. Out of 71 genotypes, 34 exhibited PVY resistance, with KP-16-19-14 being the highly resistant line with minimal yield loss (i.e., only 1.64% reduction) and undetectable viral titer. This genotype holds promise as a valuable resistance source for future breeding programmes. Our findings revealed that resistant genotypes maintained stable CF metrics and experienced minimal yield reductions (up to 5.15% only), with very low viral titer. In contrast, the photosynthetic efficiency was significantly declined in susceptible genotypes, which also experienced yield losses up to 58.84% with very high viral titer. Correlation coefficient and principal component analysis (PCA) revealed a strong association among the CF parameters, disease severity, viral titer, and yield losses. This emphasizes the utility of CF as a valuable tool for assessing resistance through physiological responses to PVY. Study demonstrates that photochemistry, heat dissipation, and fluorescence emission patterns of PS-II effectively differentiate resistant and susceptible genotypes. Moreover, this study highlights the potential of integrating physiological assessments with molecular diagnostics in large-scale preliminary screening to identify and develop PVY-resistant potato genotypes.
Collapse
Affiliation(s)
- Rakesh Belludi
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Abhishek Sharma
- Department of Vegetable Sciences, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Sat Pal Sharma
- Department of Vegetable Sciences, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gutha Venkata Ramesh
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
2
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
3
|
Piau M, Schmitt-Keichinger C. The Hypersensitive Response to Plant Viruses. Viruses 2023; 15:2000. [PMID: 37896777 PMCID: PMC10612061 DOI: 10.3390/v15102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Plant proteins with domains rich in leucine repeats play important roles in detecting pathogens and triggering defense reactions, both at the cellular surface for pattern-triggered immunity and in the cell to ensure effector-triggered immunity. As intracellular parasites, viruses are mostly detected intracellularly by proteins with a nucleotide binding site and leucine-rich repeats but receptor-like kinases with leucine-rich repeats, known to localize at the cell surface, have also been involved in response to viruses. In the present review we report on the progress that has been achieved in the last decade on the role of these leucine-rich proteins in antiviral immunity, with a special focus on our current understanding of the hypersensitive response.
Collapse
|
4
|
Cowan G, MacFarlane S, Torrance L. A new simple and effective method for PLRV infection to screen for virus resistance in potato. J Virol Methods 2023; 315:114691. [PMID: 36787852 DOI: 10.1016/j.jviromet.2023.114691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Effective screening of plant germplasm collections for resistance to plant viruses requires that there is a rapid and efficient system in place to challenge individual plants with the virus. Potato leafroll virus (PLRV), a commercially important pathogen of potato, is able naturally to infect only the phloem-associated tissue of plants and is delivered to this tissue by feeding aphids. Mechanical (non-vector-mediated) infection by PLRV does not occur thus screening for PLRV resistance is currently laborious and time consuming. We constructed an infectious cDNA clone of a new (Hutton) isolate of PLRV in the binary vector pDIVA and transformed it into Agrobacterium tumefaciens strain LBA4404. Infiltration of this culture into leaves of Nicotiana benthamiana, a highly susceptible model plant, produced a systemic infection with PLRV, although this approach was not successful for potato. However, a very efficient and reproducible systemic infection of potato was achieved when we submerged cut stems of the plant into the agrobacterium cell suspension and then transplanted the stems into compost to grow roots and new apical leaves. Using a standardised protocol developed for this new PLRV inoculation method we have confirmed the previously described resistance to the virus in the JHI breeding line G8107(1) and identified 62 plant accessions from the Commonwealth Potato Collection in which no PLRV infection was detected.
Collapse
Affiliation(s)
- Graham Cowan
- Cell and Molecular Sciences Dept., The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland.
| | - Stuart MacFarlane
- Cell and Molecular Sciences Dept., The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Lesley Torrance
- Cell and Molecular Sciences Dept., The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| |
Collapse
|
5
|
Bhoi TK, Samal I, Majhi PK, Komal J, Mahanta DK, Pradhan AK, Saini V, Nikhil Raj M, Ahmad MA, Behera PP, Ashwini M. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front Microbiol 2022; 13:1001454. [PMID: 36504828 PMCID: PMC9729956 DOI: 10.3389/fmicb.2022.1001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.
Collapse
Affiliation(s)
- Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India,J. Komal
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India,*Correspondence: Deepak Kumar Mahanta
| | - Asit Kumar Pradhan
- Social Science Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Varun Saini
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | | | - Mangali Ashwini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
6
|
Huang W, Dong J, Zhao X, Zhao Z, Li C, Li J, Song B. QTL analysis of tuber shape in a diploid potato population. FRONTIERS IN PLANT SCIENCE 2022; 13:1046287. [PMID: 36438140 PMCID: PMC9685338 DOI: 10.3389/fpls.2022.1046287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Tuber shape is one of the most important traits for potato breeding. Since poor or irregular shape increases the difficulty of handling and processing, researching the inheritance of potato tuber shape for potato breeding is highly important. To efficiently identify QTL for tuber shape, a diploid potato population (PM7) was generated by self-pollinated M6 (S. chacoense). A QTL TScha6 for tuber shape was identified by the QTL-seq approach at 50.91-59.93 Mb on chromosome 6 in the potato DM reference genome. To confirm TScha6, four SSR and twenty CAPS markers around the QTL were developed and the TScha6 was narrowed down to an interval of ~ 1.85 Mb. The CAPS marker C6-58.27_665 linked to TScha6 was then used to screen 86 potato cultivars and advanced breeding lines. The tuber length/width (LW) ratio was significantly correlated with the presence/absence of C6-58.27_665, and the correlation coefficient was r = 0.55 (p < 0.01). These results showed that C6-58.27_665 could be applied in marker-assisted selection (MAS) for tuber shape breeding in the future. Our research sets the important stage for the future cloning of the tuber shape gene and utilities of the marker in the breeding program.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
- Forestry and Fruit Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jianke Dong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xijuan Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiyuan Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunyan Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingcai Li
- College of Biology and Agricultural Resources, Huanggang Normal University/Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, Hubei, China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Křížkovská B, Viktorová J, Lipov J. Approved Genetically Modified Potatoes ( Solanum tuberosum) for Improved Stress Resistance and Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11833-11843. [PMID: 36103343 PMCID: PMC9524371 DOI: 10.1021/acs.jafc.2c03837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Potatoes (Solanum tuberosum) are one of the most important crops worldwide. However, its production and nutrient content are endangered by both biotic and abiotic stresses. The main yield losses are caused by pest damage (e.g., Colorado potato beetle and aphids), virus disease (e.g., Potato leafroll virus and Potato viruses Y and X), or oomycete pathogens (like Phytophthora infestans), which also significantly affect the production of antinutrients and toxic metabolites of plants. Therefore, the use of genetic engineering could be an efficient tool, not harmful to the environment, and beneficial to the consumer. In this review, we focus on the main sources of problems in the field of potato production according to approved genetic modifications, their traditional solution and positive impact of gene transfection reducing economic losses, use of insecticides, and improving the nutritional properties of potatoes. We summarize all transgenic events that have been performed on potatoes and have been approved for cultivation and/or direct use or processing as feed or food.
Collapse
Affiliation(s)
- Bára Křížkovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
8
|
Determinants of Virus Variation, Evolution, and Host Adaptation. Pathogens 2022; 11:pathogens11091039. [PMID: 36145471 PMCID: PMC9501407 DOI: 10.3390/pathogens11091039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Virus evolution is the change in the genetic structure of a viral population over time and results in the emergence of new viral variants, strains, and species with novel biological properties, including adaptation to new hosts. There are host, vector, environmental, and viral factors that contribute to virus evolution. To achieve or fine tune compatibility and successfully establish infection, viruses adapt to a particular host species or to a group of species. However, some viruses are better able to adapt to diverse hosts, vectors, and environments. Viruses generate genetic diversity through mutation, reassortment, and recombination. Plant viruses are exposed to genetic drift and selection pressures by host and vector factors, and random variants or those with a competitive advantage are fixed in the population and mediate the emergence of new viral strains or species with novel biological properties. This process creates a footprint in the virus genome evident as the preferential accumulation of substitutions, insertions, or deletions in areas of the genome that function as determinants of host adaptation. Here, with respect to plant viruses, we review the current understanding of the sources of variation, the effect of selection, and its role in virus evolution and host adaptation.
Collapse
|
9
|
Tiwari JK, A J, Tuteja N, Khurana SMP. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.). Mol Biol Rep 2022; 49:12109-12119. [PMID: 35764748 DOI: 10.1007/s11033-022-07704-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Plant viruses are the major pathogens that cause heavy yield loss in potato. The important viruses are potato virus X, potato virus Y and potato leaf roll virus around the world. Besides these three viruses, a novel tomato leaf curl New Delhi virus is serious in India. Conventional cum molecular breeding and transgenics approaches have been applied to develop virus resistant potato genotypes. But progress is slow in developing resistant varieties due to lack of host genes and long breeding process, and biosafety concern with transgenics. Hence, CRISPR-Cas mediated genome editing has emerged as a powerful technology to address these issues. CRISPR-Cas technology has been deployed in potato for several important traits. We highlight here CRISPR-Cas approaches of virus resistance through targeting viral genome (DNA or RNA), host factor gene and multiplexing of target genes simultaneously. Further, advancement in CRISPR-Cas research is presented in the area of DNA-free genome editing, virus-induced genome editing, and base editing. CRISPR-Cas delivery, transformation methods, and challenges in tetraploid potato and possible methods are also discussed.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Jeevalatha A
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India
| | | |
Collapse
|
10
|
Campbell R, Ducreux L, Cowan G, Young V, Chinoko G, Chitedze G, Kwendani S, Chiipanthenga M, Bita CE, Mwenye O, Were H, Torrance L, Sharma SK, Hancock RD, Bryan GJ, Taylor M. Allelic variants of a potato
HEAT SHOCK COGNATE 70
gene confer improved tuber yield under a wide range of environmental conditions. Food Energy Secur 2022; 12:e377. [PMID: 37035023 PMCID: PMC10078605 DOI: 10.1002/fes3.377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Previously, we developed and applied a glasshouse screen for potato tuber yield under heat stress and identified a candidate gene (HSc70) for heat tolerance by genetic analysis of a diploid potato population. Specific allelic variants were expressed at high levels on exposure to moderately elevated temperature due to variations in gene promoter sequence. In this study, we aimed to confirm the results from the glasshouse screen in field trials conducted over several seasons and locations including those in Kenya, Malawi and the UK. We extend our understanding of the HSc70 gene and demonstrate that expression level of HSc70 correlates with tolerance to heat stress in a wide range of wild potato relatives. The physiological basis of the protective effect of HSc70 was explored and we show that genotypes carrying the highly expressed HSc70 A2 allele are protected against photooxidative damage to PSII induced by abiotic stresses. Overall, we show the potential of HSc70 alleles for breeding resilient potato genotypes for multiple environments.
Collapse
Affiliation(s)
- Raymond Campbell
- Cell and Molecular Sciences The James Hutton Institute Dundee UK
| | - Laurence Ducreux
- Cell and Molecular Sciences The James Hutton Institute Dundee UK
| | - Graham Cowan
- Cell and Molecular Sciences The James Hutton Institute Dundee UK
| | | | | | - Gloria Chitedze
- Department of Agricultural Research Services Bvumbwe Agricultural Research Station Limbe Malawi
| | - Stanley Kwendani
- Department of Agricultural Research Services Bvumbwe Agricultural Research Station Limbe Malawi
| | - Margaret Chiipanthenga
- Department of Agricultural Research Services Bvumbwe Agricultural Research Station Limbe Malawi
| | | | | | - Hassan Were
- Department of Agriculture and Land Use Management Masinde Muliro University of Science and Technology Kakamega Kenya
| | - Lesley Torrance
- Cell and Molecular Sciences The James Hutton Institute Dundee UK
- School of Biology Biomolecular Sciences Building University of St Andrews St Andrews UK
| | | | | | - Glenn J. Bryan
- Cell and Molecular Sciences The James Hutton Institute Dundee UK
| | - Mark Taylor
- Cell and Molecular Sciences The James Hutton Institute Dundee UK
| |
Collapse
|
11
|
Glushkevich A, Spechenkova N, Fesenko I, Knyazev A, Samarskaya V, Kalinina NO, Taliansky M, Love AJ. Transcriptomic Reprogramming, Alternative Splicing and RNA Methylation in Potato ( Solanum tuberosum L.) Plants in Response to Potato Virus Y Infection. PLANTS (BASEL, SWITZERLAND) 2022; 11:635. [PMID: 35270104 PMCID: PMC8912425 DOI: 10.3390/plants11050635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in controlling the temperature regulation of plant-virus interactions are poorly characterised. To elucidate these further, we analysed the responses of potato plants cv Chicago to infection by potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), the latter of which is known to significantly increase plant susceptibility to PVY. Using RNAseq analysis, we showed that single and combined PVY and heat-stress treatments caused dramatic changes in gene expression, affecting the transcription of both protein-coding and non-coding RNAs. Among the newly identified genes responsive to PVY infection, we found genes encoding enzymes involved in the catalysis of polyamine formation and poly ADP-ribosylation. We also identified a range of novel non-coding RNAs which were differentially produced in response to single or combined PVY and heat stress, that consisted of antisense RNAs and RNAs with miRNA binding sites. Finally, to gain more insights into the potential role of alternative splicing and epitranscriptomic RNA methylation during combined stress conditions, direct RNA nanopore sequencing was performed. Our findings offer insights for future studies of functional links between virus infections and transcriptome reprogramming, RNA methylation and alternative splicing.
Collapse
Affiliation(s)
- Anna Glushkevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Andrey Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Viktoriya Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
12
|
Huang W, Nie B, Tu Z, Li C, Murphy A, Singh M, Song B, Zhang S, Xie C, Nie X. Extreme Resistance to Potato Virus A in Potato Cultivar Barbara is Independently Mediated by Ra and Rysto. PLANT DISEASE 2021; 105:3344-3348. [PMID: 34096772 DOI: 10.1094/pdis-02-21-0233-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potato virus A (PVA) and potato virus Y (PVY) are two members of genus Potyvirus infecting potato crops worldwide. Host resistance offers an economical and effective means for the control or management of these viruses. In this study, 20 potato clones were screened for their resistance against PVA and PVY by mechanical or graft inoculation assay, and were explored for the relationship between extreme resistance genes Ra and Ry by the detection of molecular markers linked to Ryadg, Rysto, and Rychc. Six clones, including Barbara, Jizhangshu 8, Longshu 7, Longshu 8, M6, and Solara, were found to be extremely resistant to both PVA and PVY; three clones (AC142, Eshu 3, and Shepody) were deemed to be extremely resistant to PVA but susceptible to PVY. To further reveal the inheritance of the extreme resistance (ER) against PVA, a tetraploid F1 population of Barbara × F58050 (susceptible to both PVY and PVA) and a tetraploid BC1 population of BF145 (a PVA-resistant but PVY-susceptible progeny of Barbara × F58050) × F58050 were obtained. Phenotyping of the F1 and BC1 populations by graft inoculation with PVA showed segregation ratios of 3:1 and 1:1 (resistant:susceptible), respectively. These results suggest that two independent loci control ER against PVA in Barbara: one confers ER to both PVA and PVY and the other confers ER to PVA only. The deduced genotype of Barbara is RyryryryRararara.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bihua Nie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyan Li
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Agnes Murphy
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick E3B 4Z7, Canada
| | - Mathuresh Singh
- Agricultural Certification Services, Fredericton, New Brunswick E3B 8B7, Canada
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu Zhang
- Institute for Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick E3B 4Z7, Canada
| |
Collapse
|
13
|
Shahriar SA, Islam MN, Chun CNW, Rahim MA, Paul NC, Uddain J, Siddiquee S. Control of Plant Viral Diseases by CRISPR/Cas9: Resistance Mechanisms, Strategies and Challenges in Food Crops. PLANTS (BASEL, SWITZERLAND) 2021; 10:1264. [PMID: 34206201 PMCID: PMC8309070 DOI: 10.3390/plants10071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
Protecting food crops from viral pathogens is a significant challenge for agriculture. An integral approach to genome-editing, known as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9), is used to produce virus-resistant cultivars. The CRISPR/Cas9 tool is an essential part of modern plant breeding due to its attractive features. Advances in plant breeding programs due to the incorporation of Cas9 have enabled the development of cultivars with heritable resistance to plant viruses. The resistance to viral DNA and RNA is generally provided using the Cas9 endonuclease and sgRNAs (single-guide RNAs) complex, targeting particular virus and host plant genomes by interrupting the viral cleavage or altering the plant host genome, thus reducing the replication ability of the virus. In this review, the CRISPR/Cas9 system and its application to staple food crops resistance against several destructive plant viruses are briefly described. We outline the key findings of recent Cas9 applications, including enhanced virus resistance, genetic mechanisms, research strategies, and challenges in economically important and globally cultivated food crop species. The research outcome of this emerging molecular technology can extend the development of agriculture and food security. We also describe the information gaps and address the unanswered concerns relating to plant viral resistance mediated by CRISPR/Cas9.
Collapse
Affiliation(s)
- Saleh Ahmed Shahriar
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - M. Nazrul Islam
- Laboratory of Plant Pathology and Microbiology, Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | - Charles Ng Wai Chun
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Md. Abdur Rahim
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Narayan Chandra Paul
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea;
| | - Jasim Uddain
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
14
|
Gasparini K, Moreira JDR, Peres LEP, Zsögön A. De novo domestication of wild species to create crops with increased resilience and nutritional value. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102006. [PMID: 33556879 DOI: 10.1016/j.pbi.2021.102006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Creating crops with resistance to drought, soil salinity and insect damage, that simultaneously have higher nutritional quality, is challenging to conventional breeding due to the complex and diffuse genetic basis of those traits. Recent advances in gene editing technology, such as base editors and prime-editing, coupled with a deeper understanding of the genetic basis of domestication delivered by the analysis of crop 'pangenomes', open the exciting prospect of creating novel crops via manipulation of domestication-related genes in wild species. A de novo domestication platform may allow rapid and precise conversion of crop wild relatives into crops, while retaining many of the valuable resilience and nutritional traits left behind during domestication and breeding. Using the Solanaceae family as case in point, we discuss how such a knowledge-driven pipeline could be exploited to contribute to food security over the coming decades.
Collapse
Affiliation(s)
- Karla Gasparini
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | | | - Lázaro Eustáquio Pereira Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
| |
Collapse
|
15
|
Torrance L, Talianksy ME. Potato Virus Y Emergence and Evolution from the Andes of South America to Become a Major Destructive Pathogen of Potato and Other Solanaceous Crops Worldwide. Viruses 2020; 12:v12121430. [PMID: 33322703 PMCID: PMC7764287 DOI: 10.3390/v12121430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The potato was introduced to Europe from the Andes of South America in the 16th century, and today it is grown worldwide; it is a nutritious staple food eaten by millions and underpins food security in many countries. Unknowingly, potato virus Y (PVY) was also introduced through trade in infected potato tubers, and it has become the most important viral pathogen of potato. Phylogenetic analysis has revealed the spread and emergence of strains of PVY, including strains causing economically important diseases in tobacco, tomato and pepper, and that the virus continues to evolve with the relatively recent emergence of new damaging recombinant strains. High-throughput, next-generation sequencing platforms provide powerful tools for detection, identification and surveillance of new PVY strains. Aphid vectors of PVY are expected to increase in incidence and abundance in a warmer climate, which will increase the risk of virus spread. Wider deployment of crop cultivars carrying virus resistance will be an important means of defence against infection. New cutting-edge biotechnological tools such as CRISPR and SIGS offer a means for rapid engineering of resistance in established cultivars. We conclude that in future, human activities and ingenuity should be brought to bear to control PVY and the emergence of new strains in key crops by increased focus on host resistance and factors driving virus evolution and spread.
Collapse
Affiliation(s)
- Lesley Torrance
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
- The School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
- Correspondence:
| | - Michael E. Talianksy
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
16
|
Krüger K, van der Waals JE. Potato virus Y and Potato leafroll virus management under climate change in sub-Saharan Africa. S AFR J SCI 2020. [DOI: 10.17159/sajs.2020/8579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Potato has increased in importance as a staple food in sub-Saharan Africa, where its production is faced with a multitude of challenges, including plant disease development and spread under changing climatic conditions. The economically most important plant viruses affecting potatoes globally are Potato virus Y (PVY) and Potato leafroll virus (PLRV). Disease management relies mostly on the use of insecticides, cultural control and seed certification schemes. A major obstacle in many sub-Saharan Africa countries is the availability of disease-free quality seed potatoes. Establishment and implementation of quality control through specialised seed production systems and certification schemes is critical to improve seed potato quality and reduce PVY and PLRV sources. Seed could be further improved by breeding virus-resistant varieties adapted to different environmental conditions combined with management measures tailored for smallholder or commercial farmers to specific agricultural requirements. Innovative technologies – including more sensitive testing, remote sensing, machine learning and predictive models – provide new tools for the management of PVY and PLRV, but require support for adoption and implementation in sub-Saharan Africa.
Collapse
Affiliation(s)
- Kerstin Krüger
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jacquie E. van der Waals
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Baebler Š, Coll A, Gruden K. Plant Molecular Responses to Potato Virus Y: A Continuum of Outcomes from Sensitivity and Tolerance to Resistance. Viruses 2020; 12:E217. [PMID: 32075268 PMCID: PMC7077201 DOI: 10.3390/v12020217] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms.
Collapse
|