1
|
Mukhtiar A, Ullah S, Yang B, Jiang YQ. Unlocking genetic potential: a review of the role of CRISPR/Cas technologies in rapeseed improvement. STRESS BIOLOGY 2025; 5:31. [PMID: 40332635 PMCID: PMC12058570 DOI: 10.1007/s44154-025-00229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 05/08/2025]
Abstract
Rapeseed (Brassica napus L.) is a globally important oil crop, providing edible vegetable oil and other valuable sources for humans. Being an allotetraploid, rapeseed has a complex genome that has undergone whole-genome duplication, making molecular breeding rather difficult. Fortunately, clustered regularly interspacedshort palindromic repeat (CRISPR)/CRISPR-associated (Cas) technologies have emerged as a potent tool in plant breeding, providing unprecedented accuracy as well as effectiveness in genome editing. This review focuses on the application and progresses of CRISPR/Cas technologies in rapeseed. We discussed the principles and mechanisms of CRISPR/Cas systems focusing on their use in rapeseed improvement such as targeted gene knockout, gene editing and transcriptional regulation. Furthermore, we summarized the regulatory frameworks governing CRISPR-edited crops as well as the challenges and opportunities for their commercialization and adoption. The potential advantages of CRISPR-mediated traits in rapeseed such as increased yield, disease and stress resistance and oil quality are discussed along with biosafety and environmental implications. The purpose of this review is to provide insights into the transformative role of CRISPR/Cas technologies in rapeseed breeding and its potential to address global agricultural challenges while ensuring sustainable crop production.
Collapse
Affiliation(s)
- Asif Mukhtiar
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Saeed Ullah
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Li L, Zhang D, Zhang Z, Zhang B. CRISPR/Cas: a powerful tool for designing and improving oil crops. Trends Biotechnol 2025; 43:773-789. [PMID: 39362812 DOI: 10.1016/j.tibtech.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Improving oil yield and quality is a major goal for crop breeding, and CRISPR/Cas-mediated genome editing has opened a new era for designing oil crops with enhanced yield and quality. CRISPR/Cas technology can not only increase oil production but also enhance oil quality, including enhancing pharmaceutical and health components, improving oil nutrients, and removing allergic and toxic components. As new molecular targets for oil biosynthesis are discovered and the CRISPR/Cas system is further improved, CRISPR/Cas will become a better molecular tool for designing new oil crops with higher oil production, enhanced nutrients, and improved health components. 'CRISPRized' oil crops will have broad applications both in industry (e.g., as biofuels) and in daily human life.
Collapse
Affiliation(s)
- Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-Added Products, College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
3
|
Wei W, Wang LF, Tao JJ, Zhang WK, Chen SY, Song Q, Zhang JS. The comprehensive regulatory network in seed oil biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:649-668. [PMID: 39821491 DOI: 10.1111/jipb.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors. Seed oil content is determined by the efficiency of de novo FA synthesis as well as influenced by sugar transport, lipid metabolism, FA synthesis inhibitors and fine-tuning mechanisms. At the center of this regulatory network is WRINKLED1 (WRI1), which plays a conserved role in promoting seed oil content across various plant species. WRI1 interacts with multiple proteins, and its expression level is regulated by upstream regulators, including members of the LAFL network. Beyond the LAFL network, we also discuss a potential nuclear factor-Y (NF-Y) regulatory network in soybean with an emphasis on NF-YA and NF-YB and their associated proteins. This NF-Y network represents a promising avenue for future efforts aimed at enhancing oil accumulation and improving stress tolerance in soybean. Additionally, the application of omics-based approaches is of great significance. Advances in omics technologies have greatly facilitated the identification of gene resources, opening new opportunities for genetic improvement. Importantly, several transcription factors involved in oil biosynthesis also participate in stress responses, highlighting a potential link between the two processes. This comprehensive review elucidates the complex mechanisms underlying the regulation of oil biosynthesis, offering insights into potential biotechnological strategies for improving oil production and stress tolerance in oil crops.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long-Fei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jian-Jun Tao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jin-Song Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Kaushal C, Sachdev M, Parekh M, Gowrishankar H, Jain M, Sankaranarayanan S, Pathak B. Transcriptional engineering for value enhancement of oilseed crops: a forward perspective. Front Genome Ed 2025; 6:1488024. [PMID: 39840374 PMCID: PMC11747156 DOI: 10.3389/fgeed.2024.1488024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates. Recent genomic, transcriptomic, and metabolomics research has expanded our understanding of the genetic and physiological control of fatty acid biosynthesis and composition. Many oilseed species have inherent stress-combating mechanisms, including transcription factor regulation. Advances in genome editing tools like CRISPR/Cas9 offer precise genetic modifications, targeting transcription factors and binding sites to enhance desirable traits, such as the nutritional profile and chemical composition of fatty acids. This review explores the application of genome editing in oilseed improvement, covering recent progress, challenges, and future potential to boost yield and oil content. These advancements could play a transformative role in developing resilient, nutritious crop varieties essential for sustainable food security in a changing climate.
Collapse
Affiliation(s)
- Charli Kaushal
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Mahak Sachdev
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mansi Parekh
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harini Gowrishankar
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Bhuvan Pathak
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
6
|
Rauf S, Basharat T, Gebeyehu A, Elsafy M, Rahmatov M, Ortiz R, Kaya Y. Sesame, an Underutilized Oil Seed Crop: Breeding Achievements and Future Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:2662. [PMID: 39339635 PMCID: PMC11434663 DOI: 10.3390/plants13182662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Sesame seeds and their edible oil are highly nutritious and rich in mono- and polyunsaturated fatty acids. Bioactive compounds such as sterols, tocopherols, and sesamol provide significant medicinal benefits. The high oil content (50%) and favorable mono- and polyunsaturated fatty acid balance, as well as resilience to water stress, make sesame a promising candidate crop for global agricultural expansion. However, sesame production faces challenges such as low yields, poor response to agricultural inputs, and losses due to capsule dehiscence. To enhance yield, traits like determinate growth, dwarfism, a high harvest index, non-shattering capsules, disease resistance, and photoperiod sensitivity are needed. These traits can be achieved through variation or induced mutation breeding. Crossbreeding methods often result in unwanted genetic changes. The gene editing CRISPR/Cas9 technology has the potential to suppress detrimental alleles and improve the fatty acid profile by inhibiting polyunsaturated fatty acid biosynthesis. Even though sesame is an orphan crop, it has entered the genomic era, with available sequences assisting molecular breeding efforts. This progress aids in associating single-nucleotide polymorphisms (SNPs) and simple sequence repeats (SSR) with key economic traits, as well as identifying genes related to adaptability, oil production, fatty acid synthesis, and photosynthesis. Additionally, transcriptomic research can reveal genes involved in abiotic stress responses and adaptation to diverse climates. The mapping of quantitative trait loci (QTL) can identify loci linked to key traits such as capsule size, seed count per capsule, and capsule number per plant. This article reviews recent advances in sesame breeding, discusses ongoing challenges, and explores potential strategies for future improvement. Hence, integrating advanced genomic tools and breeding strategies provides promising ways to enhance sesame production to meet global demands.
Collapse
Affiliation(s)
- Saeed Rauf
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Taiyyibah Basharat
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Adane Gebeyehu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Lomma, Sweden
| | - Mohammed Elsafy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Lomma, Sweden
| | - Mahbubjon Rahmatov
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Lomma, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Lomma, Sweden
| | - Yalcin Kaya
- Department of Genetic and Bioengineering, Engineering Faculty, Trakya University, Edirne 22030, Turkey
| |
Collapse
|
7
|
Li H, Yu K, Zhang Z, Yu Y, Wan J, He H, Fan C. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:445-459. [PMID: 37856327 PMCID: PMC10826991 DOI: 10.1111/pbi.14197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/08/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Yellow-seed is widely accepted as a good-quality trait in Brassica crops. Previous studies have shown that the flavonoid biosynthesis pathway is essential for the development of seed colour, but its function in Brassica napus, an important oil crop, is poorly understood. To systematically explore the gene functions of the flavonoid biosynthesis pathway in rapeseed, several representative TRANSPARENT TESTA (TT) genes, including three structural genes (BnaTT7, BnaTT18, BnaTT10), two regulatory genes (BnaTT1, BnaTT2) and a transporter (BnaTT12), were selected for targeted mutation by CRISPR/Cas9 in the present study. Seed coat colour, lignin content, seed quality and yield-related traits were investigated in these Bnatt mutants together with Bnatt8 generated previously. These Bnatt mutants produced seeds with an elevated seed oil content and decreased pigment and lignin accumulation in the seed coat without any serious defects in the yield-related traits. In addition, the fatty acid (FA) composition was also altered to different degrees, i.e., decreased oleic acid and increased linoleic acid and α-linolenic acid, in all Bnatt mutants except Bnatt18. Furthermore, gene expression analysis revealed that most of BnaTT mutations resulted in the down-regulation of key genes related to flavonoid and lignin synthesis, and the up-regulation of key genes related to lipid synthesis and oil body formation, which may contribute to the phenotype. Collectively, our study generated valuable resources for breeding programs, and more importantly demonstrated the functional divergence and overlap of flavonoid biosynthesis pathway genes in seed coat colour, oil content and FA composition of rapeseed.
Collapse
Affiliation(s)
- Huailin Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Zilu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Yalun Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Jiakai Wan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Hanzi He
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| |
Collapse
|
8
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Rauf S, Fatima S, Ortiz R. Modification of Fatty Acid Profile and Oil Contents Using Gene Editing in Oilseed Crops for a Changing Climate. GM CROPS & FOOD 2023; 14:1-12. [PMID: 37551783 PMCID: PMC10761075 DOI: 10.1080/21645698.2023.2243041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Mutation breeding based on various chemical and physical mutagens induces and disrupts non-target loci. Hence, large populations were required for visual screening, but desired plants were rare and it was a further laborious task to identify desirable mutants. Generated mutant had high defect due to non-targeted mutation, with poor agronomic performance. Mutation techniques were augmented by targeted induced local lesions in genome (TILLING) facilitating the selection of desirable germplasm. On the other hand, gene editing through CRISPR/Cas9 allows knocking down genes for site-directed mutation. This handy technique has been exploited for the modification of fatty acid profile. High oleic acid genetic stocks were obtained in a broad range of crops. Moreover, genes involved in the accumulation of undesirable seed components such as starch, polysaccharide, and flavors were knocked down to enhance seed quality, which helps to improve oil contents and reduces the anti-nutritional component.
Collapse
Affiliation(s)
- Saeed Rauf
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Seerat Fatima
- Department of Plant Breeding & Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
10
|
Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KHM. Progress in gene editing tools, implications and success in plants: a review. Front Genome Ed 2023; 5:1272678. [PMID: 38144710 PMCID: PMC10744593 DOI: 10.3389/fgeed.2023.1272678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
Collapse
Affiliation(s)
- Suman Jyoti Bhuyan
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Pandurang Ramrao Devde
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | | | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | |
Collapse
|
11
|
Dvorianinova EM, Zinovieva OL, Pushkova EN, Zhernova DA, Rozhmina TA, Povkhova LV, Novakovskiy RO, Sigova EA, Turba AA, Borkhert EV, Krasnov GS, Ruan C, Dmitriev AA, Melnikova NV. Key FAD2, FAD3, and SAD Genes Involved in the Fatty Acid Synthesis in Flax Identified Based on Genomic and Transcriptomic Data. Int J Mol Sci 2023; 24:14885. [PMID: 37834335 PMCID: PMC10573214 DOI: 10.3390/ijms241914885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
FAD (fatty acid desaturase) and SAD (stearoyl-ACP desaturase) genes play key roles in the synthesis of fatty acids (FA) and determination of oil composition in flax (Linum usitatissimum L.). We searched for FAD and SAD genes in the most widely used flax genome of the variety CDC Bethune and three available long-read assembled flax genomes-YY5, 3896, and Atlant. We identified fifteen FAD2, six FAD3, and four SAD genes. Of all the identified genes, 24 were present in duplicated pairs. In most cases, two genes from a pair differed by a significant number of gene-specific SNPs (single nucleotide polymorphisms) or even InDels (insertions/deletions), except for FAD2a-1 and FAD2a-2, where only seven SNPs distinguished these genes. Errors were detected in the FAD2a-1, FAD2a-2, FAD3c-1, and FAD3d-2 sequences in the CDC Bethune genome assembly but not in the long-read genome assemblies. Expression analysis of the available transcriptomic data for different flax organs/tissues revealed that FAD2a-1, FAD2a-2, FAD3a, FAD3b, SAD3-1, and SAD3-2 were specifically expressed in embryos/seeds/capsules and could play a crucial role in the synthesis of FA in flax seeds. In contrast, FAD2b-1, FAD2b-2, SAD2-1, and SAD2-2 were highly expressed in all analyzed organs/tissues and could be involved in FA synthesis in whole flax plants. FAD2c-2, FAD2d-1, FAD3c-1, FAD3c-2, FAD3d-1, FAD3d-2, SAD3-1, and SAD3-2 showed differential expression under stress conditions-Fusarium oxysporum infection and drought. The obtained results are essential for research on molecular mechanisms of fatty acid synthesis, FAD and SAD editing, and marker-assisted and genomic selection for breeding flax varieties with a determined fatty acid composition of oil.
Collapse
Affiliation(s)
| | - Olga L. Zinovieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Tatiana A. Rozhmina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian 116600, China
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
12
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
13
|
Lyu YZ, Jiang H, Sun HN, Yang Y, Chao Y, Huang LB, Dong XY. Lipidomic and comparative transcriptomic analysis of fatty acid synthesis pathway in Carya illinoinensis embryo. TREE PHYSIOLOGY 2023; 43:1675-1690. [PMID: 37171624 DOI: 10.1093/treephys/tpad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Pecan (Carya illinoinensis (Wagenh.) K. Koch) is an important oilseed nut and is rich in fatty acids (FAs) and flavonols. Pecan FA has significantly edible, industrial and clinical value. To investigate the dynamic patterns and compositions of FA, and the molecular mechanism that controls FA accumulation in pecan, lipidomic and transcriptomic analyses were performed to determine lipid profiles and gene expression in pecan's FA biosynthesis pathway. In the present study, compared with cultivars 'Caddo' and 'Y-01', 'Mahan' formed larger and heavier embryos and accumulated higher oil content. Lipidomic analysis showed that FA and (O-acyl)-1-hydroxy FA contents were higher in 'Mahan' at the mature stage. Based on full-length and comparative RNA-Seq, differential expression gene enrichment analysis revealed that many functional genes participated in the pathways of 'fatty acid biosynthesis', 'fatty acid metabolism' and 'linoleic acid metabolism'. High FA accumulation model from 'Mahan' demonstrated that key enzyme-encoding genes played an important role in regulating FA biosynthesis. Co-expression module analysis indicated that several transcription factors (TFs; MYB, TCP, bHLH, Dof, ERF, NAC) were involved in FA accumulation by regulating the expression of functional genes, and real-time quantitative PCR verification proved that these TFs had a high correlation with the pecan FA accumulation pattern. These findings provided an insight into the molecular mechanism of FA accumulation in C. illinoinensis embryo, which contributes to pecan oil yielding and pecan molecular breeding.
Collapse
Affiliation(s)
- Yun-Zhou Lyu
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Hao Jiang
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Hai-Nan Sun
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Yong Yang
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Yang Chao
- Changzhou Golden Land Agriculture and Animal Husbandry Technology Service Co., Ltd, Changzhou 213139, China
| | - Li-Bin Huang
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Xiao-Yun Dong
- Institute of Landscape Trees and Flowers, Jiangsu Academy of Forestry, Nanjing 211153, China
| |
Collapse
|
14
|
Banerjee S, Mukherjee A, Kundu A. The current scenario and future perspectives of transgenic oilseed mustard by CRISPR-Cas9. Mol Biol Rep 2023; 50:7705-7728. [PMID: 37432544 DOI: 10.1007/s11033-023-08660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Production of a designer crop having added attributes is the primary goal of all plant biotechnologists. Specifically, development of a crop with a simple biotechnological approach and at a rapid pace is most desirable. Genetic engineering enables us to displace genes among species. The newly incorporated foreign gene(s) in the host genome can create a new trait(s) by regulating the genotypes and/or phenotypes. The advent of the CRISPR-Cas9 tools has enabled the modification of a plant genome easily by introducing mutation or replacing genomic fragment. Oilseed mustard varieties (e.g., Brassica juncea, Brassica nigra, Brassica napus, and Brassica carinata) are one such plants, which have been transformed with different genes isolated from the wide range of species. Current reports proved that the yield and value of oilseed mustard has been tremendously improved by the introduction of stably inherited new traits such as insect and herbicide resistance. However, the genetic transformation of oilseed mustard remains incompetent due to lack of potential plant transformation systems. To solve numerous complications involved in genetically modified oilseed mustard crop varieties regeneration procedures, scientific research is being conducted to rectify the unwanted complications. Thus, this study provides a broader overview of the present status of new traits introduced in each mentioned varieties of oilseed mustard plant by different genetical engineering tools, especially CRISPR-Cas9, which will be useful to improve the transformation system of oilseed mustard crop plants. METHODS This review presents recent improvements made in oilseed mustard genetic engineering methodologies by using CRISPR-Cas9 tools, present status of new traits introduced in oilseed mustard plant varieties. RESULTS The review highlighted that the transgenic oilseed mustard production is a challenging process and the transgenic varieties of oilseed mustard provide a powerful tool for enhanced mustard yield. Over expression studies and silencing of desired genes provide functional importance of genes involved in mustard growth and development under different biotic and abiotic stress conditions. Thus, it can be expected that in near future CRISPR can contribute enormously in improving the mustard plant's architecture and develop stress resilient oilseed mustard plant species.
Collapse
Affiliation(s)
- Sangeeta Banerjee
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Ananya Mukherjee
- Division of Plant Biology, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
15
|
Huang H, Ahmar S, Samad RA, Qin P, Yan T, Zhao Q, Xie K, Zhang C, Fan C, Zhou Y. A novel type of Brassica napus with higher stearic acid in seeds developed through genome editing of BnaSAD2 family. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:187. [PMID: 37572171 DOI: 10.1007/s00122-023-04414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/23/2023] [Indexed: 08/14/2023]
Abstract
KEY MESSAGE Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.
Collapse
Affiliation(s)
- Huibin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rana Abdul Samad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pin Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tong Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Guo Y, Zhao G, Gao X, Zhang L, Zhang Y, Cai X, Yuan X, Guo X. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. PLANTA 2023; 258:36. [PMID: 37395789 DOI: 10.1007/s00425-023-04187-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
MAIN CONCLUSION This review provides a direction for crop quality improvement and ideas for further research on the application of CRISPR/Cas9 gene editing technology for crop improvement. Various important crops, such as wheat, rice, soybean and tomato, are among the main sources of food and energy for humans. Breeders have long attempted to improve crop yield and quality through traditional breeding methods such as crossbreeding. However, crop breeding progress has been slow due to the limitations of traditional breeding methods. In recent years, clustered regularly spaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has been continuously developed. And with the refinement of crop genome data, CRISPR/Cas9 technology has enabled significant breakthroughs in editing specific genes of crops due to its accuracy and efficiency. Precise editing of certain key genes in crops by means of CRISPR/Cas9 technology has improved crop quality and yield and has become a popular strategy for many breeders to focus on and adopt. In this paper, the present status and achievements of CRISPR/Cas9 gene technology as applied to the improvement of quality in several crops are reviewed. In addition, the shortcomings, challenges and development prospects of CRISPR/Cas9 gene editing technology are discussed.
Collapse
Affiliation(s)
- Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Guangdong Zhao
- College of Life Sciences, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Lin Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Yanan Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xiaoming Cai
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xuejiao Yuan
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W, Rahman MU, Gill RA. Targeted genome editing in polyploids: lessons from Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1152468. [PMID: 37409308 PMCID: PMC10318174 DOI: 10.3389/fpls.2023.1152468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.
Collapse
Affiliation(s)
- Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rana Muhammad Atif
- National Center of Genome Editing, Center of Advanced Studies, Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Weijun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Spectroscopy Sensing, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehboob-ur Rahman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Rafaqat Ali Gill
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
18
|
Mipeshwaree Devi A, Khedashwori Devi K, Premi Devi P, Lakshmipriyari Devi M, Das S. Metabolic engineering of plant secondary metabolites: prospects and its technological challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1171154. [PMID: 37251773 PMCID: PMC10214965 DOI: 10.3389/fpls.2023.1171154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Plants produce a wide range of secondary metabolites that play vital roles for their primary functions such as growth, defence, adaptations or reproduction. Some of the plant secondary metabolites are beneficial to mankind as nutraceuticals and pharmaceuticals. Metabolic pathways and their regulatory mechanism are crucial for targeting metabolite engineering. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated system has been widely applied in genome editing with high accuracy, efficiency, and multiplex targeting ability. Besides its vast application in genetic improvement, the technique also facilitates a comprehensive profiling approach to functional genomics related to gene discovery involved in various plant secondary metabolic pathways. Despite these wide applications, several challenges limit CRISPR/Cas system applicability in genome editing in plants. This review highlights updated applications of CRISPR/Cas system-mediated metabolic engineering of plants and its challenges.
Collapse
Affiliation(s)
| | | | | | | | - Sudripta Das
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
| |
Collapse
|
19
|
Abstract
In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.
Collapse
Affiliation(s)
| | - Qing Liu
- CSIRO Agriculture & Food, Canberra, Australia;
| | | |
Collapse
|
20
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
21
|
Ali E, Zhang K. CRISPR-mediated technology for seed oil improvement in rapeseed: Challenges and future perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1086847. [PMID: 37025135 PMCID: PMC10070842 DOI: 10.3389/fpls.2023.1086847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Rapeseed not only provide considerable amount of edible oil with high nutritional properties but can also be used as a raw material for biofuel production in many industries. It is therefore in high demand to bring genetic changes in order to fulfill the need of human and of industries. Though traditional breeding techniques such as hybridization and mutagenesis remained the top methods for long time to create improved varieties in oilseed rape. Clustered regularly interspaced short palindromic repeats (CRISPR) is becoming one of the most valuable gene editing technologies that allow precise genome engineering, and open new ways for research in plant functional genomics. Though CRISPR has been used in many other crops for genetic improvement it is expected to be an effective tool for genome editing and molecular design in oilseed rape for seed oil improvement. This mini review will discuss and summarize the past and ongoing research and development in rapeseed in terms of seed oil improvement and fatty acid composition using CRISPR technology. In addition, the factors that hinder the efficiency of this tool and how to eliminate those factors will be briefly summarized. The improvement of CRISPR technology for getting better results in oilseed rape will also be considered here. This minireview will open new windows for researchers in Brassica napus oil improvement research and genetic improvement using CRISPR technology.
Collapse
Affiliation(s)
- Essa Ali
- *Correspondence: Kewei Zhang, ; Essa Ali,
| | | |
Collapse
|
22
|
Sandgrind S, Li X, Ivarson E, Wang ES, Guan R, Kanagarajan S, Zhu LH. Improved fatty acid composition of field cress ( Lepidium campestre) by CRISPR/Cas9-mediated genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1076704. [PMID: 36755695 PMCID: PMC9901296 DOI: 10.3389/fpls.2023.1076704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The wild species field cress (Lepidium campestre) has the potential to become a novel cover and oilseed crop for the Nordic climate. Its seed oil is however currently unsuitable for most food, feed, and industrial applications, due to the high contents of polyunsaturated fatty acids (PUFAs) and erucic acid (C22:1). As the biosynthesis of these undesirable fatty acids is controlled by a few well-known major dominant genes, knockout of these genes using CRISPR/Cas9 would thus be more effective in improving the seed oil quality. In order to increase the level of the desirable oleic acid (C18:1), and reduce the contents of PUFAs and C22:1, we targeted three important genes FATTY ACID ELONGASE1 (FAE1), FATTY ACID DESATURASE2 (FAD2), and REDUCED OLEATE DESATURASE1 (ROD1) using a protoplast-based CRISPR/Cas9 gene knockout system. By knocking out FAE1, we obtained a mutated line with almost no C22:1, but an increase in C18:1 to 30% compared with 13% in the wild type. Knocking out ROD1 resulted in an increase of C18:1 to 23%, and a moderate, but significant, reduction of PUFAs. Knockout of FAD2, in combination with heterozygous FAE1fae1 genotype, resulted in mutated lines with up to 66% C18:1, very low contents of PUFAs, and a significant reduction of C22:1. Our results clearly show the potential of CRISPR/Cas9 for rapid trait improvement of field cress which would speed up its domestication process. The mutated lines produced in this study can be used for further breeding to develop field cress into a viable crop.
Collapse
|
23
|
Liu H, Lin B, Ren Y, Hao P, Huang L, Xue B, Jiang L, Zhu Y, Hua S. CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1034215. [PMID: 36483970 PMCID: PMC9723152 DOI: 10.3389/fpls.2022.1034215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Seed oleic acid is an important quality trait sought in rapeseed breeding programs. Many methods exist to increase seed oleic acid content, such as the CRISPR/Cas9-mediated genome editing system, yet there is no report on seed oleic acid content improvement via this system's precise editing of the double loci of BnFAD2. Here, a precise CRISPR/Cas9-mediated genome editing of the encoded double loci (A5 and C5) of BnFAD2 was established. The results demonstrated high efficiency of regeneration and transformation, with the rapeseed genotype screened in ratios of 20.18% and 85.46%, respectively. The total editing efficiency was 64.35%, whereas the single locus- and double locus-edited ratios were 21.58% and 78.42%, respectively. The relative proportion of oleic acid with other fatty acids in seed oil of mutants was significantly higher for those that underwent the editing on A5 copy than that on C5 copy, but it was still less than 80%. For double locus-edited mutants, their relative proportion of oleic acid was more than 85% in the T1 and T4 generations. A comparison of the sequences between the double locus-edited mutants and reference showed that no transgenic border sequences were detected from the transformed vector. Analysis of the BnFAD2 sequence on A5 and C5 at the mutated locus of double loci mutants uncovered evidence for base deletion and insertion, and combination. Further, no editing issue of FAD2 on the copy of A1 was detected on the three targeted editing regions. Seed yield, yield component, oil content, and relative proportion of oleic acid between one selected double loci-edited mutant and wild type were also compared. These results showed that although the number of siliques per plant of the wild type was significantly higher than those of the mutant, the differences in seed yield and oil content were not significant between them, albeit with the mutant having a markedly higher relative proportion of oleic acid. Altogether, our results confirmed that the established CRISPR/Cas9-mediated genome editing of double loci (A5 and C5) of the BnFAD2 can precisely edit the targeted genes, thereby enhancing the seed oleic acid content to a far greater extent than can a single locus-editing system.
Collapse
Affiliation(s)
- Han Liu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Department of Seed Management, Yongding Agriculture and Rural Bureau of Longyan, Longyan, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Institution of Crop Science, Huzhou, China
| | - Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Bowen Xue
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
24
|
Zhao S, Sun J, Sun J, Zhang X, Zhao C, Pan J, Hou L, Tian R, Wang X. Insights into the Novel FAD2 Gene Regulating Oleic Acid Accumulation in Peanut Seeds with Different Maturity. Genes (Basel) 2022; 13:2076. [PMID: 36360313 PMCID: PMC9691258 DOI: 10.3390/genes13112076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2023] Open
Abstract
AhFAD2 is a key enzyme catalyzing the conversion of oleic acid into linoleic acid. The high oleic acid characteristic of peanut mainly comes from the homozygous recessive mutation of AhFAD2A and AhFAD2B genes (aabb). However, even in high-oleic-acid varieties with the aabb genotype, the oleic acid content of seeds with different maturity varies significantly. Therefore, in addition to AhFAD2A and AhFAD2B, other FAD2 members or regulators may be involved in this process. Which FAD2 genes are involved in the regulatory processes associated with seed maturity is still unclear. In this study, four stable lines with different genotypes (AABB, aaBB, AAbb, and aabb) were used to analyze the contents of oleic acid and linoleic acid at different stages of seed development in peanut. Three new AhFAD2 genes (AhFAD2-7, AhFAD2-8, and AhFAD2-9) were cloned based on the whole-genome sequencing results of cultivated peanuts. All peanut FAD2 genes showed tissue preference in expression; however, only the expression level of AhFAD2-7 was positively correlated with the linoleic acid concentration in peanut seeds. These findings provide new insights into the regulation of oleic acid accumulation by maturity, and AhFAD2-7 plays an important role in the maturity dependent accumulation of oleic acid and linoleic acid in peanut.
Collapse
Affiliation(s)
- Shuzhen Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Sun
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jinbo Sun
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Xiaoqian Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Lei Hou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
25
|
CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus. Genes (Basel) 2022; 13:genes13101681. [PMID: 36292566 PMCID: PMC9602045 DOI: 10.3390/genes13101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fatty acid (FA) composition determines the quality of oil from oilseed crops, and thus is a major target for genetic improvement. FAD2 (Fatty acid dehydrogenase 2) and FAE1 (fatty acid elongase 1) are critical FA synthetic genes, and have been the focus of genetic manipulation to alter fatty acid composition in oilseed plants. In this study, to improve the nutritional quality of rapeseed cultivar CY2 (about 50% oil content; of which 40% erucic acid), we generated novel knockout plants by CRISPR/Cas9 mediated genome editing of BnFAD2 and BnFAE1 genes. Two guide RNAs were designed to target one copy of the BnFAD2 gene and two copies of the BnFAE1 gene, respectively. A number of lines with mutations at three target sites of BnFAD2 and BnFAE1 genes were identified by sequence analysis. Three of these lines showed mutations in all three target sites of the BnFAD2 and BnFAE1 genes. Fatty acid composition analysis of seeds revealed that mutations at all three sites resulted in significantly increased oleic acid (70–80%) content compared with that of CY2 (20%), greatly reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Our results confirmed that the CRISPR/Cas9 system is an effective tool for improving this important trait.
Collapse
|
26
|
Park ME, Kim HU. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:969844. [PMID: 36119569 PMCID: PMC9471015 DOI: 10.3389/fpls.2022.969844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.
Collapse
Affiliation(s)
- Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
27
|
Dhakate P, Sehgal D, Vaishnavi S, Chandra A, Singh A, Raina SN, Rajpal VR. Comprehending the evolution of gene editing platforms for crop trait improvement. Front Genet 2022; 13:876987. [PMID: 36082000 PMCID: PMC9445674 DOI: 10.3389/fgene.2022.876987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system was initially discovered as an underlying mechanism for conferring adaptive immunity to bacteria and archaea against viruses. Over the past decade, this has been repurposed as a genome-editing tool. Numerous gene editing-based crop improvement technologies involving CRISPR/Cas platforms individually or in combination with next-generation sequencing methods have been developed that have revolutionized plant genome-editing methodologies. Initially, CRISPR/Cas nucleases replaced the earlier used sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), to address the problem of associated off-targets. The adaptation of this platform led to the development of concepts such as epigenome editing, base editing, and prime editing. Epigenome editing employed epi-effectors to manipulate chromatin structure, while base editing uses base editors to engineer precise changes for trait improvement. Newer technologies such as prime editing have now been developed as a "search-and-replace" tool to engineer all possible single-base changes. Owing to the availability of these, the field of genome editing has evolved rapidly to develop crop plants with improved traits. In this review, we present the evolution of the CRISPR/Cas system into new-age methods of genome engineering across various plant species and the impact they have had on tweaking plant genomes and associated outcomes on crop improvement initiatives.
Collapse
Affiliation(s)
- Priyanka Dhakate
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), México-Veracruz, Mexico
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| |
Collapse
|
28
|
Andreasson E, Kieu NP, Zahid MA, Carlsen FM, Marit L, Sandgrind S, Petersen BL, Zhu LH. Invited Mini-Review Research Topic: Utilization of Protoplasts to Facilitate Gene Editing in Plants: Schemes for In Vitro Shoot Regeneration From Tissues and Protoplasts of Potato and Rapeseed: Implications of Bioengineering Such as Gene Editing of Broad-Leaved Plants. Front Genome Ed 2022; 4:780004. [PMID: 35845346 PMCID: PMC9276966 DOI: 10.3389/fgeed.2022.780004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Schemes for efficient regenerationand recovery of shoots from in vitro tissues or single cells, such as protoplasts, are only available for limited numbers of plant species and genotypes and are crucial for establishing gene editing tools on a broader scale in agriculture and plant biology. Growth conditions, including hormone and nutrient composition as well as light regimes in key steps of known regeneration protocols, display significant variations, even between the genotypes within the same species, e.g., potato (Solanum tuberosum). As fresh plant material is a prerequisite for successful shoot regeneration, the plant material often needs to be refreshed for optimizing the growth and physiological state prior to genetic transformation. Utilization of protoplasts has become a more important approach for obtaining transgene-free edited plants by genome editing, CRISPR/Cas9. In this approach, callus formation from protoplasts is induced by one set of hormones, followed by organogenesis, i.e., shoot formation, which is induced by a second set of hormones. The requirements on culture conditions at these key steps vary considerably between the species and genotypes, which often require quantitative adjustments of medium compositions. In this mini-review, we outline the protocols and notes for clonal regeneration and cultivation from single cells, particularly protoplasts in potato and rapeseed. We focus mainly on different hormone treatment schemes and highlight the importance of medium compositions, e.g., sugar, nutrient, and light regimes as well as culture durations at the key regeneration steps. We believe that this review would provide important information and hints for establishing efficient regeneration strategies from other closely related and broad-leaved plant species in general.
Collapse
Affiliation(s)
- Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Erik Andreasson,
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Muhammad Awais Zahid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Frida Meijer Carlsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lenman Marit
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sjur Sandgrind
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
29
|
Tang Y, Huang J, Ji H, Pan L, Hu C, Qiu X, Zhu H, Sui J, Wang J, Qiao L. Identification of AhFatB genes through genome-wide analysis and knockout of AhFatB reduces the content of saturated fatty acids in peanut (Arichis hypogaea L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111247. [PMID: 35487656 DOI: 10.1016/j.plantsci.2022.111247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Peanut (Arachis hypogaea L.) is an allotetraploid oilseed crop worldwide due to its abundant high-quality oil production. Peanut oil stability and quality are determined by the relative proportions of saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs). The principle approach to minimize the content of SFAs in peanut is to reduce the content of palmitic acid, which is linked to cardiovascular disease. Acyl-acyl carrier protein thioesterases (FATs) determine the types and levels of fatty acids that are exported them from the plastids. Two different classes of FAT have been classified into two families in plants, FatA and FatB. Among them, AhFatB has become the primary objective to genetically reduce the content of palmitic acid in peanut. Here, we identified 18 AhFatB genes in A. hypogaea genome and grouped into four major subfamilies through gene structures and phylogenetic relationships. Expression profiling of AhFatB genes was assessed using the publicly available RNA-seq data and qRT-PCR in 22 tissues. Using the CRISPR/Cas9 system, we designed two sgRNAs to edit the homologs AhFatB genes Arahy.4E7QKU and Arahy.L4EP3N, and identified different types of mutations. Additionally, we discovered mutations at Arahy.4E7QKU exhibited low palmitic acid and high oleic acid phenotypes. The obtained peanut mutants with altered SFAs content have great potential for improving peanut oil quality for human health.
Collapse
Affiliation(s)
- Yanyan Tang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jianbin Huang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Hongchang Ji
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Leilei Pan
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Changli Hu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Xiaochen Qiu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China
| | - Lixian Qiao
- College of Agronomy, Qingdao Agricultural University, Dry-land Farming Technology Laboratory of Shandong Province, Key Laboratory of Qingdao Major Crop Germplasm Resource Innovation and Application, Qingdao 266109, China.
| |
Collapse
|
30
|
Li J, Yu X, Zhang C, Li N, Zhao J. The application of CRISPR/Cas technologies to Brassica crops: current progress and future perspectives. ABIOTECH 2022; 3:146-161. [PMID: 36304520 PMCID: PMC9590542 DOI: 10.1007/s42994-022-00076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Brassica species are a global source of nutrients and edible vegetable oil for humans. However, all commercially important Brassica crops underwent a whole-genome triplication event, hindering the development of functional genomics and breeding programs. Fortunately, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) technologies, by allowing multiplex and precise genome engineering, have become valuable genome-editing tools and opened up new avenues for biotechnology. Here, we review current progress in the use of CRISPR/Cas technologies with an emphasis on the latest breakthroughs in precise genome editing. We also summarize the application of CRISPR/Cas technologies to Brassica crops for trait improvements. Finally, we discuss the challenges and future directions of these technologies for comprehensive application in Brassica crops. Ongoing advancement in CRISPR/Cas technologies, in combination with other achievements, will play a significant role in the genetic improvement and molecular breeding of Brassica crops.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Xiaoxiao Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
| | - Na Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, 071001 China
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| |
Collapse
|
31
|
Zhou E, Zhang Y, Wang H, Jia Z, Wang X, Wen J, Shen J, Fu T, Yi B. Identification and Characterization of the MIKC-Type MADS-Box Gene Family in Brassica napus and Its Role in Floral Transition. Int J Mol Sci 2022; 23:ijms23084289. [PMID: 35457106 PMCID: PMC9026197 DOI: 10.3390/ijms23084289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023] Open
Abstract
Increasing rapeseed yield has always been a primary goal of rapeseed research and breeding. However, flowering time is a prerequisite for stable rapeseed yield and determines its adaptability to ecological regions. MIKC-type MADS-box (MICK) genes are a class of transcription factors that are involved in various physiological and developmental processes in plants. To understand their role in floral transition-related pathways, a genome-wide screening was conducted with Brassica napus (B. napus), which revealed 172 members. Using previous data from a genome-wide association analysis of flowering traits, BnaSVP and BnaSEP1 were identified as candidate flowering genes. Therefore, we used the CRISPR/Cas9 system to verify the function of BnaSVP and BnaSEP1 in B. napus. T0 plants were edited efficiently at the BnaSVP and BnaSEP1 target sites to generate homozygous and heterozygous mutants with most mutations stably inherited by the next generation. Notably, the mutant only showed the early flowering phenotype when all homologous copies of BnaSVP were edited, indicating functional redundancy between homologous copies. However, no changes in flowering were observed in the BnaSEP1 mutant. Quantitative analysis of the pathway-related genes in the BnaSVP mutant revealed the upregulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) genes, which promoted early flowering in the mutant. In summary, our study created early flowering mutants, which provided valuable resources for early maturing breeding, and provided a new method for improving polyploid crops.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Yin Zhang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Xuejun Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Correspondence: ; Tel.: +86-27-8728-1676; Fax: +86-27-8728-0009
| |
Collapse
|
32
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
33
|
Liu Y, Du Z, Lin S, Li H, Lu S, Guo L, Tang S. CRISPR/Cas9-Targeted Mutagenesis of BnaFAE1 Genes Confers Low-Erucic Acid in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:848723. [PMID: 35222498 PMCID: PMC8866690 DOI: 10.3389/fpls.2022.848723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 06/01/2023]
Abstract
Rapeseed (Brassica napus) is an important oilseed crop widely planted in the world, providing substantial edible oil and other nutrients for mankind. The composition of fatty acids affects the edible and processing quality of vegetable oils, among which erucic acid (EA) is potentially to cause health problems. Therefore, low erucic acid (LEA) has always been a breeding trait of B. napus. Fatty acid elongase 1 (FAE1) plays a decisive role in the synthesis of EA. There are two functional homologous copies of FAE1 on the A08 and C03 chromosomes in B. napus. In this study, we used CRISPR/Cas9 technology to create targeted mutations on these two homologous copies of BnaFAE1 in three B. napus germplasms with high EA (>30%) and high oil (>50%). Our results show that the EA content was significantly reduced by more than 10 percentage points in the mutant of BnaC03.FAE1 (c03), while the double mutation of BnaA08.FAE1 and BnaC03.FAE1 (a08c03) resulted in nearly zero EA in three BnaFAE1-edited germplasms, and the oleic acid content was increased in different degrees. In addition, knockout of BnaA08.FAE1 or/and BnaC03.FAE1 mildly decreased seed oil content, but had no significant effect on other agronomic traits. In general, we successfully created low EA germplasms of B. napus, which provides a feasible way for future low EA breeding.
Collapse
Affiliation(s)
- Yunhao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuolin Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shengli Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Haoming Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
34
|
Yang Y, Xu C, Shen Z, Yan C. Crop Quality Improvement Through Genome Editing Strategy. Front Genome Ed 2022; 3:819687. [PMID: 35174353 PMCID: PMC8841430 DOI: 10.3389/fgeed.2021.819687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Good quality of crops has always been the most concerning aspect for breeders and consumers. However, crop quality is a complex trait affected by both the genetic systems and environmental factors, thus, it is difficult to improve through traditional breeding strategies. Recently, the CRISPR/Cas9 genome editing system, enabling efficiently targeted modification, has revolutionized the field of quality improvement in most crops. In this review, we briefly review the various genome editing ability of the CRISPR/Cas9 system, such as gene knockout, knock-in or replacement, base editing, prime editing, and gene expression regulation. In addition, we highlight the advances in crop quality improvement applying the CRISPR/Cas9 system in four main aspects: macronutrients, micronutrients, anti-nutritional factors and others. Finally, the potential challenges and future perspectives of genome editing in crop quality improvement is also discussed.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chenda Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Singer SD, Burton Hughes K, Subedi U, Dhariwal GK, Kader K, Acharya S, Chen G, Hannoufa A. The CRISPR/Cas9-Mediated Modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in Alfalfa Leads to Distinct Phenotypic Outcomes. FRONTIERS IN PLANT SCIENCE 2022; 12:774146. [PMID: 35095953 PMCID: PMC8793889 DOI: 10.3389/fpls.2021.774146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Alfalfa (Medicago sativa L.) is the most widely grown perennial leguminous forage and is an essential component of the livestock industry. Previously, the RNAi-mediated down-regulation of alfalfa SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 (MsSPL8) was found to lead to increased branching, regrowth and biomass, as well as enhanced drought tolerance. In this study, we aimed to further characterize the function of MsSPL8 in alfalfa using CRISPR/Cas9-induced mutations in this gene. We successfully generated alfalfa genotypes with small insertions/deletions (indels) at the target site in up to three of four MsSPL8 alleles in the first generation. The efficiency of editing appeared to be tightly linked to the particular gRNA used. The resulting genotypes displayed consistent morphological alterations, even with the presence of up to two wild-type MsSPL8 alleles, including reduced leaf size and early flowering. Other phenotypic effects appeared to be dependent upon mutational dosage, with those plants with the highest number of mutated MsSPL8 alleles also exhibiting significant decreases in internode length, plant height, shoot and root biomass, and root length. Furthermore, MsSPL8 mutants displayed improvements in their ability to withstand water-deficit compared to empty vector control genotypes. Taken together, our findings suggest that allelic mutational dosage can elicit phenotypic gradients in alfalfa, and discrepancies may exist in terms of MsSPL8 function between alfalfa genotypes, growth conditions, or specific alleles. In addition, our results provide the foundation for further research exploring drought tolerance mechanisms in a forage crop.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gaganpreet Kaur Dhariwal
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kazi Kader
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Surya Acharya
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Abdelali Hannoufa
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
36
|
Abdallah NA, Hamwieh A, Radwan K, Fouad N, Prakash C. Genome editing techniques in plants: a comprehensive review and future prospects toward zero hunger. GM CROPS & FOOD 2021; 12:601-615. [PMID: 35135438 PMCID: PMC9208631 DOI: 10.1080/21645698.2021.2021724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Promoting sustainable agriculture and improving nutrition are the main united nation sustainable development goals by 2030. New technologies are required to achieve zero hunger, and genome editing technology is the most promising one. In the last decade, genome editing (GE) using the CRISPR/Cas system has attracted researchers as a safer and easy tool for genome editing in several living organisms. GE has revolutionized the field of agriculture by improving biotic and abiotic stresses and yield improvement. GE technologies were developed fast lately to avoid the obstacles that face GM crops. GE technology, depending on site directed nuclease (SDN), is divided into three categories according to the modification methods. Developing transgenic-free edited plants without introducing foreign DNA meet the acceptance and regulatory ratification of several countries. There are several ongoing efforts from different countries that are rapidly expanding to adopt the current technological innovations. This review summarizes the different GE technologies and their application as a way to help in ending hunger.
Collapse
Affiliation(s)
- Naglaa A. Abdallah
- Department of Genetics Faculty of Agriculture, Cairo University, Cairo, Egypt
- National Biotechnology Network of Expertise, ASRT, Egypt
| | - Aladdin Hamwieh
- Department of Biotechnology, International Centre for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled Radwan
- National Biotechnology Network of Expertise, ASRT, Egypt
- Department of Biotechnology, Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Nourhan Fouad
- Department of Biotechnology, International Centre for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | | |
Collapse
|
37
|
Wang T, Zhang C, Zhang H, Zhu H. CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13260-13269. [PMID: 33734711 DOI: 10.1021/acs.jafc.1c00104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Horticultural food crops are important sources of nutrients for humans. With the increase of the global population, enhanced horticulture food crop production has become a new challenge, and enriching their nutritional content has also been required. Gene editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have accelerated crop improvement through the modification of targeted genomes precisely. Here, we review the development of various gene editors and compare their advantages and shortcomings, especially the newly emerging CRISPR/Cas systems, such as base editing and prime editing. We also summarize their practical applications in crop trait improvement, including yield, nutritional quality, and other consumer traits.
Collapse
Affiliation(s)
- Tian Wang
- College of Life Science, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, People's Republic of China
| | - Hongyan Zhang
- College of Life Science, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
38
|
Xu L, Zhou T, Zhang JD, Deng LL, Jiang JR, Yang WW, Liu CB, Kong WS, Li XM, Yang GY, Hu QF, Liu X. Two New Anti-Tobacco Mosaic Virus Isoindolin-1-Ones from the Leaves of Nicotiana tabacum. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Zhou T, Yang FX, Cai BB, Wu F, Zhu YN, Liu L, Liu CB, Ling J, Kong WS, Yang GY, Hu QF, Liu X. Anti-Tobacco Mosaic Virus Chromone Derivatives from the Stems of Nicotiana tabacum. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03540-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
41
|
Yan G, Yu P, Tian X, Guo L, Tu J, Shen J, Yi B, Fu T, Wen J, Liu K, Ma C, Dai C. DELLA proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2011-2026. [PMID: 33982357 PMCID: PMC8486242 DOI: 10.1111/pbi.13628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 05/25/2023]
Abstract
Seed oil content (SOC) and fatty acid (FA) composition determine the quality and economic value of rapeseed (Brassica napus). Little is known about the role of gibberellic acid (GA) in regulating FA biosynthesis in B. napus. Here, we discovered that four BnaRGAs (B. napus REPRESSOR OF GA), encoding negative regulators of GA signalling, were suppressed during seed development. Compared to the wild type, SOC was reduced in gain-of-function mutants bnaa6.rga-D and ds-3, which also showed reduced oleic acid and increased linoleic acid contents. By contrast, the loss-of-function quadruple mutant bnarga displayed higher SOC during early seed development than the wild type, with increased oleic acid and reduced linoleic acid contents. Notably, only BnaA6.RGA and BnaC7.RGA physically interacted with two BnaLEC1s, which function as essential transcription factors in FA biosynthesis. The FA composition did not significantly differ between bnarga bnalec1 sextuple mutants and bnalec1, suggesting that BnaLEC1s are epistatic to BnaRGAs in the regulation of FA composition. Furthermore, BnaLEC1-induced activation of BnaABI3 expression was repressed by BnaA6.RGA, indicating that GA triggers the degradation of BnaRGAs to relieve their repression of BnaLEC1s, thus promoting the transcription of downstream genes to facilitate oil biosynthesis. Therefore, we uncovered a developmental stage-specific role of GA in regulating oil biosynthesis via the GA-BnaRGA-BnaLEC1 signalling cascade, providing a novel mechanistic understanding of how phytohormones regulate FA biosynthesis in seeds. BnaRGAs represent promising targets for oil crop improvement.
Collapse
Affiliation(s)
- Guanbo Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Pugang Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xia Tian
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Bin Yi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jing Wen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kede Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Cheng Dai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
42
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
43
|
Improvement of glucosinolates by metabolic engineering in Brassica crops. ABIOTECH 2021; 2:314-329. [PMID: 36303883 PMCID: PMC9590530 DOI: 10.1007/s42994-021-00057-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Glucosinolates (GSLs) are a class of sulfur- and nitrogen-containing, and amino acid-derived important secondary metabolites, which mainly present in plants of Brassicaceae family, including Brassica crops, such as broccoli, cabbage, and oilseed rape. The bioactive GSL metabolites confer benefits to plant defense, human health, and the unique flavor of some Brassica crops. However, certain GSL profiles have adverse effects and are known as anti-nutritional factors. This has attracted mounting attempts to increase beneficial GSLs and reduce detrimental ones in the most commonly consumed Brassica crops. We provide a comprehensive overview of metabolic engineering applied in Brassica crops to achieve this purpose, including modulation of GSL biosynthesis, ablation of GSL hydrolysis, inhibition of GSL transport processes, and redirection of metabolic flux to GSL. Moreover, advances in omics approaches, i.e., genomics, transcriptome, and metabolome, applied in the elucidation of GSL metabolism in Brassica crops, as well as promising and potential genome-editing technologies are also discussed.
Collapse
|
44
|
Li X, Sandgrind S, Moss O, Guan R, Ivarson E, Wang ES, Kanagarajan S, Zhu LH. Efficient Protoplast Regeneration Protocol and CRISPR/Cas9-Mediated Editing of Glucosinolate Transporter ( GTR) Genes in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2021; 12:680859. [PMID: 34305978 PMCID: PMC8294089 DOI: 10.3389/fpls.2021.680859] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Difficulty in protoplast regeneration is a major obstacle to apply the CRISPR/Cas9 gene editing technique effectively in research and breeding of rapeseed (Brassica napus L.). The present study describes for the first time a rapid and efficient protocol for the isolation, regeneration and transfection of protoplasts of rapeseed cv. Kumily, and its application in gene editing. Protoplasts isolated from leaves of 3-4 weeks old were cultured in MI and MII liquid media for cell wall formation and cell division, followed by subculture on shoot induction medium and shoot regeneration medium for shoot production. Different basal media, types and combinations of plant growth regulators, and protoplast culture duration on each type of media were investigated in relation to protoplast regeneration. The results showed that relatively high concentrations of NAA (0.5 mg l-1) and 2,4-D (0.5 mg l-1) in the MI medium were essential for protoplasts to form cell walls and maintain cell divisions, and thereafter auxin should be reduced for callus formation and shoot induction. For shoot regeneration, relatively high concentrations of cytokinin were required, and among all the combinations tested, 2.2 mg l-1 TDZ in combination with auxin 0.5 mg l-1 NAA gave the best result with up to 45% shoot regeneration. Our results also showed the duration of protoplast culture on different media was critical, as longer culture durations would significantly reduce the shoot regeneration frequency. In addition, we have optimized the transfection protocol for rapeseed. Using this optimized protocol, we have successfully edited the BnGTR genes controlling glucosinolate transport in rapeseed with a high mutation frequency.
Collapse
|
45
|
Lee KR, Jeon I, Yu H, Kim SG, Kim HS, Ahn SJ, Lee J, Lee SK, Kim HU. Increasing Monounsaturated Fatty Acid Contents in Hexaploid Camelina sativa Seed Oil by FAD2 Gene Knockout Using CRISPR-Cas9. FRONTIERS IN PLANT SCIENCE 2021; 12:702930. [PMID: 34267775 PMCID: PMC8276101 DOI: 10.3389/fpls.2021.702930] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 05/24/2023]
Abstract
Seed oils are used as edible oils and increasingly also for industrial applications. Although high-oleic seed oil is preferred for industrial use, most seed oil is high in polyunsaturated fatty acids (PUFAs) and low in monounsaturated fatty acids (MUFAs) such as oleic acid. Oil from Camelina, an emerging oilseed crop with a high seed oil content and resistance to environmental stress, contains 60% PUFAs and 30% MUFAs. Hexaploid Camelina carries three homoeologs of FAD2, encoding fatty acid desaturase 2 (FAD2), which is responsible for the synthesis of linoleic acid from oleic acid. In this study, to increase the MUFA contents of Camelina seed oil, we generated CsFAD2 knockout plants via CRISPR-Cas9-mediated gene editing using the pRedU6fad2EcCas9 vector containing DsRed as a selection marker, the U6 promoter to drive a single guide RNA (sgRNA) covering the common region of the three CsFAD2 homoeologs, and an egg-cell-specific promoter to drive Cas9 expression. We analyzed CsFAD2 homoeolog-specific sequences by PCR using genomic DNA from transformed Camelina leaves. Knockout of all three pairs of FAD2 homoeologs led to a stunted bushy phenotype, but greatly enhanced MUFA levels (by 80%) in seeds. However, transformants with two pairs of CsFAD2 homoeologs knocked out but the other pair wild-type heterozygous showed normal growth and a seed MUFAs production increased up to 60%. These results provide a basis for the metabolic engineering of genes that affect growth in polyploid crops through genome editing.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, South Korea
| | - Inhwa Jeon
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, South Korea
| | - Hami Yu
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Deajeon, South Korea
| | - Hyun-Sung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Sung-Ju Ahn
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Juho Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, South Korea
| | - Seon-Kyeong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
46
|
Zhou C, Pan W, Peng Q, Chen Y, Zhou T, Wu C, Hartley W, Li J, Xu M, Liu C, Li P, Rao L, Wang Q. Characteristics of Metabolites by Seed-Specific Inhibition of FAD2 in Brassica napus L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5452-5462. [PMID: 33969684 DOI: 10.1021/acs.jafc.0c06867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fatty acid desaturase-2 (FAD2) is a key enzyme in the production of polyunsaturated fatty acids in plants. RNAi technology can reduce the expression of FAD2 genes in Brassica napus seeds and acquire transgenic B. napus plants with a high oleic acid content, but the effect of seed-specific inhibition of FAD2 expression on B. napus seed metabolites is not clear. Here we use widely targeted metabolomics to investigate the metabolites of normal-oleic-acid rapeseed (OA) and high-oleic-acid rapeseed (HOA) seeds, resulting in a total of 726 metabolites being detected. Among them, 24 differential metabolites were significantly downregulated and 88 differential metabolites were significantly upregulated in HOA rapeseed. In further lipid profile experiments, more lipids in B. napus seeds were accurately quantified. The contents of glycolipids and phospholipids that contain C18:1 increased significantly and C18:2 decreased because FAD2 expression was inhibited. The changes in the expression of key genes in related pathways were also consistent with the changes in metabolites. The insertion site of the ihpRNA plant expression vector was reconfirmed through genomewide resequencing, and the transgenic event did not change the sequence of FAD2 genes. There was no significant difference in the germination rate and germination potential between OA and HOA rapeseed seeds because the seed-specific ihpRNA plant expression vector did not affect other stages of plant growth. This work provides a theoretical and practical guidance for subsequent molecular breeding of high OA B. napus.
Collapse
Affiliation(s)
- Chi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Weisong Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Ting Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - William Hartley
- Agriculture and Environment Department, Harper Adams University, Newport TF10 8NB, Shropshire, United Kingdom
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Minhui Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Chuwei Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Liqun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
47
|
Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B 2021; 22:253-284. [PMID: 33835761 PMCID: PMC8042526 DOI: 10.1631/jzus.b2100009] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.
Collapse
Affiliation(s)
- Chao Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Eleanor Brant
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT 59802, USA.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
48
|
Khan MHU, Hu L, Zhu M, Zhai Y, Khan SU, Ahmar S, Amoo O, Zhang K, Fan C, Zhou Y. Targeted mutagenesis of EOD3 gene in Brassica napus L. regulates seed production. J Cell Physiol 2021; 236:1996-2007. [PMID: 32841372 DOI: 10.1002/jcp.29986] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
Seed size and number are central to the evolutionary fitness of plants and are also crucial for seed production of crops. However, the molecular mechanisms of seed production control are poorly understood in Brassica crops. Here, we report the gene cloning, expression analysis, and functional characterization of the EOD3/CYP78A6 gene in rapeseed. BnaEOD3 has four copies located in two subgenomes, which exhibited a steady higher expression during seed development with differential expression among copies. The targeted mutations of BnaEOD3 gene were efficiently generated by stable transformation of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat) vector. These mutations were stably transmitted to T1 and T2 generations and a large collection of homozygous mutants with combined loss-of-function alleles across four BnaEOD3 copies were created for phenotyping. All mutant T1 lines had shorter siliques, smaller seeds, and an increased number of seeds per silique, in which the quadrable mutants showed the most significant changes in these traits. Consequently, the seed weight per plant in the quadrable mutants increased by 13.9% on average compared with that of wild type, indicating that these BnaEOD3 copies have redundant functions in seed development in rapeseed. The phenotypes of the different allelic combinations of BnaEOD3 copies also revealed gene functional differentiation among the two subgenomes. Cytological observations indicated that the BnaEOD3 could act maternally to promote cotyledon cell expansion and proliferation to regulate seed growth in rapeseed. Collectively, our findings reveal the quantitative involvement of the different BnaEOD3 copies function in seed development, but also provided valuable resources for rapeseed breeding programs.
Collapse
Affiliation(s)
- Muhammad H U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Limin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Miaoshan Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yungu Zhai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Olalekan Amoo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kunpeng Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
49
|
Mohd Saad NS, Severn-Ellis AA, Pradhan A, Edwards D, Batley J. Genomics Armed With Diversity Leads the Way in Brassica Improvement in a Changing Global Environment. Front Genet 2021; 12:600789. [PMID: 33679880 PMCID: PMC7930750 DOI: 10.3389/fgene.2021.600789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Meeting the needs of a growing world population in the face of imminent climate change is a challenge; breeding of vegetable and oilseed Brassica crops is part of the race in meeting these demands. Available genetic diversity constituting the foundation of breeding is essential in plant improvement. Elite varieties, land races, and crop wild species are important resources of useful variation and are available from existing genepools or genebanks. Conservation of diversity in genepools, genebanks, and even the wild is crucial in preventing the loss of variation for future breeding efforts. In addition, the identification of suitable parental lines and alleles is critical in ensuring the development of resilient Brassica crops. During the past two decades, an increasing number of high-quality nuclear and organellar Brassica genomes have been assembled. Whole-genome re-sequencing and the development of pan-genomes are overcoming the limitations of the single reference genome and provide the basis for further exploration. Genomic and complementary omic tools such as microarrays, transcriptomics, epigenetics, and reverse genetics facilitate the study of crop evolution, breeding histories, and the discovery of loci associated with highly sought-after agronomic traits. Furthermore, in genomic selection, predicted breeding values based on phenotype and genome-wide marker scores allow the preselection of promising genotypes, enhancing genetic gains and substantially quickening the breeding cycle. It is clear that genomics, armed with diversity, is set to lead the way in Brassica improvement; however, a multidisciplinary plant breeding approach that includes phenotype = genotype × environment × management interaction will ultimately ensure the selection of resilient Brassica varieties ready for climate change.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences Western Australia and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
50
|
Yang FX, Zhou T, Zhang JD, Liu X, Xu L, Jiang JR, Deng LL, Yang WW, Li XM, Yang GY. Anti-Tobacco Mosaic Virus Isoindolin-1-ones from the Stems of Nicotiana tabacum. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|