1
|
Alruhaimi RS, Hassanein EHM, Abd El-Aziz MK, Siddiq Abduh M, Bin-Ammar A, Kamel EM, Mahmoud AM. The melatonin receptor agonist agomelatine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 124:110833. [PMID: 37634447 DOI: 10.1016/j.intimp.2023.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Pancreatitis is a serious effect of the heavy metal cadmium (Cd) and inflammation and oxidative stress (OS) are implicated in Cd-induced pancreatic injury. This study evaluated the effect of the melatonin receptor agonist agomelatine (AGM) on Cd-induced acute pancreatitis (AP), pointing to its modulatory effect on inflammation, OS, and Nrf2/HO-1 pathway. Rats were supplemented with AGM orally for 14 days and a single injection of cadmium chloride (CdCl2) on day 7. Cd increased serum amylase and lipase and caused pancreatic endocrine and exocrine tissue injury. Malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) were elevated, nuclear factor (NF)-kB p65, inducible NO synthase (iNOS), interleukin (IL)-6, tumor necrosis factor (TNF)-α and CD40 were upregulated, and antioxidants were decreased in the pancreas of Cd-administered rats. AGM ameliorated serum amylase and lipase and pancreatic OS, NF-kB p65, CD40, pro-inflammatory mediators and caspase-3, prevented tissue injury and enhanced antioxidants. AGM downregulated Keap1 and enhanced Nrf2 and HO-1 in the pancreas of Cd-administered rats. In silico findings revealed the binding affinity of AGM with Keap1, HO-1, CD40L and caspase-3. In conclusion, AGM protected against AP induced by Cd by preventing inflammation, OS and apoptosis and modulating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71562, Egypt
| | | | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
2
|
Murai N, Ohtaki H, Watanabe J, Xu Z, Sasaki S, Yagura K, Shioda S, Nagasaka S, Honda K, Izumizaki M. Intrapancreatic injection of human bone marrow-derived mesenchymal stem/stromal cells alleviates hyperglycemia and modulates the macrophage state in streptozotocin-induced type 1 diabetic mice. PLoS One 2017; 12:e0186637. [PMID: 29073149 PMCID: PMC5657972 DOI: 10.1371/journal.pone.0186637] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus is a progressive disease caused by the destruction of pancreatic β-cells, resulting in insulin dependency and hyperglycemia. While transplanted bone marrow-derived mesenchymal stem/stromal cells (BMMSCs) have been explored as an alternative therapeutic approach for diseases, the choice of delivery route may be a critical factor determining their sustainability. This study evaluated the effects of intrapancreatic and intravenous injection of human BMMSCs (hBMMSCs) in streptozotocin (STZ)-induced type 1 diabetic mouse model. C57/BL6 mice were intraperitoneally injected with 115 mg/kg STZ on day 0. hBMMSCs (1 × 106 cells) or vehicle were injected into the pancreas or jugular vein on day 7. Intrapancreatic, but not intravenous, hBMMSC injection significantly reduced blood glucose levels on day 28 compared with vehicle injection by the same route. This glucose-lowering effect was not induced by intrapancreatic injection of human fibroblasts as the xenograft control. Intrapancreatically injected fluorescence-labeled hBMMSCs were observed in the intra- and extra-lobular spaces of the pancreas, and intravenously injected cells were in the lung region, although the number of cells mostly decreased within 2 weeks of injection. For hBMMSCs injected twice into the pancreatic region on days 7 and 28, the injected mice had further reduced blood glucose to borderline diabetic levels on day 56. Animals injected with hBMMSCs twice exhibited increases in the plasma insulin level, number and size of islets, insulin-positive proportion of the total pancreas area, and intensity of insulin staining compared with vehicle-injected animals. We found a decrease of Iba1-positive cells in islets and an increase of CD206-positive cells in both the endocrine and exocrine pancreas. The hBMMSC injection also reduced the number of CD40-positive cells merged with glucagon immunoreactions in the islets. These results suggest that intrapancreatic injection may be a better delivery route of hBMMSCs for the treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Norimitsu Murai
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Jun Watanabe
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
- Center for Biotechnology, Showa University, Tokyo, Japan
| | - Zhifang Xu
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Shun Sasaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Kazumichi Yagura
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Shoichiro Nagasaka
- Division of Diabetes, Metabolism and Endocrinology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Morin SO, Poggi M, Alessi MC, Landrier JF, Nunès JA. Modulation of T Cell Activation in Obesity. Antioxid Redox Signal 2017; 26:489-500. [PMID: 27225042 DOI: 10.1089/ars.2016.6746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Immune T cells are present in adipose tissues (AT), and the stoichiometry of the different T cell subsets is altered during diet-induced obesity (DIO). T cells contribute to the early steps of AT inflammation during DIO. Recent Advances: Many factors could potentially be responsible for this altered pro-inflammatory versus anti-inflammatory T cell balance. CRITICAL ISSUES T cells are potentially activated in AT, which vitamin D might contribute to, as will be discussed in this article. In addition, we will review the different possible contributors to T cell activation in AT, such as the CD28 and CD154 T cell costimulatory molecules in AT. FUTURE DIRECTIONS The potential antigen presentation capacities of adipocytes should be further investigated. Moreover, the properties of these AT resident (or migrating to AT) T cells must be further assessed. Antioxid. Redox Signal. 26, 489-500.
Collapse
Affiliation(s)
- Stéphanie O Morin
- 1 Inserm, U1068, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,2 Institut Paoli-Calmettes , Marseille, France .,3 CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,4 Aix-Marseille Université , UM105, Marseille, France
| | - Marjorie Poggi
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Marie-Christine Alessi
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Jean-François Landrier
- 5 Inserm U1062 , Marseille, France .,6 Inra , UMR1260, Marseille, France .,7 Aix-Marseille Université , Nutrition Obésité Risques Thrombotiques, Marseille, France
| | - Jacques A Nunès
- 1 Inserm, U1068, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,2 Institut Paoli-Calmettes , Marseille, France .,3 CNRS, UMR7258, Centre de Recherche en Cancérologie de Marseille , Marseille, France .,4 Aix-Marseille Université , UM105, Marseille, France
| |
Collapse
|
4
|
Zirlik A, Lutgens E. An inflammatory link in atherosclerosis and obesity. Co-stimulatory molecules. Hamostaseologie 2016. [PMID: 26225729 DOI: 10.5482/hamo-14-12-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis and obesity-induced metabolic dysfunction are lipid-driven inflammatory pathologies responsible for a major part of cardiovascular complications. Immune cell activation as well as interactions between the different immune cells is dependent on and controlled by a variety of co-stimulatory signals. These co-stimulatory signals can either aggravate or ameliorate the disease depending on the stage of the disease, the cell-types involved and the signal transduction cascades initiated. This review focuses on the diverse roles of the most established co-stimulatory molecules of the B7 and Tumor Necrosis Factor Receptor (TNFR) families, ie the CD28/CTLA4-CD80/CD86 and CD40L/CD40 dyads in the pathogenesis of atherosclerosis and obesity. In addition, we will explore their potential as therapeutic targets in both atherosclerosis and obesity.
Collapse
Affiliation(s)
- A Zirlik
- Prof. Andreas Zirlik, Atherogenesis Research Group, Heart Center Freiburg University, Cardiology and Angiology I, University of Freiburg, Germany, E-mail:
| | | |
Collapse
|
5
|
Glucolipotoxicity initiates pancreatic β-cell death through TNFR5/CD40-mediated STAT1 and NF-κB activation. Cell Death Dis 2016; 7:e2329. [PMID: 27512950 PMCID: PMC5108311 DOI: 10.1038/cddis.2016.203] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes is a chronic metabolic disorder, where failure to maintain normal glucose homoeostasis is associated with, and exacerbated by, obesity and the concomitant-elevated free fatty acid concentrations typically found in these patients. Hyperglycaemia and hyperlipidaemia together contribute to a decline in insulin-producing β-cell mass through activation of the transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)-1. There are however a large number of molecules potentially able to modulate NF-κB and STAT1 activity, and the mechanism(s) by which glucolipotoxicity initially induces NF-κB and STAT1 activation is currently poorly defined. Using high-density microarray analysis of the β-cell transcritptome, we have identified those genes and proteins most sensitive to glucose and fatty acid environment. Our data show that of those potentially able to activate STAT1 or NF-κB pathways, tumour necrosis factor receptor (TNFR)-5 is the most highly upregulated by glucolipotoxicity. Importantly, our data also show that the physiological ligand for TNFR5, CD40L, elicits NF-κB activity in β-cells, whereas selective knockdown of TNFR5 ameliorates glucolipotoxic induction of STAT1 expression and NF-κB activity. This data indicate for the first time that TNFR5 signalling has a major role in triggering glucolipotoxic islet cell death.
Collapse
|
6
|
Azzariti A, Brunetti O, Porcelli L, Graziano G, Iacobazzi RM, Signorile M, Scarpa A, Lorusso V, Silvestris N. Potential predictive role of chemotherapy-induced changes of soluble CD40 ligand in untreated advanced pancreatic ductal adenocarcinoma. Onco Targets Ther 2016; 9:4681-6. [PMID: 27555786 PMCID: PMC4968860 DOI: 10.2147/ott.s106496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pancreas ductal adenocarcinoma lacks predictive biomarkers. CD40 is a member of the tumor necrosis factor superfamily. CD40-sCD40L interaction is considered to contribute to the promotion of tumor cell growth and angiogenesis. The aim of the present study was to investigate the role of serum sCD40L as a predictor in metastatic pancreatic cancer. We evaluated 27 consecutive pancreatic cancer patients treated with FOLFIRINOX (21 patients) or gemcitabine plus nab-paclitaxel combination (six patients). The sCD40L level was measured in serum by enzyme-linked immunosorbent assay at baseline, at first evaluation (all patients), and at time to progression (18 patients). The radiological response was evaluated according to the Response Evaluation Criteria in Solid Tumors, Version 1.1. The Wilcoxon signed-rank test was used to compare pre-post treatment sCD40L levels with respect to clinical response, while Pearson's correlation coefficient was used for the correlation between sCD40L and CA19.9 pre- and post-treatment. The Kruskal-Wallis test was also conducted for further comparisons. We observed a statistically significant reduction in the sCD40L level after 3 months of treatment in patients with partial response (11,718.05±7,097.13 pg/mL vs 4,689.42±5,409.96 pg/mL; P<0.01). Conversely, in patients with progressive disease, the biomarker statistically increased in the same time (9,351.51±7,356.91 pg/mL vs 22,282.92±11,629.35 pg/mL; P<0.01). This trend of sCD40L was confirmed in 18 patients at time to progression after the first evaluation. No differences were recorded within the stable disease group. Moreover, there was a positive correlation between the sCD40L and CA19.9 pre-post treatment variation percentage (Pearson's correlation coefficient =0.52; P<0.05). Our data suggest a possible predictive role of sCD40L in pancreatic cancer patients, similar to CA19.9.
Collapse
Affiliation(s)
| | | | | | - Giusi Graziano
- Scientific Direction, National Cancer Research Centre, Istituto Tumouri “Giovanni Paolo II”, Bari
| | | | | | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Verona, Italy
| | | | - Nicola Silvestris
- Medical Oncology Unit
- Correspondence: Nicola Silvestris, Medical Oncology Unit, National Cancer Research Centre, Istituto Tumouri “Giovanni Paolo II”, Viale Orazio Flacco, 65, 70124 Bari, Italy, Tel/fax +39 80 555 5419, Email
| |
Collapse
|
7
|
Zhu S, Wan L, Yang H, Cheng J, Lu X. Cloning and high level expression of the biologically active extracellular domain of Macaca mulatta CD40 in Pichia pastoris. Protein Expr Purif 2015; 119:19-26. [PMID: 26586612 DOI: 10.1016/j.pep.2015.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/21/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023]
Abstract
The CD40-mediated immune response contributes to a wide variety of chronic inflammatory diseases. CD40 antagonists have potential as novel therapies for immune disorders. However, the CD40 pathway has not been well characterized in the rhesus monkey Macaca mulatta, which is a valuable animal model for human immune disease. An 834 bp transcript was cloned from peripheral blood mononuclear cells (PBMCs) of rhesus monkey using specific primers designed according to the predicted sequence of M. mulatta CD40 (mmCD40) in GenBank. Sequence analysis demonstrated that mmCD40 is highly homologous to human CD40 (hCD40), with an amino acid sequence identity of 94%. Genes encoding the extracellular domain of mmCD40 and the Fc fragment of the hIgG1 were inserted into a pPIC9K plasmid to produce mmCD40Ig by Pichia pastoris. Approximately 15-20 mg of the mmCD40Ig protein with ∼90% purity could be recovered from 1 L of culture. The purified mmCD40Ig protein can form dimers and can specifically bind CD40L-positive cells. Additionally, the mmCD40Ig protein can bind hCD40L protein in phosphate buffered saline and form a stable combination in a size-exclusion chromatography assay using a Superdex 200 column. Moreover, mmCD40Ig is as efficient as M. mulatta CTLA4Ig (mmCTLA4Ig) to suppress Con A-stimulated lymphocyte proliferation. Additionally, mmCD40Ig only showed mild immunosuppressive activity in a one-way mixed lymphocyte reaction (MLR) system. These results suggest that mmCD40Ig secreted by P. pastoris was productive and functional, and it could be used as a tool for pathogenesis and therapies for chronic inflammatory diseases in a M. mulatta model.
Collapse
Affiliation(s)
- Shengyun Zhu
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Wan
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Seijkens T, Kusters P, Chatzigeorgiou A, Chavakis T, Lutgens E. Immune cell crosstalk in obesity: a key role for costimulation? Diabetes 2014; 63:3982-3991. [PMID: 25414012 DOI: 10.2337/db14-0272] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the past two decades, numerous experimental and clinical studies have established the importance of inflammation and immunity in the development of obesity and its metabolic complications, including insulin resistance and type 2 diabetes mellitus. In this context, T cells orchestrate inflammatory processes in metabolic organs, such as the adipose tissue (AT) and liver, thereby mediating obesity-related metabolic deterioration. Costimulatory molecules, which are present on antigen-presenting cells and naïve T cells in the AT, are known to mediate the crosstalk between the adaptive and innate immune system and to direct T-cell responses in inflammation. In this Perspectives in Diabetes article, we highlight the newest insights in immune cell interactions in obesity and discuss the role of costimulatory dyads in its pathogenesis. Moreover, the potential of therapeutic strategies that target costimulatory molecules in the metabolic syndrome is explored.
Collapse
Affiliation(s)
- Tom Seijkens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal Kusters
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Department of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, and Paul-Langerhans-Institute, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Department of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, and Paul-Langerhans-Institute, Technische Universität Dresden, Dresden, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
9
|
Nunemaker CS, Chung HG, Verrilli GM, Corbin KL, Upadhye A, Sharma PR. Increased serum CXCL1 and CXCL5 are linked to obesity, hyperglycemia, and impaired islet function. J Endocrinol 2014; 222:267-76. [PMID: 24928936 PMCID: PMC4135511 DOI: 10.1530/joe-14-0126] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proinflammatory cytokines are thought to play a significant role in the pathogenesis of type 2 diabetes (T2D) and are elevated in the circulation even before the onset of the disease. However, the full complement of cytokines involved in the development of T2D is not known. In this study, 32 serum cytokines were measured from diabetes-prone BKS.Cg-m+/+Lepr(db)/J (db/db) mice and heterozygous age-matched control mice at 5 weeks (non-diabetic/non-obese), 6-7 weeks (transitional-to-diabetes), or 11 weeks (hyperglycemic/obese) and then correlated with body weight, blood glucose, and fat content. Among these 32 cytokines, C-X-C motif ligand 1 (CXCL1) showed the greatest increase (+78%) in serum levels between db/db mice that were hyperglycemic (blood glucose: 519±23 mg/dl, n=6) and those that were non-hyperglycemic (193±13 mg/dl, n=8). Similarly, increased CXCL1 (+68%) and CXCL5 (+40%) were associated with increased obesity in db/db mice; note that these effects could not be entirely separated from age. We then examined whether islets could be a source of these chemokines. Exposure to cytokines mimicking low-grade systemic inflammation (10 pg/ml IL1β+20 pg/ml IL6) for 48 h upregulated islet CXCL1 expression by 53±3-fold and CXCL5 expression by 83±10-fold (n=4, P<0.001). Finally, overnight treatment with the combination of CXCL1 and CXCL5 at serum levels was sufficient to produce a significant decrease in the peak calcium response to glucose stimulation, suggesting reduced islet function. Our findings demonstrated that CXCL1 and CXCL5 i) are increased in the circulation with the onset of T2D, ii) are produced by islets under stress, and iii) synergistically affect islet function, suggesting that these chemokines participate in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Craig S Nunemaker
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - H Grace Chung
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USADivision of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Gretchen M Verrilli
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USADivision of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Kathryn L Corbin
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Aditi Upadhye
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| | - Poonam R Sharma
- Division of Endocrinology and MetabolismDepartment of MedicineDepartment of Biomedical EngineeringDepartment of BiologyUniversity of Virginia, PO Box 801413, Charlottesville, Virginia 22908, USA
| |
Collapse
|
10
|
Ding L, Heremans Y, Pipeleers D, Ling Z, Heimberg H, Gysemans C, Mathieu C. Clinical Immunosuppressants Inhibit Inflammatory, Proliferative, and Reprogramming Potential, But Not Angiogenesis of Human Pancreatic Duct Cells. Cell Transplant 2014; 24:1585-98. [PMID: 25198311 DOI: 10.3727/096368914x682819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The presence of pancreatic duct cells in clinical islet grafts may affect long-term metabolic success. Human pancreatic duct cells express factors that may exert both protective and damaging effects on islet cells in the graft. Here we studied the potential of commonly used immunosuppressive drugs in islet transplantation-sirolimus, tacrolimus, and mycophenolate mofetil (MMF)-to influence the inflammatory and angiogenic capacity of human pancreatic duct cells in addition to their proliferation and reprogramming abilities. Our data show that the expression of specific proinflammatory cytokines by the human pancreatic duct cells was either unaltered or inhibited by the immunosuppressants studied, especially tacrolimus and MMF, whereas expression of chemotactic and angiogenic factors was unaffected. Although none of the immunosuppressants directly led to duct cell death, MMF prevented duct cell proliferation, and sirolimus inhibited neurogenin 3-mediated duct-to-(neuro)endocrine cell reprogramming. Our data indicate that the immunosuppressant tacrolimus was the least aggressive on the angiogenic, proliferative, and reprogramming potential of human pancreatic duct cells, while it was most powerful in inhibiting inflammatory cytokines, which may influence the outcome of islet transplantation.
Collapse
Affiliation(s)
- Lei Ding
- Laboratory of Clinical and Experimental Endocrinology, Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
CD40-mediated amplification of local immunity by epithelial cells is impaired by HPV. J Invest Dermatol 2014; 134:2918-2927. [PMID: 24945092 PMCID: PMC4227541 DOI: 10.1038/jid.2014.262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/30/2022]
Abstract
The interaction between the transmembrane glycoprotein surface receptor CD40 expressed by skin epithelial cells (ECs) and its T-cell–expressed ligand CD154 was suggested to exacerbate inflammatory skin diseases. However, the full spectrum of CD40-mediated effects by ECs underlying this observation is unknown. Therefore, changes in gene expression after CD40 ligation of ECs were studied by microarrays. CD40-mediated activation for 2 hours stimulated the expression of a coordinated network of immune-involved genes strongly interconnected by IL8 and TNF, whereas after 24 hours anti-proliferative and anti-apoptotic genes were upregulated. CD40 ligation was associated with the production of chemokines and the attraction of lymphocytes and myeloid cells from peripheral blood mononuclear cells (PBMCs). Thus, CD40-mediated activation of ECs resulted in a highly coordinated response of genes required for the local development and sustainment of adaptive immune responses. The importance of this process was confirmed by a study on the effects of human papilloma virus (HPV) infection to the EC's response to CD40 ligation. HPV infection clearly attenuated the magnitude of the response to CD40 ligation and the EC's capacity to attract PBMCs. The fact that HPV attenuates CD40 signaling in ECs indicates the importance of the CD40-CD154 immune pathway in boosting cellular immunity within epithelia.
Collapse
|
12
|
Chung HW, Lim JB. Clinical significance of elevated serum soluble CD40 ligand levels as a diagnostic and prognostic tumor marker for pancreatic ductal adenocarcinoma. J Transl Med 2014; 12:102. [PMID: 24745825 PMCID: PMC4021610 DOI: 10.1186/1479-5876-12-102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND CD40-CD40 ligand (CD40L) interaction is considered to contribute to the promotion of prothrombotic responses and production of angiogenesis-associated factor in addition to adaptive immune responses. Recently, the role of soluble CD40L (sCD40L) has gained interest in cancer, although its exact functions remain unknown. This study evaluated the clinical significance of sCD40L in patients with pancreatic ductal adenocarcinoma (PDAC) and validated its utility as a PDAC diagnostic and prognostic biomarker. METHODS Serum sCD40L levels were measured by chemiluminescent immunoassay and compared among normal, chronic pancreatitis (CP, high-risk), and PDAC group in both training (n=25 per group) and independent validation (n=30, 30, and 55, respectively) datasets through one-way ANOVA test with the post-hoc Bonferroni method. To evaluate the diagnostic potential of serum sCD40L for PDAC, receiver operating characteristic (ROC) curves were generated and logistic regression analysis was conducted. To investigate the sCD40L-assoicated cytokines/chemokines in PDAC, cytokines/chemokines levels were analyzed by a MILLIPLEX MAP Human Cytokine/Chemokine Kit. To assess the prognostic potentials of sCD40L, Kaplan-Meier survival curve and Cox proportional-hazards regression analysis were applied. RESULTS Serum sCD40L levels were significantly higher in PDAC group compared with non-cancer groups in both training (p<0.05) and validation (p<0.05) datasets. Clinically, serum sCD40L closely correlated with unresectability (γs=0.342, p=0.011) and distant metastasis (γs=0.294, p=0.030) of PDAC. ROC curve and logistic regression analysis demonstrated the remarkable predictive potentials of serum sCD40L for PDAC (80.0% sensitivity and 85.5% specificity at cut-off point, 0.45; logistic regression), superior to those of CA19-9 and CEA. According to cytokines/chemokines assay, serum sCD40L levels were closely correlated with serum levels of pro-angiogenic cytokines (EGF, VEGF, IL-8) and immunosuppressive cytokines (IL-6, IL-10, IL-1RA). Kaplan-Meier survival analysis demonstrated patients with high-serum sCD40L (>35,000 ng/ml) had a poorer prognosis than those with low-serum sCD40L (log-rank, p=0.015). Multivariate Cox regression analysis yielded a hazard ratio of 2.509 (95% CI, 1.038-6.067, p=0.041) for mortality in the high-serum sCD40L group. CONCLUSIONS Serum sCD40L is correlated with immunosuppression and angiogenesis in PDAC carcinogenesis/progression, and is a promising diagnostic and prognostic biomarker for PDAC superior to CA19-9 and CEA.
Collapse
Affiliation(s)
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Itoh T, Sugimoto K, Takita M, Shimoda M, Chujo D, SoRelle JA, Naziruddin B, Levy MF, Matsumoto S. Low temperature condition prevents hypoxia-induced islet cell damage and HMGB1 release in a mouse model. Cell Transplant 2013; 21:1361-70. [PMID: 22507397 DOI: 10.3727/096368912x637514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
One of the major issues in clinical islet transplantation is the poor efficacy of islet isolation. During pancreas preservation and islet isolation, islets suffer from hypoxia as islets are highly sensitive to hypoxic conditions.Cold preservation has been applied to minimize hypoxia-induced cell damage during organ preservation.However, the studies related to hypoxia-induced islet cell damage during islet isolation are limited. Recently,we demonstrated that mouse islets contain high levels of high-mobility group box 1 protein (HMGB1), and during proinflammatory cytokine-induced damage, islets release HMGB1 outside the cell. The released HMGB1 is involved in the initial events of early islet loss. In the present study, we hypothesize that low temperature conditions could prevent both hypoxia induced islet cell damage and HMGB1 release from islets in a mouse model. Isolated mouse islets underwent normoxic condition (95% air and 5% CO(2)) at 37°C or hypoxic conditions (1% O(2), 5% CO(2), and 94% N(2)) at 37°C (hypoxia-37°C islets), 22°C (hypoxia-22°C islets), or 4°C (hypoxia-4°C islets) for 12 h. In vitro and in vivo viability and functionality tests were performed. HMGB1, IL-6, G-CSF, KC, RANTES, MCP-1, and MIP-1α levels in the medium were measured. Low temperature conditions substantially reduced hypoxia-induced necrosis (p < 0.05) and apoptosis (p < 0.05). In addition, low temperature islet culture significantly increased the insulin secretion from islets by high glucose stimulation (p < 0.05). All of the recipient mice reversed diabetes after receiving the hypoxia-4°C islets but not after receipt of hypoxia-37°C or 22°C islets. The amounts of released HMGB1, IL-6, G-CSF, KC, RANTES, MCP-1, and MIP-1α were significantly reduced in the hypoxia-4°C islets compared to those of the hypoxia-37°C islets (p < 0.05). In conclusion, low temperature conditions could prevent hypoxia-induced islet cell damage, inflammatory reactions in islets, and HMGB1 release and expression. Low temperature conditions should improve the efficacy of isolated islets.
Collapse
|
14
|
Jacobs-Tulleneers-Thevissen D, Chintinne M, Ling Z, Gillard P, Schoonjans L, Delvaux G, Strand BL, Gorus F, Keymeulen B, Pipeleers D. Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 2013; 56:1605-14. [PMID: 23620058 DOI: 10.1007/s00125-013-2906-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Alginate-encapsulated human islet cell grafts have not been able to correct diabetes in humans, whereas free grafts have. This study examined in immunodeficient mice whether alginate-encapsulated graft function was inferior to that of free grafts of the same size and composition. METHODS Cultured human islet cells were equally distributed over free and alginate-encapsulated grafts before implantation in, respectively, the kidney capsule and the peritoneal cavity of non-obese diabetic mice with severe combined immunodeficiency and alloxan-induced diabetes. Implants were followed for in vivo function and retrieved for analysis of cellular composition (all) and insulin secretory responsiveness (capsules). RESULTS Free implants with low beta cell purity (19 ± 1%) were non-functional and underwent 90% beta cell loss. At medium purity (50 ± 1%), they were functional at post-transplant week 1, evolving to normoglycaemia (4/8) or to C-peptide negativity (4/8) depending on the degree of beta cell-specific losses. Encapsulated implants immediately and sustainably corrected diabetes, irrespective of beta cell purity (16/16). Most capsules were retrievable as single units, enriched in endocrine cells that exhibited rapid secretory responses to glucose and glucagon. Single capsules with similar properties were also retrieved from a type 1 diabetic recipient at post-transplant month 3. However, the vast majority were clustered and contained debris, explaining the poor rise in plasma C-peptide. CONCLUSIONS/INTERPRETATION In immunodeficient mice, i.p. implanted alginate-encapsulated human islet cells exhibited a better outcome than free implants under the kidney capsule. They did not show primary non-function at low beta cell purity and avoided beta cell-specific losses by rapidly establishing normoglycaemia. Retrieved capsules presented secretory responses to glucose, which was also observed in a type 1 diabetic recipient.
Collapse
|
15
|
Seijkens T, Kusters P, Engel D, Lutgens E. CD40-CD40L: linking pancreatic, adipose tissue and vascular inflammation in type 2 diabetes and its complications. Diab Vasc Dis Res 2013; 10:115-22. [PMID: 22965071 DOI: 10.1177/1479164112455817] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous epidemiological studies have consistently demonstrated the strong association between type 2 diabetes mellitus (T2DM) and an increased risk to develop cardiovascular disease. The pathogenesis of T2DM and its complications are characterized by pancreatic, adipose tissue and vascular inflammation. CD40 and CD40L, members of the tumour necrosis factor (receptor) TNF(R) family, are well known for their role in immunity and inflammation. Here we give an overview on the role of CD40-CD40L interactions in the pathogenesis of T2DM with a special focus on pancreatic, adipose tissue and vascular inflammation. In addition, we explore the role of soluble CD40L (sCD40L) as a potential biomarker for the development of cardiovascular disease in T2DM subjects. Finally, the therapeutic potential of CD40-CD40L inhibition in T2DM is highlighted.
Collapse
Affiliation(s)
- Tom Seijkens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Itoh T, Sugimoto K, Shimoda M, Chujo D, Takita M, Iwahashi S, Kanak M, Yoshiko T, Naziruddin B, Levy MF, Matsumoto S. Establishment of a prolonged pancreas preservation model for islet isolation research in mice. Islets 2011; 3:376-80. [PMID: 22045261 PMCID: PMC3329518 DOI: 10.4161/isl.3.6.18159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Establishing a prolonged pancreas preservation model in a small animal is important for islet isolation research. Use of a rat pancreas model has been reported, but no published reports have used a mouse pancreas for prolonged cold preservation prior to islet isolation. For the model, a mouse is preferred over a rat because of its small size, well-known immune characterization, and variety of gene-modulated models. In the present study, we established a prolonged pancreas preservation model in a mouse for islet isolation research. The collagenase solution was injected successfully after 24 and 48 h cold preservations in University of Wisconsin solution, and islets could be isolated from both groups of preserved pancreata. The islet yields from the control, 24 h preserved, and 48 h preserved pancreata were 183.9 ± 13.9, 128.5 ± 15.5, and 24.6 ± 12.9 per pancreas, respectively. The propidium iodide-positive area assay was significantly increased in both preserved groups, and insulin secretion levels in response to 20.0 mM glucose and stimulation indices were significantly decreased in the 48 h preserved group. Inflammation-related genes mRNA levels were significantly upregulated in the 24 h preserved group, as previously shown in the human model. Thus, this model might be useful for prehuman islet isolation screening research, reserving research using human pancreata for the most promising approaches.
Collapse
Affiliation(s)
- Takeshi Itoh
- Baylor Research Institute; Dallas and Fort Worth, TX USA
| | - Koji Sugimoto
- Baylor Research Institute; Dallas and Fort Worth, TX USA
| | - Masayuki Shimoda
- Division of Cardiology; Department of Internal Medicine; Baylor University Medical Center at Dallas; Baylor Heart and Vascular Institute; Dallas, TX USA
| | - Daisuke Chujo
- Baylor Institute for Immunology Research; Dallas, TX USA
| | | | | | - Mazhar Kanak
- Institute of Biomedical Studies; Baylor University; Waco, TX USA
| | - Tamura Yoshiko
- Annette C. and Harold C. Simmons Transplant Institute; Baylor University Medical Center at Dallas; Dallas, TX USA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute; Baylor University Medical Center at Dallas; Dallas, TX USA
| | - Marlon F. Levy
- Baylor Research Institute; Dallas and Fort Worth, TX USA
- Annette C. and Harold C. Simmons Transplant Institute; Baylor University Medical Center at Dallas; Dallas, TX USA
| | - Shinichi Matsumoto
- Baylor Research Institute; Dallas and Fort Worth, TX USA
- Correspondence to: Shinichi Matsumoto,
| |
Collapse
|
17
|
Ryden A, Stechova K, Durilova M, Faresjö M. Switch from a dominant Th1-associated immune profile during the pre-diabetic phase in favour of a temporary increase of a Th3-associated and inflammatory immune profile at the onset of type 1 diabetes. Diabetes Metab Res Rev 2009; 25:335-43. [PMID: 19382103 DOI: 10.1002/dmrr.958] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease dominated by loss of self-tolerance resulting in depletion of the beta-cells. This study aims to confirm previous observations of a dominant T-helper (Th)1-like profile during the period close to onset of disease. Further, to follow the immune response from onset to 2 years duration, the study focused on spontaneous as well as autoantigen-induced immune profile. METHODS Peripheral blood mononuclear cells were collected 4 days and 1 and 2 years after diagnosis of T1D children, from healthy children carrying the human leukocyte antigen-risk genes and from high-risk children (ICA > or = 20 IJDF units). Peripheral blood mononuclear cells were stimulated with glutamic acid decarboxylase (GAD(65)) and phytohaemagglutinin (PHA). Cytokines and chemokines were detected in cell-culture supernatants by protein microarray (naive T-cells; interleukin (IL)-7, Th1; interferon-gamma, tumour necrosis factor-beta, Th2; IL-5, Th3; transforming growth factor-beta, T-regulatory cell type 1; IL-10 and inflammatory cytokines; tumour necrosis factor-alpha, IL-6 and chemokines; monocyte chemoattractant protein-1, monokine upregulated by IFN-gamma) in relation to clinical outcome (C-peptide). RESULTS High-risk children showed a dominant Th1-associated profile with high spontaneous and GAD(65)-induced secretion. The mitogen PHA instead induced a Th2-associated response exclusively in high-risk children. In contrast, newly diagnosed T1D children showed a pronounced Th3-associated cytokine profile as well as a burst of inflammatory cytokines and chemokines secreted both spontaneously and by GAD(65) and PHA stimulation. The immune response to GAD(65) and PHA, however, diminished with duration of disease. CONCLUSION A dominant Th1-associated immune profile was observed during the pre-diabetic phase. This Th1 dominance, however, diminished in favour of a temporary increase in a Th3-associated and inflammatory immune profile at the onset of disease.
Collapse
Affiliation(s)
- Anna Ryden
- Division of Paediatrics & Diabetes Research Centre, Department of Clinical & Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
18
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-x. [PMID: 19219862 DOI: 10.1002/dmrr.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|