1
|
Kraft G, Coate KC, Smith M, Farmer B, Scott M, Hastings J, Cherrington AD, Edgerton DS. Profound Sensitivity of the Liver to the Direct Effect of Insulin Allows Peripheral Insulin Delivery to Normalize Hepatic but Not Muscle Glucose Uptake in the Healthy Dog. Diabetes 2023; 72:196-209. [PMID: 36280227 PMCID: PMC9871195 DOI: 10.2337/db22-0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/18/2022] [Indexed: 01/28/2023]
Abstract
Endogenous insulin secretion is a key regulator of postprandial hepatic glucose metabolism, but this process is dysregulated in diabetes. Subcutaneous insulin delivery alters normal insulin distribution, causing relative hepatic insulin deficiency and peripheral hyperinsulinemia, a major risk factor for metabolic disease. Our aim was to determine whether insulin's direct effect on the liver is preeminent even when insulin is given into a peripheral vein. Postprandial-like conditions were created (hyperinsulinemia, hyperglycemia, and a positive portal vein to arterial glucose gradient) in healthy dogs. Peripheral (leg vein) insulin infusion elevated arterial and hepatic levels 8.0-fold and 2.8-fold, respectively. In one group, insulin's full effects were allowed. In another, insulin's indirect hepatic effects were blocked with the infusion of triglyceride, glucagon, and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids and glucagon, while blocking increased hypothalamic insulin signaling. Despite peripheral insulin delivery the liver retained its full ability to store glucose, even when insulin's peripheral effects were blocked, whereas muscle glucose uptake markedly increased, creating an aberrant distribution of glucose disposal between liver and muscle. Thus, the healthy liver's striking sensitivity to direct insulin action can overcome the effect of relative hepatic insulin deficiency, whereas excess insulin in the periphery produces metabolic abnormalities in nonhepatic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dale S. Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
2
|
Utility of Hypoglycemic Agents to Treat Asthma with Comorbid Obesity. Pulm Ther 2022; 9:71-89. [PMID: 36575356 PMCID: PMC9931991 DOI: 10.1007/s41030-022-00211-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022] Open
Abstract
Adults with obesity may develop asthma that is ineffectively controlled by inhaled corticosteroids and long-acting beta-adrenoceptor agonists. Mechanistic and translational studies suggest that metabolic dysregulation that occurs with obesity, particularly hyperglycemia and insulin resistance, contributes to altered immune cell function and low-grade systemic inflammation. Importantly, in these cases, the same proinflammatory cytokines believed to contribute to insulin resistance may also be responsible for airway remodeling and hyperresponsiveness. In the past decade, new research has emerged assessing whether hypoglycemic therapies impact comorbid asthma as reflected by the incidence of asthma, asthma-related emergency department visits, asthma-related hospitalizations, and asthma-related exacerbations. The purpose of this review article is to discuss the mechanism of action, preclinical data, and existing clinical studies regarding the efficacy and safety of hypoglycemic therapies for adults with obesity and comorbid asthma.
Collapse
|
3
|
Kraft G, Coate KC, Smith M, Farmer B, Scott M, Cherrington AD, Edgerton DS. The Importance of the Mechanisms by Which Insulin Regulates Meal-Associated Liver Glucose Uptake in the Dog. Diabetes 2021; 70:1292-1302. [PMID: 33757993 PMCID: PMC8275892 DOI: 10.2337/db20-1271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Abstract
Hepatic glucose uptake (HGU) is critical for maintaining normal postprandial glucose metabolism. Insulin is clearly a key regulator of HGU, but the physiologic mechanisms by which it acts have yet to be established. This study sought to determine the mechanisms by which insulin regulates liver glucose uptake under postprandial-like conditions (hyperinsulinemia, hyperglycemia, and a positive portal vein-to-arterial glucose gradient). Portal vein insulin infusion increased hepatic insulin levels fivefold in healthy dogs. In one group (n = 7), the physiologic response was allowed to fully occur, while in another (n = 7), insulin's indirect hepatic effects, occurring secondary to its actions on adipose tissue, pancreas, and brain, were blocked. This was accomplished by infusing triglyceride (intravenous), glucagon (portal vein), and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids or glucagon, while blocking increased hypothalamic insulin signaling for 4 h. In contrast to the indirect hepatic effects of insulin, which were previously shown capable of independently generating a half-maximal stimulation of HGU, direct hepatic insulin action was by itself able to fully stimulate HGU. This suggests that under hyperinsulinemic/hyperglycemic conditions insulin's indirect effects are redundant to direct engagement of hepatocyte insulin receptors.
Collapse
Affiliation(s)
- Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Katie C Coate
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
4
|
Cree-Green M, Bergman BC, Cengiz E, Fox LA, Hannon TS, Miller K, Nathan B, Pyle L, Kahn D, Tansey M, Tichy E, Tsalikian E, Libman I, Nadeau KJ. Metformin Improves Peripheral Insulin Sensitivity in Youth With Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104:3265-3278. [PMID: 30938764 PMCID: PMC6584133 DOI: 10.1210/jc.2019-00129] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/27/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT Type 1 diabetes in adolescence is characterized by insulin deficiency and insulin resistance (IR), both thought to increase cardiovascular disease risk. We previously demonstrated that adolescents with type 1 diabetes have adipose, hepatic, and muscle IR, and that metformin lowers daily insulin dose, suggesting improved IR. However, whether metformin improves IR in muscle, hepatic, or adipose tissues in type 1 diabetes was unknown. OBJECTIVE Measure peripheral, hepatic, and adipose insulin sensitivity before and after metformin or placebo therapy in youth with obesity with type 1 diabetes. DESIGN Double-blind, placebo-controlled clinical trial. SETTING Multi-center at eight sites of the T1D Exchange Clinic Network. PARTICIPANTS A subset of 12- to 19-year-olds with type 1 diabetes (inclusion criteria: body mass index ≥85th percentile, HbA1c 7.5% to 9.9%, insulin dosing ≥0.8 U/kg/d) from a larger trial (NCT02045290) were enrolled. INTERVENTION Participants were randomized to 3 months of metformin (N = 19) or placebo (N = 18) and underwent a three-phase hyperinsulinemic euglycemic clamp with glucose and glycerol isotope tracers to assess tissue-specific IR before and after treatment. MAIN OUTCOME MEASURES Peripheral insulin sensitivity, endogenous glucose release, rate of lipolysis. RESULTS Between-group differences in change in insulin sensitivity favored metformin regarding whole-body IR [change in glucose infusion rate 1.3 (0.1, 2.4) mg/kg/min, P = 0.03] and peripheral IR [change in metabolic clearance rate 0.923 (-0.002, 1.867) dL/kg/min, P = 0.05]. Metformin did not impact insulin suppression of endogenous glucose release (P = 0.12). Adipose IR was not assessable with traditional methods in this highly IR population. CONCLUSIONS Metformin appears to improve whole-body and peripheral IR in youth who are overweight/obese with type 1 diabetes.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eda Cengiz
- Yale School of Medicine University, New Haven, Connecticut
| | - Larry A Fox
- Nemours Children’s Specialty Care, Jacksonville, Florida
| | - Tamara S Hannon
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kellee Miller
- Jaeb Center for Health Research, Tampa, Florida
- Correspondence and Reprint Requests: Kellee Miller, PhD, Jaeb Center for Health Research, 15310 Amberly Drive, Tampa, Florida 33647. E-mail:
| | | | - Laura Pyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Anschutz Medical Campus, Aurora, Colorado
| | - Darcy Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael Tansey
- Stead Family Department of Pediatrics, Endocrinology and Diabetes, University of Iowa, Iowa City, Iowa
| | - Eileen Tichy
- Yale School of Medicine University, New Haven, Connecticut
| | - Eva Tsalikian
- Stead Family Department of Pediatrics, Endocrinology and Diabetes, University of Iowa, Iowa City, Iowa
| | - Ingrid Libman
- Children’s Hospital of Pittsburgh at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kristen J Nadeau
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
5
|
Anholm C, Kumarathurai P, Samkani A, Pedersen LR, Boston RC, Nielsen OW, Kristiansen OP, Fenger M, Madsbad S, Sajadieh A, Haugaard SB. Effect of liraglutide on estimates of lipolysis and lipid oxidation in obese patients with stable coronary artery disease and newly diagnosed type 2 diabetes: A randomized trial. Diabetes Obes Metab 2019; 21:2012-2016. [PMID: 31050161 DOI: 10.1111/dom.13761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/16/2023]
Abstract
Elevated levels of non-esterified fatty acids (NEFA) play a role in insulin resistance, impaired beta-cell function and they are a denominator of the abnormal atherogenic lipid profile that characterizes obese patients with type 2 diabetes (T2DM). We hypothesized that the GLP-1 receptor agonist liraglutide, in combination with metformin, would reduce lipolysis. In a randomized, double-blind, placebo-controlled, cross-over trial, 41 T2DM patients with coronary artery disease were randomized and treated with liraglutide-metformin vs placebo-metformin during 12- + 12-week periods with a wash-out period of at least 2 weeks before and between the intervention periods. NEFA kinetics were estimated using the Boston Minimal Model of NEFA metabolism, with plasma NEFA and glucose levels measured during a standard 180-minute frequently sampled intravenous glucose tolerance test. Liraglutide-metformin reduced estimates of lipolysis. Furthermore, placebo-metformin increased estimates of lipid oxidation, while treatment with liraglutide eliminated this effect. We conclude that liraglutide exerts a clinically relevant reduction in estimates of lipolysis and lipid oxidation which is explained, in part, by improved insulin secretion, as revealed by an intravenous glucose tolerance test.
Collapse
Affiliation(s)
- Christian Anholm
- Department of Internal Medicine, Copenhagen University Hospital, Glostrup, Denmark
- Department of Internal Medicine, Copenhagen University Hospital, Amager, Denmark
| | - Preman Kumarathurai
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Amirsalar Samkani
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Lene R Pedersen
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Raymond C Boston
- Departments of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Olav W Nielsen
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Ole P Kristiansen
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ahmad Sajadieh
- Department of Cardiology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Steen B Haugaard
- Department of Internal Medicine, Copenhagen University Hospital, Amager, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg, Denmark
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
6
|
Basu R, Barosa C, Basu A, Pattan V, Saad A, Jones J, Rizza R. Transaldolase exchange and its effects on measurements of gluconeogenesis in humans. Am J Physiol Endocrinol Metab 2011; 300:E296-303. [PMID: 21062960 PMCID: PMC3043622 DOI: 10.1152/ajpendo.00403.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. ²H₂O and acetaminophen were ingested and [1-¹³C]acetate infused in 11 nondiabetic subjects after a 16-h fast. Plasma and urinary glucuronide enrichments were measured using nuclear magnetic resonance spectroscopy before and during a 0.35 mU·kg FFM⁻¹·min⁻¹ insulin infusion. Rates of endogenous glucose production measured with [3-³H]- and [6,6-²H₂]glucose did not differ either before (14.0 ± 0.7 vs. 13.8 ± 0.7 μmol·kg⁻¹·min⁻¹) or during the clamp (10.4 ± 0.9 vs. 10.9 ± 0.7 μmol·kg⁻¹·min⁻¹), consistent with equilibration and quantitative removal of tritium during triose isomerase exchange. Plasma [3-¹³C] glucose-to-[4-¹³C]glucose and urinary [3-¹³C] glucuronide-to-[4-¹³C]glucuronide ratios were <1.0 (P < 0.001) in all subjects both before (0.66 ± 0.04 and 0.60 ± 0.04) and during (059 ± 0.05 and 0.56 ± 0.06) the insulin infusion, respectively, indicating that ∼35-45% of the labeling of the 5th carbon of glucose by deuterium was due to transaldolase exchange rather than gluconeogenesis. When corrected for transaldolase exchange, rates of gluconeogenesis were lower (P < 0.001) and glycogenolysis higher (P < 0.001) than uncorrected rates both before and during the insulin infusion. In conclusion, assuming negligible dilution by glycerol and near-complete triose isomerase equilibration, these data provide strong experimental evidence that transaldolase exchange occurs in humans, resulting in an overestimate of gluconeogenesis and an underestimate of glycogenolysis when measured with the ²H₂O method. Use of appropriate ¹³C tracers provides a means of correcting for transaldolase exchange.
Collapse
Affiliation(s)
- Rita Basu
- Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Gustavsson C, Yassin K, Wahlström E, Cheung L, Lindberg J, Brismar K, Ostenson CG, Norstedt G, Tollet-Egnell P. Sex-different hepaticglycogen content and glucose output in rats. BMC BIOCHEMISTRY 2010; 11:38. [PMID: 20863371 PMCID: PMC2955586 DOI: 10.1186/1471-2091-11-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/23/2010] [Indexed: 02/08/2023]
Abstract
Background Genes involved in hepatic metabolism have a sex-different expression in rodents. To test whether male and female rat livers differ regarding lipid and carbohydrate metabolism, whole-genome transcript profiles were generated and these were complemented by measurements of hepatic lipid and glycogen content, fatty acid (FA) oxidation rates and hepatic glucose output (HGO). The latter was determined in perfusates from in situ perfusion of male and female rat livers. These perfusates were also analysed using nuclear magnetic resonance (NMR) spectroscopy to identify putative sex-differences in other liver-derived metabolites. Effects of insulin were monitored by analysis of Akt-phosphorylation, gene expression and HGO after s.c. insulin injections. Results Out of approximately 3 500 gene products being detected in liver, 11% were significantly higher in females, and 11% were higher in males. Many transcripts for the production of triglycerides (TG), cholesterol and VLDL particles were female-predominant, whereas genes for FA oxidation, gluconeogenesis and glycogen synthesis were male-predominant. Sex-differences in mRNA levels related to metabolism were more pronounced during mild starvation (12 h fasting), as compared to the postabsorptive state (4 h fasting). No sex-differences were observed regarding hepatic TG content, FA oxidation rates or blood levels of ketone bodies or glucose. However, males had higher hepatic glycogen content and higher HGO, as well as higher ratios of insulin to glucagon levels. Based on NMR spectroscopy, liver-derived lactate was also higher in males. HGO was inhibited by insulin in parallel with increased phosphorylation of Akt, without any sex-differences in insulin sensitivity. However, the degree of Thr172-phosphorylated AMP kinase (AMPK) was higher in females, indicating a higher degree of AMPK-dependent actions. Conclusions Taken together, males had higher ratios of insulin to glucagon levels, higher levels of glycogen, lower degree of AMPK phosphorylation, higher expression of gluconeogenic genes and higher hepatic glucose output. Possibly these sex-differences reflect a higher ability for the healthy male rat liver to respond to increased energy demands.
Collapse
|
8
|
Salpeter SR, Greyber E, Pasternak GA, Salpeter EE, Cochrane Metabolic and Endocrine Disorders Group. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010; 2010:CD002967. [PMID: 20393934 PMCID: PMC7138050 DOI: 10.1002/14651858.cd002967.pub4] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Metformin is an oral anti-hyperglycemic agent that has been shown to reduce total mortality compared to other anti-hyperglycemic agents, in the treatment of type 2 diabetes mellitus. Metformin, however, is thought to increase the risk of lactic acidosis, and has been considered to be contraindicated in many chronic hypoxemic conditions that may be associated with lactic acidosis, such as cardiovascular, renal, hepatic and pulmonary disease, and advancing age. OBJECTIVES To assess the incidence of fatal and nonfatal lactic acidosis, and to evaluate blood lactate levels, for those on metformin treatment compared to placebo or non-metformin therapies. SEARCH STRATEGY A comprehensive search was performed of electronic databases to identify studies of metformin treatment. The search was augmented by scanning references of identified articles, and by contacting principal investigators. SELECTION CRITERIA Prospective trials and observational cohort studies in patients with type 2 diabetes of least one month duration were included if they evaluated metformin, alone or in combination with other treatments, compared to placebo or any other glucose-lowering therapy. DATA COLLECTION AND ANALYSIS The incidence of fatal and nonfatal lactic acidosis was recorded as cases per patient-years, for metformin treatment and for non-metformin treatments. The upper limit for the true incidence of cases was calculated using Poisson statistics. In a second analysis lactate levels were measured as a net change from baseline or as mean treatment values (basal and stimulated by food or exercise) for treatment and comparison groups. The pooled results were recorded as a weighted mean difference (WMD) in mmol/L, using the fixed-effect model for continuous data. MAIN RESULTS Pooled data from 347 comparative trials and cohort studies revealed no cases of fatal or nonfatal lactic acidosis in 70,490 patient-years of metformin use or in 55,451 patients-years in the non-metformin group. Using Poisson statistics the upper limit for the true incidence of lactic acidosis per 100,000 patient-years was 4.3 cases in the metformin group and 5.4 cases in the non-metformin group. There was no difference in lactate levels, either as mean treatment levels or as a net change from baseline, for metformin compared to non-metformin therapies. AUTHORS' CONCLUSIONS There is no evidence from prospective comparative trials or from observational cohort studies that metformin is associated with an increased risk of lactic acidosis, or with increased levels of lactate, compared to other anti-hyperglycemic treatments.
Collapse
Affiliation(s)
- Shelley R Salpeter
- Stanford University, and Santa Clara Valley Medical CenterMedicine2400 Moorpark Ave, Suite 118San JoseCAUSA95128
| | - Elizabeth Greyber
- Santa Clara Valley Medical CenterMedicine2400 Moorpark Ave, Suite 118San JoseCAUSA95128
| | - Gary A Pasternak
- Santa Clara Valley Medical CenterMedicine2400 Moorpark Ave, Suite 118San JoseCAUSA95128
| | - Edwin E Salpeter
- Cornell UniversityCenter for Radiophysics and Space Research612 Space Sciences BuildingIthacaNYUSA14853
| | | |
Collapse
|
9
|
Salpeter SR, Greyber E, Pasternak GA, Salpeter Posthumous EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010:CD002967. [PMID: 20091535 DOI: 10.1002/14651858.cd002967.pub3] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metformin is an oral anti-hyperglycemic agent that has been shown to reduce total mortality compared to other anti-hyperglycemic agents, in the treatment of type 2 diabetes mellitus. Metformin, however, is thought to increase the risk of lactic acidosis, and has been considered to be contraindicated in many chronic hypoxemic conditions that may be associated with lactic acidosis, such as cardiovascular, renal, hepatic and pulmonary disease, and advancing age. OBJECTIVES To assess the incidence of fatal and nonfatal lactic acidosis, and to evaluate blood lactate levels, for those on metformin treatment compared to placebo or non-metformin therapies. SEARCH STRATEGY A comprehensive search was performed of electronic databases to identify studies of metformin treatment. The search was augmented by scanning references of identified articles, and by contacting principal investigators. SELECTION CRITERIA Prospective trials and observational cohort studies in patients with type 2 diabetes of least one month duration were included if they evaluated metformin, alone or in combination with other treatments, compared to placebo or any other glucose-lowering therapy. DATA COLLECTION AND ANALYSIS The incidence of fatal and nonfatal lactic acidosis was recorded as cases per patient-years, for metformin treatment and for non-metformin treatments. The upper limit for the true incidence of cases was calculated using Poisson statistics. In a second analysis lactate levels were measured as a net change from baseline or as mean treatment values (basal and stimulated by food or exercise) for treatment and comparison groups. The pooled results were recorded as a weighted mean difference (WMD) in mmol/L, using the fixed-effect model for continuous data. MAIN RESULTS Pooled data from 347 comparative trials and cohort studies revealed no cases of fatal or nonfatal lactic acidosis in 70,490 patient-years of metformin use or in 55,451 patients-years in the non-metformin group. Using Poisson statistics the upper limit for the true incidence of lactic acidosis per 100,000 patient-years was 4.3 cases in the metformin group and 5.4 cases in the non-metformin group. There was no difference in lactate levels, either as mean treatment levels or as a net change from baseline, for metformin compared to non-metformin therapies. AUTHORS' CONCLUSIONS There is no evidence from prospective comparative trials or from observational cohort studies that metformin is associated with an increased risk of lactic acidosis, or with increased levels of lactate, compared to other anti-hyperglycemic treatments.
Collapse
Affiliation(s)
- Shelley R Salpeter
- Medicine, Stanford University, and Santa Clara Valley Medical Center, 2400 Moorpark Ave, Suite 118, San Jose, CA, USA, 95128
| | | | | | | |
Collapse
|
10
|
Current world literature. Curr Opin Lipidol 2009; 20:512-9. [PMID: 19935200 DOI: 10.1097/mol.0b013e328334096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-viii. [PMID: 19267326 DOI: 10.1002/dmrr.952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|