1
|
Stangret A, Sadowski KA, Jabłoński K, Kochman J, Opolski G, Grabowski M, Tomaniak M. Chemokine Fractalkine and Non-Obstructive Coronary Artery Disease-Is There a Link? Int J Mol Sci 2024; 25:3885. [PMID: 38612695 PMCID: PMC11012077 DOI: 10.3390/ijms25073885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Non-obstructive coronary artery disease (NO-CAD) constitutes a heterogeneous group of conditions collectively characterized by less than 50% narrowing in at least one major coronary artery with a fractional flow reserve (FFR) of ≤0.80 observed in coronary angiography. The pathogenesis and progression of NO-CAD are still not fully understood, however, inflammatory processes, particularly atherosclerosis and microvascular dysfunction are known to play a major role in it. Chemokine fractalkine (FKN/CX3CL1) is inherently linked to these processes. FKN/CX3CL1 functions predominantly as a chemoattractant for immune cells, facilitating their transmigration through the vessel wall and inhibiting their apoptosis. Its concentrations correlate positively with major cardiovascular risk factors. Moreover, promising preliminary results have shown that FKN/CX3CL1 receptor inhibitor (KAND567) administered in the population of patients with ST-elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI), inhibits the adverse reaction of the immune system that causes hyperinflammation. Whereas the link between FKN/CX3CL1 and NO-CAD appears evident, further studies are necessary to unveil this complex relationship. In this review, we critically overview the current data on FKN/CX3CL1 in the context of NO-CAD and present the novel clinical implications of the unique structure and function of FKN/CX3CL1 as a compound which distinctively contributes to the pathomechanism of this condition.
Collapse
Affiliation(s)
- Aleksandra Stangret
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Karol Artur Sadowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Konrad Jabłoński
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Janusz Kochman
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Grzegorz Opolski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Mariusz Tomaniak
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| |
Collapse
|
2
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
3
|
Saavedra-Alvarez A, Pereyra KV, Toledo C, Iturriaga R, Del Rio R. Vascular dysfunction in HFpEF: Potential role in the development, maintenance, and progression of the disease. Front Cardiovasc Med 2022; 9:1070935. [PMID: 36620616 PMCID: PMC9810809 DOI: 10.3389/fcvm.2022.1070935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex, heterogeneous disease characterized by autonomic imbalance, cardiac remodeling, and diastolic dysfunction. One feature that has recently been linked to the pathology is the presence of macrovascular and microvascular dysfunction. Indeed, vascular dysfunction directly affects the functionality of cardiomyocytes, leading to decreased dilatation capacity and increased cell rigidity, which are the outcomes of the progressive decline in myocardial function. The presence of an inflammatory condition in HFpEF produced by an increase in proinflammatory molecules and activation of immune cells (i.e., chronic low-grade inflammation) has been proposed to play a pivotal role in vascular remodeling and endothelial cell death, which may ultimately lead to increased arterial elastance, decreased myocardium perfusion, and decreased oxygen supply to the tissue. Despite this, the precise mechanism linking low-grade inflammation to vascular alterations in the setting of HFpEF is not completely known. However, the enhanced sympathetic vasomotor tone in HFpEF, which may result from inflammatory activation of the sympathetic nervous system, could contribute to orchestrate vascular dysfunction in the setting of HFpEF due to the exquisite sympathetic innervation of both the macro and microvasculature. Accordingly, the present brief review aims to discuss the main mechanisms that may be involved in the macro- and microvascular function impairment in HFpEF and the potential role of the sympathetic nervous system in vascular dysfunction.
Collapse
Affiliation(s)
- Andrea Saavedra-Alvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherine V. Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile,Facultad de la Salud, Centro de Investigación en Fisiología y Medicina de Altura (MedAlt), Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile,Facultad de la Salud, Centro de Investigación en Fisiología y Medicina de Altura (MedAlt), Universidad de Antofagasta, Antofagasta, Chile,*Correspondence: Rodrigo Del Rio
| |
Collapse
|
4
|
Camici PG, Tschöpe C, Di Carli MF, Rimoldi O, Van Linthout S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc Res 2020; 116:806-816. [PMID: 31999329 DOI: 10.1093/cvr/cvaa023] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Left ventricular (LV) hypertrophy (LVH) is a growth in left myocardial mass mainly caused by increased cardiomyocyte size. LVH can be a physiological adaptation to physical exercise or a pathological condition either primary, i.e. genetic, or secondary to LV overload. Patients with both primary and secondary LVH have evidence of coronary microvascular dysfunction (CMD). The latter is mainly due to capillary rarefaction and adverse remodelling of intramural coronary arterioles due to medial wall thickening with an increased wall/lumen ratio. An important feature of this phenomenon is the diffuse nature of this remodelling, which generally affects the coronary microvessels in the whole of the left ventricle. Patients with LVH secondary to arterial hypertension can develop both heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). These patients can develop HFrEF via a 'direct pathway' with an interval myocardial infarction and also in its absence. On the other hand, patients can develop HFpEF that can then progress to HFrEF with or without interval myocardial infarction. A similar evolution towards LV dysfunction and both HFpEF and HFrEF can occur in patients with hypertrophic cardiomyopathy, the most common genetic cardiomyopathy with a phenotype characterized by massive LVH. In this review article, we will discuss both the experimental and clinical studies explaining the mechanisms responsible for CMD in LVH as well as the evidence linking CMD with HFpEF and HFrEF.
Collapse
Affiliation(s)
- Paolo G Camici
- Vita Salute University and San Raffaele Hospital, Milano, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ornella Rimoldi
- Vita Salute University and San Raffaele Hospital, Milano, Italy.,CNR IBFM, Segrate, Italy
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
5
|
Exogenous NO Therapy for the Treatment and Prevention of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21082703. [PMID: 32295055 PMCID: PMC7216146 DOI: 10.3390/ijms21082703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
Amyl nitrite was introduced in 1867 as the first molecule of a new class of agents for the treatment of angina pectoris. In the following 150 years, the nitric oxide pathway has been the subject of a number of pharmacological approaches, particularly since when this elusive mediator was identified as one of the most important modulators of vascular homeostasis beyond vasomotion, including platelet function, inflammation, and atherogenesis. While having potent antianginal and antiischemic properties, however, nitric oxide donors are also not devoid of side effects, including the induction of tolerance, and, as shown in the last decade, of oxidative stress and endothelial dysfunction. In turn, endothelial dysfunction is itself felt to be involved in all stages of atherogenesis, from the development of fatty streaks to plaque rupture and thrombosis. In the present review, we summarize the agents that act on the nitric oxide pathway, with a particular focus on their potentially beneficial antiatherosclerotic and unwanted pro-atherosclerotic effects.
Collapse
|
6
|
Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, Münzel T, Li H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20010187. [PMID: 30621010 PMCID: PMC6337296 DOI: 10.3390/ijms20010187] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Alina Hanf
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
7
|
Tang L, Li L, Yang J, Zeng C. Potential benefit of (-)-epigallocatechin-3-gallate for macrovascular complications in diabetes. ACTA ACUST UNITED AC 2017; 50:e6511. [PMID: 28832766 PMCID: PMC5561811 DOI: 10.1590/1414-431x20176511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/14/2017] [Indexed: 11/29/2022]
Abstract
Vascular problems are the most common complications in diabetes. Substantial evidence from epidemiological and pathophysiological studies show that hyperglycemia is a major risk factor for macrovascular complications in patients with diabetes. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin derived from green tea, is known to exert a variety of cardiovascular beneficial effects. The protective effects of EGCG in diabetes are also evident. However, whether EGCG is beneficial against macrovascular complications that occur in diabetes remains unknown. Our previous studies demonstrated that treatment of EGCG inhibits high glucose-induced vascular smooth muscle cell proliferation and suppresses high glucose-mediated vascular inflammation in human umbilical vein endothelial cells. Therefore, we hypothesize that EGCG might be an effective potential candidate to reduce the macrovascular complications in diabetes.
Collapse
Affiliation(s)
- L Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| | - L Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| | - J Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| | - C Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Hu P, Wu X, Khandelwal AR, Yu W, Xu Z, Chen L, Yang J, Weisbrod RM, Lee KSS, Seta F, Hammock BD, Cohen RA, Zeng C, Tong X. Endothelial Nox4-based NADPH oxidase regulates atherosclerosis via soluble epoxide hydrolase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1382-1391. [PMID: 28185955 DOI: 10.1016/j.bbadis.2017.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/05/2017] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE Our goal was to investigate the mechanisms of endothelial Nox4 in regulating atherosclerosis. APPROACH AND RESULTS Atherosclerosis-prone conditions (disturbed blood flow, type I diabetes, and Western diet) downregulated endothelial Nox4 mRNA in arteries. To address whether the downregulated endothelial Nox4 was directly involved in the development of atherosclerosis, we generated mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), driven by the endothelial specific promoter Tie-2, on atherosclerosis-prone genetic background (ApoE deficient mice) to mimic the effect of decreased endothelial Nox4. Nox4DN significantly increased type I diabetes-induced aortic stiffness and atherosclerotic lesions. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly upregulated in Nox4DN endothelial cells (EC). Inhibition of sEH activity in Nox4DN EC suppressed inflammation and macrophage adhesion to EC. On the contrary, overexpression of endothelial wild type Nox4 suppressed sEH, ameliorated Western diet-induced atherosclerosis and decreased aortic stiffness. CONCLUSIONS Atherosclerosis-prone conditions downregulated endothelial Nox4 to accelerate the progress of atherosclerosis, at least in part, by upregulating sEH to enhance inflammation.
Collapse
Affiliation(s)
- Pingping Hu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Xiaojuan Wu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Alok R Khandelwal
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weimin Yu
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lili Chen
- Wuhan EasyDiagnosis Biomedicine Co., Ltd., Wuhan 430075, China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Robert M Weisbrod
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kin Sing Stephen Lee
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bruce D Hammock
- Department of Entomology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA 95616, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
9
|
Tschöpe C, Van Linthout S. New insights in (inter)cellular mechanisms by heart failure with preserved ejection fraction. Curr Heart Fail Rep 2015; 11:436-44. [PMID: 25189801 PMCID: PMC4221658 DOI: 10.1007/s11897-014-0219-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, a new paradigm for the development of heart failure with preserved ejection fraction (HFpEF) has been proposed, which identifies a systemic pro-inflammatory state induced by comorbidities as the origin of microvascular endothelial cell inflammation and subsequent concentric cardiac remodeling and dysfunction. This review further discusses the pivotal role of the inflamed endothelium in the pathogenesis of HFpEF-specific cardiac remodeling. The potential importance of reciprocal interactions of the endothelium with cardiac fibroblasts and cardiomyocytes and with the cardiac neurohumoral response in this cardiac remodeling process is outlined.
Collapse
Affiliation(s)
- Carsten Tschöpe
- Department of Cardiology and Pneumology, Charité, University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany,
| | | |
Collapse
|
10
|
Abstract
PURPOSE Homocysteine (Hcy) is an independent risk factor for cardiovascular diseases that impairs endothelial function. We investigated whether the impaired endothelial function can be restored by the eNOS transcription enhancer AVE3085 in porcine coronary arteries. The effects of AVE3085 against Hcy on eNOS-NO function were studied and further investigations were conducted to reveal the role of arginase and the signaling pathway of eNOS activation in the effect of AVE3085 on endothelial dysfunction caused by Hcy. METHODS Myograph study of vasorelaxation, electrochemical measurement of NO, RT-PCR and Western blot analysis of eNOS, iNOS expression, and eNOS phosphorylation were performed. Arginase activity was determined by urea production and O2 (.-) generation by lucigenin-enhanced chemiluminenscence. RESULTS Exposure to Hcy for 24 h attenuated bradykinin-induced relaxation and NO release, downregulated eNOS mRNA expression and protein expressions of eNOS and p-eNOS(Ser1177) whereas it upregulated iNOS expression. AVE3085 restored NO release and relaxation, enhanced eNOS but decreased iNOS expression. Inhibition of protein kinase Akt or PI3 kinase attenuated the effect of AVE3085 on relaxation and eNOS phosphorylation. Arginase activity and O2 (.-) production were inhibited by AVE3085 in Hcy-exposed vessels. CONCLUSIONS AVE3085 prevents Hcy-induced endothelial dysfunction in coronary arteries by preservation of NO production and suppression of O2 (.-) generation. Preservation of NO is attributed to upregulation of eNOS expression, activation of eNOS via phosphorylation of Ser1177 through a PI3 kinase/Akt-dependent pathway, and inhibition of arginase. Reduction of O2 (.-) generation results from reversal of eNOS uncoupling and inhibition of arginase and iNOS.
Collapse
|
11
|
LXR agonism improves TNF-α-induced endothelial dysfunction in the absence of its cholesterol-modulating effects. Atherosclerosis 2014; 232:1-9. [DOI: 10.1016/j.atherosclerosis.2013.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022]
|
12
|
Becher PM, Lindner D, Fröhlich M, Savvatis K, Westermann D, Tschöpe C. Assessment of cardiac inflammation and remodeling during the development of streptozotocin-induced diabetic cardiomyopathy in vivo: a time course analysis. Int J Mol Med 2013; 32:158-64. [PMID: 23652584 DOI: 10.3892/ijmm.2013.1368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/23/2013] [Indexed: 11/06/2022] Open
Abstract
In this study, we examined cardiac inflammation, fibrosis and left ventricular (LV) function during the development of streptozotocin (STZ)-induced diabetic cardiomyopathy using an animal model of diabetes mellitus (DM). Diabetes was induced in 22 Sprague‑Dawley rats by an intraperitoneal single injection of STZ (70 mg/kg). Non-diabetic animals served as the controls (n=6). LV function was documented using the conductance catheter technique 2 and 6 weeks after the induction of diabetes. Cardiac tissue was analyzed for cardiac immune cell infiltration, oxidative stress and remodeling in rats with STZ-induced diabetes at 2 different time points by immunohistochemistry. Cardiac function was significantly impaired in the diabetic animals. After 2 weeks, the induction of diabetes resulted in impaired cardiac function indexed by a decrease in systolic and diastolic LV function. This impairment of LV performance continued for up to 6 weeks after the STZ injection. This was associated with an increase in cardiac CD3+ and CD8a+ immune cell invasion and fibrosis, indexed by an increase in collagen content (p<0.05). Furthermore, oxidative stress response and matrix remodeling were increased after 2 weeks and this continued for up to 6 weeks after the induction of diabetes. In conclusion, cardiac dysfunction is associated with cardiac inflammation and adverse remodeling in experimental diabetic cardiomyopathy. Our results suggest that the model of STZ-induced diabetic cardiomyopathy is a robust model for investigating cardiac immune response and LV remodeling processes under diabetic conditions.
Collapse
Affiliation(s)
- P M Becher
- Department of Cardiology and Pneumology, Charité University Hospital Berlin, Campus Benjamin Franklin, D-12200 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
13
|
AVE3085 protects coronary endothelium from the impairment of asymmetric dimethylarginine by activation and recoupling of eNOS. Cardiovasc Drugs Ther 2013; 26:383-92. [PMID: 22890813 DOI: 10.1007/s10557-012-6404-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of eNOS and it is recognized as a risk factor for endothelial dysfunction in cardiovascular diseases. We investigated the effect of AVE3085, a newly developed transcription enhancer of eNOS, on ADMA-induced endothelial dysfunction in coronary arteries with underlying mechanisms explored. METHODS Porcine coronary small arteries (diameter 600-800 μm) were studied in a myograph for endothelium-dependent relaxation to bradykinin and endothelium-independent relaxation to sodium nitroprusside. Protein expressions of eNOS and phosphorylated-eNOS (p-eNOS(Ser1177) and p-eNOS(Thr495)), and nitrotyrosine formation were determined by Western blot. NO release was directly measured with a NO microsensor. Productions of O(2) (.-) and peroxynitrite (ONOO(-)) were determined by lucigenin- and luminol- enhanced chemiluminescence respectively. RESULTS Exposure to ADMA significantly decreased the bradykinin-induced vasorelaxation and reduced the protein expression of p-eNOS(Ser1177) whereas increased the expression of p-eNOS(Thr495) and nitrotyrosine. Pre-incubation with AVE3085 restored the bradykinin-induced relaxation, reversed the decrease of p-eNOS(Ser1177), and lowered the level of p-eNOS(Thr495) and nitrotyrosine. NO release in response to bradykinin was significantly reduced by ADMA and such reduction was restored by AVE3085. AVE3085 also prevented the elevation of O (2) (.-) and ONOO(-) levels in coronary arteries exposed to ADMA. CONCLUSIONS AVE3085 prevents ADMA-induced endothelial dysfunction in coronary arteries. The protective effect of AVE3085 may be attributed to increased NO production resulting from enhanced eNOS activation, and decreased oxidative stress that involves inhibition of O (2) (.-) generation by eNOS recoupling. The present study suggested the therapeutic potential of AVE3085 in endothelial dysfunction in cardiovascular disorders.
Collapse
|
14
|
Zhao RJ, Pan ZY, Long CL, Cui WY, Zhang YF, Wang H. Stimulation of non-neuronal muscarinic receptors enhances chemerin/ChemR23 system in dysfunctional endothelial cells. Life Sci 2012; 92:10-6. [PMID: 23154239 DOI: 10.1016/j.lfs.2012.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/14/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022]
Abstract
AIMS Endothelial cells play a pivotal role in vascular intimal inflammation during cardiovascular diseases. The chemerin/ChemR23 system in endothelial cells is one of physiological mechanisms that regulate inflammatory responses. Our previous studies indicated that stimulation of non-neuronal muscarinic receptor (NNMR) improved endothelial dysfunction. However, the relationship between the chemerin/ChemR23 signaling axis and NNMR in endothelial cell is poorly understood. Here, we first investigated whether the modulation of chemerin/ChemR23 signaling axis is involved in NNMR-mediated endothelial protection. MAIN METHODS Cultured rat aortic endothelial cells (RAECs) were used. The ChemR23 protein expression and chemerin secretion were measured using Western blot analysis. The gene expression level of ChemR23 was examined with reverse transcriptase PCR (RT-PCR). The production of nitric oxide (NO) was determined by a nitrate reductase assay kit. KEY FINDINGS A sharp decline of chemerin secretion and ChemR23 protein/gene expression was observed in RAECs after exposed to homocysteine at concentration of 0.5 mmol/L. Arecoline (10 μmol/L) pretreatment increased ChemR23 protein expression as well as mRNA expression, and enhanced the secretion of chemerin. Arecoline could also reverse the decreased ChemR23 mRNA expression induced by uric acid, high glucose, or oxidized low-density lipoprotein. Furthermore, the modulation of arecoline on chemerin/ChemR23 signaling axis was absolutely abolished in the presence of the nonselective muscarinic receptors antagonist atropine 1 μmol/L. Additionally, arecoline improved endothelial dysfunction by increasing the reduced NO production induced by uric acid, which was blocked by anti-ChemR23 antibody. SIGNIFICANCE The chemerin/ChemR23 signaling axis participates in NNMR-mediated protection against endothelial dysfunction in cardiovascular system.
Collapse
Affiliation(s)
- Rui-Jun Zhao
- Cardiovascular Drug Research Center, Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | | | | | | | | | | |
Collapse
|
15
|
Joshi A, Woodman OL. Increased nitric oxide activity compensates for increased oxidative stress to maintain endothelial function in rat aorta in early type 1 diabetes. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1083-94. [PMID: 22965470 DOI: 10.1007/s00210-012-0794-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023]
Abstract
Hyperglycaemia and oxidative stress are known to acutely cause endothelial dysfunction in vitro, but in the initial stages of diabetes, endothelium-dependent relaxation is preserved. The aim of this study was to investigate how endothelium-dependent relaxation is maintained in the early stages of type 1 diabetes. Diabetes was induced in Sprague-Dawley rats with a single injection of streptozotocin (48 mg/kg, i.v.), and after 6 weeks, endothelium-dependent and endothelium-independent relaxations were examined in the thoracic aorta in vitro. Lucigenin-enhanced chemiluminescence was used to measure superoxide generation from the aorta. Diabetes increased superoxide generation by the aorta (2,180 ± 363 vs 986 ± 163 AU/mg dry tissue weight). Acetylcholine (ACh)-induced relaxation was similar in aortae from control (pEC(50) 7.36 ± 0.09, R (max) 95 ± 3 %) and diabetic rats (pEC(50) 7.33 ± 0.10, R (max) 88 ± 5 %). The ACh-induced relaxation was abolished by the combined presence of the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NNA, 100 μM) and an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) in control rats, but under the same conditions, the diabetic aortic rings showed significant relaxation to ACh (pEC(50) 6.75 ± 0.15, R (max) 25 ± 4 %, p < 0.05). In diabetic aortae, the addition of haemoglobin, which inactivates nitric oxide, to L-NNA + ODQ abolished the response to ACh. The addition of the potassium channel blockers, apamin and TRAM-34, to L-NNA + ODQ also abolished the relaxation response to ACh. Diabetes significantly elevated plasma total nitrite/nitrate and increased expression of endothelial nitric oxide synthase (eNOS) and calmodulin in aortae. These data indicate that after 6 weeks of diabetes, despite increased oxidant stress, endothelium-dependent relaxation is maintained due to the increased eNOS expression resulting in increased NO synthesis. In diabetic arteries, NO acts both through and independently of cGMP pathways to cause relaxation.
Collapse
Affiliation(s)
- A Joshi
- Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
16
|
Xuan C, Chang FJ, Liu XC, Bai XY, Liao XL, He GW, Ou JS. Endothelial nitric oxide synthase enhancer for protection of endothelial function from asymmetric dimethylarginine-induced injury in human internal thoracic artery. J Thorac Cardiovasc Surg 2012; 144:697-703. [PMID: 22336756 DOI: 10.1016/j.jtcvs.2012.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/01/2011] [Accepted: 01/04/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine is a cardiovascular risk factor that is elevated in patients with coronary artery disease. We hypothesized that novel endothelial nitric oxide synthase enhancer AVE3085 might improve the endothelial function altered by asymmetric dimethylarginine in the human internal thoracic artery. METHODS Cumulative concentration-relaxation curves to acetylcholine (-11 to -5 log mol/L) were established in left internal thoracic artery rings (n = 65) from 27 patients undergoing coronary artery bypass grafting in precontraction induced by U46619 (-8 log mol/L) in the absence or presence of asymmetric dimethylarginine (100 μmol/L) or AVE3085 (30 μmol/L). Protein expressions of endothelial nitric oxide synthase and levels of superoxide anion production were detected. RESULTS Maximal relaxation induced by acetylcholine was significantly attenuated by asymmetric dimethylarginine (12.7% ± 2.3% vs 35.3% ± 5.0% in control; P < .05) and significantly restored by AVE3085 (23.4% ± 2.8%; P < .05). AVE3085 also markedly restored endothelial nitric oxide synthase expression (0.29 ± 0.008; P = .012) reduced by asymmetric dimethylarginine (0.05 ± 0.04 vs 0.36 ± 0.03 in control; P = .014). Increased superoxide anion production by asymmetric dimethylarginine (2.97 ± 0.25 vs 0.51 ± 0.10 relative light units/[s/mg] in control; P < .05) was inhibited by AVE3805 (0.62 ± 0.104 relative light units/[s/mg]; P < .05). CONCLUSIONS AVE3085 may restore endothelium-dependent relaxation reduced by asymmetric dimethylarginine through upregulation of endothelial nitric oxide synthase expression and inhibition of production of superoxide anion in human internal thoracic artery. These findings provide new insights into endothelial protection of coronary bypass grafting vessels to improve long-term patency of grafts.
Collapse
Affiliation(s)
- Chao Xuan
- TEDA International Cardiovascular Hospital, Medical College, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
17
|
El-Azab MF, Hazem RM, Moustafa YM. Role of simvastatin and/or antioxidant vitamins in therapeutic angiogenesis in experimental diabetic hindlimb ischemia: effects on capillary density, angiogenesis markers, and oxidative stress. Eur J Pharmacol 2012; 690:31-41. [PMID: 22705060 DOI: 10.1016/j.ejphar.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/05/2012] [Indexed: 02/09/2023]
Abstract
Therapeutic angiogenesis has emerged as an attractive approach for the management of peripheral arterial disease in diabetic patients. Oxidative stress generated and aggravated by prolonged hyperglycemia may interfere with and destroy the newly formed blood vessels. Angiogenic effect of simvastatin has been reported; however, its exact mechanism is yet to be evaluated. In addition, the exact role of antioxidant vitamins in diabetic peripheral arterial disease is still controversial. The present study was undertaken to investigate the therapeutic potential of simvastatin and antioxidant vitamins (E and C) and their combined effects on angiogenesis in diabetic hind-limb ischemia. Streptozotocin diabetic rats were treated for 6 weeks with simvastatin either alone or in combination with vitamin E or vitamin C. Parameters of angiogenesis, nitric oxide, heme oxygenase-1 (HO-1), and oxidative stress markers were evaluated. CD31 immunostaining revealed an increased capillary density in ischemic gastrocnemious tissue of diabetic rats treated with either simvastatin or its combination with vitamin C. This effect was accompanied by up-regulated plasma levels of HO-1, nitric oxide, vascular endothelial growth factor (VEGF) and its intra-muscular receptor type-2 (Flk-1). Tissue reduced glutathione and antioxidant enzymes activities were normalized in groups treated with antioxidant vitamins or their combination with simvastatin with concomitant blunting of lipid peroxidation. Vitamins E and C, through their antioxidant effects, evidently enhanced the angiogenic effect of simvastatin in ischemic diabetic muscle. Hence, the use of antioxidant vitamins combined with statins to induce therapeutic angiogenesis is a promising strategy in the management of diabetes-associated peripheral arterial disease.
Collapse
Affiliation(s)
- Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | | | | |
Collapse
|
18
|
Selectins and Associated Adhesion Proteins in Inflammatory disorders. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121831 DOI: 10.1007/978-3-7091-1065-2_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is defined as the normal response of living tissue to injury or infection. It is important to emphasize two components of this definition. First, that inflammation is a normal response and, as such, is expected to occur when tissue is damaged. Infact, if injured tissue does not exhibit signs of inflammation this would be considered abnormal and wounds and infections would never heal without inflammation. Secondly, inflammation occurs in living tissue, hence there is need for an adequate blood supply to the tissues in order to exhibit an inflammatory response. The inflammatory response may be triggered by mechanical injury, chemical toxins, and invasion by microorganisms, and hypersensitivity reactions. Three major events occur during the inflammatory response: the blood supply to the affected area is increased substantially, capillary permeability is increased, and leucocytes migrate from the capillary vessels into the surrounding interstitial spaces to the site of inflammation or injury. The inflammatory response represents a complex biological and biochemical process involving cells of the immune system and a plethora of biological mediators. Cell-to-cell communication molecules such as cytokines play an extremely important role in mediating the process of inflammation. Inflammation and platelet activation are critical phenomena in the setting of acute coronary syndromes. An extensive exposition of this complex phenomenon is beyond the scope of this article (Rankin 2004).
Collapse
|
19
|
Fan X, Qiu J, Yu Z, Dai H, Singhal AB, Lo EH, Wang X. A rat model of studying tissue-type plasminogen activator thrombolysis in ischemic stroke with diabetes. Stroke 2011; 43:567-70. [PMID: 22052516 DOI: 10.1161/strokeaha.111.635250] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE Poststroke hyperglycemia and diabetes mellitus are associated with lower thrombolytic efficacy and an increased risk of postischemic cerebral hemorrhage. We aimed to develop a rodent model of thrombolysis in diabetic stroke that mimics the clinical situation. Method- Male 6-week Type I diabetic rats (14 weeks old) were subjected to embolic focal stroke and treated with tissue-type plasminogen activator at 1.5 hours. Reperfusion and 24-hour neurological outcomes were measured and compared with nondiabetic control rats. RESULTS Diabetic rats exhibited resistance to thrombolytic reperfusion, larger infarction volumes, and increased intracerebral hemorrhage. CONCLUSIONS This animal model would be relevant to future studies investigating pathophysiological mechanisms and in developing new therapeutic approaches to enhance the efficacy of tissue-type plasminogen activator thrombolysis in stroke patients with diabetes or poststroke hyperglycemia.
Collapse
Affiliation(s)
- Xiang Fan
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Cheang WS, Wong WT, Tian XY, Yang Q, Lee HK, He GW, Yao X, Huang Y. Endothelial nitric oxide synthase enhancer reduces oxidative stress and restores endothelial function in db/db mice. Cardiovasc Res 2011; 92:267-275. [PMID: 21875904 DOI: 10.1093/cvr/cvr233] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Endothelial dysfunction is caused by reduced nitric oxide (NO) bioavailability and/or over-produced reactive oxygen species (ROS). The present study investigated a vascular benefit of AVE3085, an endothelial nitric oxide synthase (eNOS) enhancer, in preserving endothelial function in diabetic mice and the mechanisms involved. METHODS AND RESULTS Male db/db and db/m(+) mice were orally administered AVE3085 for 7 days (10 mg kg(-1) day(-1)). Vascular reactivity of arteries was studied via myography under both isometric and isobaric conditions. ROS levels in aortas were determined using dihydroethidium fluorescence dye and electron paramagnetic resonance spin trapping. Chronic treatment with AVE3085 reduced blood pressure, enhanced endothelium-dependent relaxations (EDR) to acetylcholine in aortas, mesenteric, and renal arteries, lowered oxidative stress, and augmented the attenuated flow-dependent dilatation in mesenteric resistance arteries from db/db mice. Incubation of aortas from C57BL/6J mice in high glucose (30 mmol L(-1)) culture medium for 48 h impaired EDR and elevated ROS generation, and these effects were reversed by co-treatment with AVE3085 (1 µmol L(-1)). Benefits of AVE3085 were abolished by the transcription inhibitor actinomycin D, the NOS inhibitor N(G)-nitro-L-arginine methyl ester, and in eNOS(-/-) mice. NO production in primary endothelial cells from mouse aortas was detected with a NO-sensitive fluorescence dye. Protein expression was assayed by western blotting. Treatment with AVE3085 enhanced NO production in endothelial cells and eNOS expression in aortas. CONCLUSION AVE3085 ameliorates endothelial dysfunction in db/db mice through increased NO bioavailability, which reduces oxidative stress in the vascular wall. Targeting eNOS and NO production may be a promising approach to combat diabetic vasculopathy.
Collapse
Affiliation(s)
- Wai San Cheang
- Li Ka Shing Institute of Health Sciences, Institute of Vascular Medicine, and School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang Q, Xue HM, Wong WT, Tian XY, Huang Y, Tsui SKW, Ng PKS, Wohlfart P, Li H, Xia N, Tobias S, Underwood MJ, He GW. AVE3085, an enhancer of endothelial nitric oxide synthase, restores endothelial function and reduces blood pressure in spontaneously hypertensive rats. Br J Pharmacol 2011; 163:1078-1085. [PMID: 21385179 PMCID: PMC3130953 DOI: 10.1111/j.1476-5381.2011.01308.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/03/2011] [Accepted: 01/31/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Nitric oxide (NO) plays an important role in endothelial function, and impaired NO production is involved in hypertension. Therefore, compounds that regulate endothelial NO synthase (eNOS) may be of therapeutic benefit. A novel, low molecular weight compound AVE3085 is a recently developed compound with the ability to enhance eNOS transcription. The present study investigated the effects of AVE3085 in endothelial dysfunction associated with hypertension. EXPERIMENTAL APPROACH Spontaneously hypertensive rats (SHRs) were treated with AVE 3085 (10 mg·kg·day(-1) , orally) for 4 weeks. Isometric force measurement was performed on rings of isolated aortae in organ baths. Protein expression of eNOS, phosphorylated-eNOS and nitrotyrosine in the aortae were examined by Western blotting. mRNA for eNOS in rat aortae were examined by reverse-transcriptase polymerase chain reaction (RT-PCR). KEY RESULTS AVE3085 greatly improved endothelium-dependent relaxations in the aortae of SHRs. This functional change was accompanied by up-regulated expression of eNOS protein and mRNA, enhanced eNOS phosphorylation and decreased formation of nitrotyrosine. Furthermore, AVE3085 treatment reduced the blood pressure in SHR without affecting that of hypertensive eNOS(-/-) mice. CONCLUSIONS AND IMPLICATIONS The eNOS-transcription enhancer AVE3085 restored impaired endothelial function in a hypertensive model. The present study provides a solid basis for the potential development of eNOS-targeting drugs to restore down-regulated eNOS, as a new strategy in hypertension.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antihypertensive Agents/administration & dosage
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Benzodioxoles/administration & dosage
- Benzodioxoles/pharmacology
- Benzodioxoles/therapeutic use
- Blood Pressure/drug effects
- Blotting, Western
- Dose-Response Relationship, Drug
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Hypertension/drug therapy
- Hypertension/enzymology
- Hypertension/physiopathology
- Indans/administration & dosage
- Indans/pharmacology
- Indans/therapeutic use
- Male
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, The Chinese University of Hong KongHong Kong, China & TEDA International Cardiovascular Hospital, Medical College, Nankai UniversityTianjin, China
| | - Hong-Mei Xue
- Department of Surgery, The Chinese University of Hong KongHong Kong, China & TEDA International Cardiovascular Hospital, Medical College, Nankai UniversityTianjin, China
| | - Wing-Tak Wong
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong KongHong Kong, China
| | - Xiao-Yu Tian
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong KongHong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong KongHong Kong, China
| | - Stephen KW Tsui
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong KongHong Kong, China
| | - Patrick KS Ng
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, The Chinese University of Hong KongHong Kong, China
| | - Paulus Wohlfart
- Department of Molecular and Cell Biology, Sanofi-Aventis, Therapeutic Domain CardiovascularGermany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg UniversityMainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg UniversityMainz, Germany
| | - Silke Tobias
- Department of Pharmacology, Johannes Gutenberg UniversityMainz, Germany
| | - Malcolm John Underwood
- Department of Surgery, The Chinese University of Hong KongHong Kong, China & TEDA International Cardiovascular Hospital, Medical College, Nankai UniversityTianjin, China
| | - Guo-Wei He
- Department of Surgery, The Chinese University of Hong KongHong Kong, China & TEDA International Cardiovascular Hospital, Medical College, Nankai UniversityTianjin, China
- Providence Heart & Vascular Institute, Albert Starr Academic Center, Department of Surgery, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
22
|
Zhang Y, Janssens SP, Wingler K, Schmidt HHHW, Moens AL. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol 2011; 301:H634-46. [PMID: 21622818 DOI: 10.1152/ajpheart.01315.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenesis of many cardiovascular diseases is associated with reduced nitric oxide (NO) bioavailability and/or increased endothelial NO synthase (eNOS)-dependent superoxide formation. These findings support that restoring and conserving adequate NO signaling in the heart and blood vessels is a promising therapeutic intervention. In particular, modulating eNOS, e.g., through increasing the bioavailability of its substrate and cofactors, enhancing its transcription, and interfering with other modulators of eNOS pathway, such as netrin-1, has a high potential for effective treatments of cardiovascular diseases. This review provides an overview of the possibilities for modulating eNOS and how this may be translated to the clinic in addition to describing the genetic models used to study eNOS modulation.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Pattillo CB, Bir SC, Branch BG, Greber E, Shen X, Pardue S, Patel RP, Kevil CG. Dipyridamole reverses peripheral ischemia and induces angiogenesis in the Db/Db diabetic mouse hind-limb model by decreasing oxidative stress. Free Radic Biol Med 2011; 50:262-9. [PMID: 21070849 PMCID: PMC4413947 DOI: 10.1016/j.freeradbiomed.2010.10.714] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/23/2010] [Accepted: 10/28/2010] [Indexed: 11/28/2022]
Abstract
Dipyridamole anti-platelet therapy has previously been suggested to ameliorate chronic tissue ischemia in healthy animals. However, it is not known if dipyridamole therapy represents a viable approach to alleviating chronic peripheral tissue ischemia associated with type 2 diabetes. Here we examine the hypothesis that dipyridamole treatment restores reperfusion of chronic hind-limb ischemia in the murine B6.BKS-Lepr(db/db) diabetic model. Dipyridamole therapy quickly rectified ischemic hind-limb blood flow to near preligation levels within 3 days of the start of therapy. Restoration of ischemic tissue blood flow was associated with increased vascular density and endothelial cell proliferation observed only in ischemic limbs. Dipyridamole significantly increased total nitric oxide metabolite levels in tissue, which were not associated with changes in endothelial NO synthase expression or phosphorylation. Interestingly, dipyridamole therapy significantly decreased ischemic tissue superoxide and protein carbonyl levels, identifying a dominant antioxidant mechanistic response. Dipyridamole therapy also moderately reduced diabetic hyperglycemia and attenuated development of dyslipidemia over time. Together, these data reveal that dipyridamole therapy is an effective modality for the treatment of chronic tissue ischemia during diabetes and highlights the importance of dipyridamole antioxidant activity in restoring tissue NO bioavailability during diabetes.
Collapse
Affiliation(s)
| | - Shyamal C. Bir
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Billy G. Branch
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Eric Greber
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Xinggui Shen
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Sibile Pardue
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| | - Rakesh P. Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama-Birmingham, Birmingham, Alabama
| | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, Shreveport, Louisiana
| |
Collapse
|
24
|
Xue HM, He GW, Huang JH, Yang Q. New strategy of endothelial protection in cardiac surgery: use of enhancer of endothelial nitric oxide synthase. World J Surg 2010; 34:1461-1469. [PMID: 20309548 DOI: 10.1007/s00268-010-0520-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Endothelial dysfunction related to the loss of nitric oxide (NO) production remains an important issue in cardiac surgery. We examined the hypothesis that AVE3085, a novel compound that enhances eNOS transcription, may protect coronary endothelium against hypoxia-reoxygenation (H-R) injury during cardioplegic arrest and the possible mechanism by which this occurs. METHODS Porcine coronary small arteries (600-800-microm diameter) were subjected to hypoxia (PO(2) <5 mmHg) in St. Thomas cardioplegic (ST) solution with or without AVE3085 (10 microM) or L-arginine (10 mM) at either 37 or 4 degrees C for 60 min, followed by 30-min reoxygenation. Bradykinin (-10 to -6.5 LogM)-induced, endothelium-dependent relaxation was studied in a myograph in U(46619) precontraction before and after H-R. Protein expressions of eNOS and phosphorylated eNOS at Ser-1177 (p-eNOS(Ser1177)) were also determined. RESULTS Exposure to ST solution with H-R at both 37 and 4 degrees C markedly reduced bradykinin-induced relaxation in coronary small arteries. Addition of AVE3085 in ST solution at 37 degrees C preserved the vasorelaxant response to bradykinin (95.7 +/- 2.1% vs. 69.2 +/- 6.6%, p < 0.01), with the protective effect comparable to that of L-arginine (96.1 +/- 3.3% vs. 70.6 +/- 8.7%, p < 0.05). eNOS and p-eNOS(Ser1177) expressions in coronary endothelial cells were significantly increased by the addition of AVE3085 in ST solution during hypoxia (p < 0.05). Protection of endothelium-dependent relaxation from H-R by AVE3085 (70.3 +/- 7.2% vs. 90.5 +/- 2.4%, p < 0.05) also reached a level similar to that by L-arginine (69.9 +/- 9.0% vs. 94.7 +/- 3.9%, p < 0.05) at 4 degrees C. CONCLUSIONS We have demonstrated a new mechanism to protect coronary endothelium from H-R injury by using eNOS enhancers. This may form a new strategy in the future development of cardioplegic/preservation solutions with direct targeting of eNOS expression in coronary vasculature.
Collapse
Affiliation(s)
- Hong-Mei Xue
- Department of Surgery, The Chinese University of Hong Kong, Block B, 5A, Prince of Wales Hospital, Shatin, NT, Hong Kong SAR, China
| | | | | | | |
Collapse
|
25
|
Kellenberger LD, Bruin JE, Greenaway J, Campbell NE, Moorehead RA, Holloway AC, Petrik J. The role of dysregulated glucose metabolism in epithelial ovarian cancer. JOURNAL OF ONCOLOGY 2010; 2010:514310. [PMID: 20182531 PMCID: PMC2825545 DOI: 10.1155/2010/514310] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 12/03/2009] [Indexed: 01/04/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer and also one of the most poorly understood. Other health issues that are affecting women with increasing frequency are obesity and diabetes, which are associated with dysglycemia and increased blood glucose. The Warburg Effect describes the ability of fast-growing cancer cells to preferentially metabolize glucose via anaerobic glycolysis rather than oxidative phosphorylation. Recent epidemiological studies have suggested a role for hyperglycemia in the pathogenesis of a number of cancers. If hyperglycemia contributes to tumour growth and progression, then it is intuitive that antihyperglycemic drugs may also have an important antitumour role. Preliminary reports suggest that these drugs not only reduce available plasma glucose, but also have direct effects on cancer cell viability through modification of molecular energy-sensing pathways. This review investigates the effect that hyperglycemia may have on EOC and the potential of antihyperglycemic drugs as therapeutic adjuncts.
Collapse
Affiliation(s)
- L. D. Kellenberger
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - J. E. Bruin
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8S 4L8
| | - J. Greenaway
- CIHR Group in Matrix Dynamics, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - N. E. Campbell
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - R. A. Moorehead
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - A. C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada L8S 4L8
| | - J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
26
|
Calderone V, Rapposelli S, Martelli A, Digiacomo M, Testai L, Torri S, Marchetti P, Breschi MC, Balsamo A. NO-glibenclamide derivatives: Prototypes of a new class of nitric oxide-releasing anti-diabetic drugs. Bioorg Med Chem 2009; 17:5426-32. [DOI: 10.1016/j.bmc.2009.06.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/18/2009] [Accepted: 06/20/2009] [Indexed: 01/28/2023]
|
27
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-xii. [PMID: 19405078 DOI: 10.1002/dmrr.973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol 2009; 104:499-509. [PMID: 19255799 DOI: 10.1007/s00395-009-0014-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND Diastolic heart failure is a rising problem with a high incidence and similar mortality and morbidity compared to patients with systolic heart failure. Nevertheless, the underlying pathophysiology is still debated. AIM We investigated the effect of pharmacological enhancement of endothelial nitric oxide synthase (eNOS) on experimental diastolic heart failure (DHF). METHODS DHF was induced in 60 DAHL salt-sensitive rats by salt diet in 8-week-old animals. 30 were treated with the eNOS enhancer AVE3085 (DHFeNOS) and 30 with placebo (DHF). Rats with normal salt intake served as controls. RESULTS AND CONCLUSION Diastolic dysfunction with increased diastolic stiffness constant and increased left ventricular (LV) pressure was analyzed by invasive pressure-volume loop measurements in the DHF group compared to controls. Cardiac hypertrophy as indicated by LV mass measurements by echocardiography, and increased cardiac collagen content as measured by immunohistochemistry were associated with an increased activation state of calcineurin, AKT, ERK(1/2), but not JNK and p38 kinases. Titin isoforms were not altered in this model of DHF. Treatment with AVE3085 significantly increased eNOS mRNA and protein levels in the cardiac tissue and decreases NAD(P)H oxidase subunits p22phox and gp91phox. Diastolic dysfunction was attenuated and cardiac hypertrophy and fibrosis were improved in comparison with untreated DHF animals. This was associated with a normalized activation state of calcineurin, AKT and ERK(1/2). Therefore, we suggest that targeting the NO system might yield a future therapeutic aim for the treatment of DHF.
Collapse
|