1
|
Novotna E, Milosevic M, Prukova D, Magalhaes-Novais S, Dvorakova S, Dmytruk K, Gemperle J, Zudova D, Nickl T, Vrbacky M, Rosel D, Filimonenko V, Prochazka J, Brabek J, Neuzil J, Rohlenova K, Rohlena J. Mitochondrial HER2 stimulates respiration and promotes tumorigenicity. Eur J Clin Invest 2024; 54:e14174. [PMID: 38291340 DOI: 10.1111/eci.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Amplification of HER2, a receptor tyrosine kinase and a breast cancer-linked oncogene, is associated with aggressive disease. HER2 protein is localised mostly at the cell membrane, but a fraction translocates to mitochondria. Whether and how mitochondrial HER2 contributes to tumorigenicity is currently unknown. METHODS We enriched the mitochondrial (mt-)HER2 fraction in breast cancer cells using an N-terminal mitochondrial targeting sequence and analysed how this manipulation impacts bioenergetics and tumorigenic properties. The role of the tyrosine kinase activity of mt-HER2 was assessed in wild type, kinase-dead (K753M) and kinase-enhanced (V659E) mtHER2 constructs. RESULTS We document that mt-HER2 associates with the oxidative phosphorylation system, stimulates bioenergetics and promotes larger respiratory supercomplexes. mt-HER2 enhances proliferation and invasiveness in vitro and tumour growth and metastatic potential in vivo, in a kinase activity-dependent manner. On the other hand, constitutively active mt-HER2 provokes excessive mitochondria ROS generation, sensitises to cell death, and restricts growth of primary tumours, suggesting that regulation of HER2 activity in mitochondria is required for the maximal pro-tumorigenic effect. CONCLUSIONS mt-HER2 promotes tumorigenicity by supporting bioenergetics and optimal redox balance.
Collapse
Affiliation(s)
- Eliska Novotna
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Dana Prukova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Silvia Magalhaes-Novais
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Kristina Dmytruk
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jakub Gemperle
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Dagmar Zudova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Nickl
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Vrbacky
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Rosel
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Brabek
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
2
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Sthijns MMJPE, Rademakers T, Oosterveer J, Geuens T, van Blitterswijk CA, LaPointe VLS. The response of three-dimensional pancreatic alpha and beta cell co-cultures to oxidative stress. PLoS One 2022; 17:e0257578. [PMID: 35290395 PMCID: PMC8923503 DOI: 10.1371/journal.pone.0257578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
The pancreatic islets of Langerhans have low endogenous antioxidant levels and are thus especially sensitive to oxidative stress, which is known to influence cell survival and behaviour. As bioengineered islets are gaining interest for therapeutic purposes, it is important to understand how their composition can be optimized to diminish oxidative stress. We investigated how the ratio of the two main islet cell types (alpha and beta cells) and their culture in three-dimensional aggregates could protect against oxidative stress. Monolayer and aggregate cultures were established by seeding the alphaTC1 (alpha) and INS1E (beta) cell lines in varying ratios, and hydrogen peroxide was applied to induce oxidative stress. Viability, oxidative stress, and the level of the antioxidant glutathione were measured. Both aggregation and an increasing prevalence of INS1E cells in the co-cultures conferred greater resistance to cell death induced by oxidative stress. Increasing the prevalence of INS1E cells also decreased the number of alphaTC1 cells experiencing oxidative stress in the monolayer culture. In 3D aggregates, culturing the alphaTC1 and INS1E cells in a ratio of 50:50 prevented oxidative stress in both cell types. Together, the results of this study lead to new insight into how modulating the composition and dimensionality of a co-culture can influence the oxidative stress levels experienced by the cells.
Collapse
Affiliation(s)
- Mireille M. J. P. E. Sthijns
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Geuens
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L. S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
4
|
Magalhaes-Novais S, Blecha J, Naraine R, Mikesova J, Abaffy P, Pecinova A, Milosevic M, Bohuslavova R, Prochazka J, Khan S, Novotna E, Sindelka R, Machan R, Dewerchin M, Vlcak E, Kalucka J, Stemberkova Hubackova S, Benda A, Goveia J, Mracek T, Barinka C, Carmeliet P, Neuzil J, Rohlenova K, Rohlena J. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy 2022; 18:2409-2426. [PMID: 35258392 PMCID: PMC9542673 DOI: 10.1080/15548627.2022.2038898] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence. Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2′,7′-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2’-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.
Collapse
Affiliation(s)
- Silvia Magalhaes-Novais
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Blecha
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ravindra Naraine
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Pavel Abaffy
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Alena Pecinova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Romana Bohuslavova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Shawez Khan
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Eliska Novotna
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Radek Sindelka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Radek Machan
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Mieke Dewerchin
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Erik Vlcak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| | - Sona Stemberkova Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ales Benda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jermaine Goveia
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tomas Mracek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Peter Carmeliet
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Katerina Rohlenova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,VIB-KU Leuven Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
5
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
6
|
Vilas-Boas EA, Carlein C, Nalbach L, Almeida DC, Ampofo E, Carpinelli AR, Roma LP, Ortis F. Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants (Basel) 2021; 10:antiox10081305. [PMID: 34439552 PMCID: PMC8389306 DOI: 10.3390/antiox10081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023] Open
Abstract
In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in β-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•− production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts β-cells’ function and survival during insulitis, NOX2 might be a potential target for designing therapies against early β-cell dysfunction in the context of T1D onset.
Collapse
Affiliation(s)
- Eloisa A. Vilas-Boas
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Christopher Carlein
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Davidson C. Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Leticia P. Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| |
Collapse
|
7
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
8
|
The pancreatic beta cell: an intricate relation between anatomical structure, the signalling mechanism of glucose-induced insulin secretion, the low antioxidative defence, the high vulnerability and sensitivity to diabetic stress. CHEMTEXTS 2021. [DOI: 10.1007/s40828-021-00140-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe biosynthesis of insulin takes place in the insulin-producing beta cells that are organized in the form of islets of Langerhans together with a few other islet cell types in the pancreas organ. The signal for glucose-induced insulin secretion is generated in two pathways in the mitochondrial metabolism of the pancreatic beta cells. These pathways are also known as the triggering pathway and the amplifying pathway. Glucokinase, the low-affinity glucose-phosphorylating enzyme in beta cell glycolysis acts as the signal-generating enzyme in this process. ATP ultimately generated is the crucial second messenger in this process. Insulin-producing pancreatic beta cells are badly protected against oxidative stress resulting in a particular vulnerability of this islet cell type due to low expression of H2O2-inactivating enzymes in various subcellular locations, specifically in the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. This is in contrast to the glucagon-producing alpha cells and other islet cell types in the islets that are well equipped with these H2O2-inactivating enzymes. On the other hand the membranes of the pancreatic beta cells are well protected against lipid peroxidation and ferroptosis through high level expression of glutathione peroxidase 4 (GPx4) and this again is at variance from the situation in the non-beta cells of the islets with a low expression level of GPx4. The weak antioxidative defence equipment of the pancreatic beta cells, in particular in states of disease, is very dangerous because the resulting particular vulnerability endangers the functionality of the beta cells, making people prone to the development of a diabetic metabolic state.
Collapse
|
9
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
10
|
Las G, Oliveira MF, Shirihai OS. Emerging roles of β-cell mitochondria in type-2-diabetes. Mol Aspects Med 2020; 71:100843. [PMID: 31918997 DOI: 10.1016/j.mam.2019.100843] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Type-2-Diabetes (T2D) is the most common metabolic disease in the world today. It erupts as a result of peripheral insulin resistance combined with hyperinsulinemia followed by suppression of insulin secretion from pancreatic β-cells. Mitochondria play a central role in β-cells by sensing glucose and also by mediating the suppression of insulin secretion in T2D. Here, we will summarize the evidence accumulated for the roles of β-cells mitochondria in T2D. We will present an updated view on how mitochondria in β-cells have been associated with T2D, from the genetic, bioenergetic, redox and structural points of view. The emerging picture is that mitochondrial structure and dysfunction directly contribute to β-cell function and in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Guy Las
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| | - Orian S Shirihai
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Roma LP, Jonas JC. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells. J Mol Biol 2019; 432:1461-1493. [PMID: 31634466 DOI: 10.1016/j.jmb.2019.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Insulin-secreting pancreatic β-cells play a critical role in blood glucose homeostasis and the development of type 2 diabetes (T2D) in the context of insulin resistance. Based on data obtained at the whole cell level using poorly specific chemical probes, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide have been proposed to contribute to the stimulation of insulin secretion by nutrients (positive role) and to the alterations of cell survival and secretory function in T2D (negative role). This raised the controversial hypothesis that any attempt to decrease β-cell oxidative stress and apoptosis in T2D would further impair insulin secretion. Over the last decade, the development of genetically-encoded redox probes that can be targeted to cellular compartments of interest and are specific of redox couples allowed the evaluation of short- and long-term effects of nutrients on β-cell redox changes at the subcellular level. The data indicated that the nutrient regulation of β-cell redox signaling and ROS toxicity is far more complex than previously thought and that the subcellular compartmentation of these processes cannot be neglected when evaluating the mechanisms of ROS production or the efficacy of antioxidant enzymes and antioxidant drugs under glucolipotoxic conditions and in T2D. In this review, we present what is currently known about the compartmentation of redox homeostatic systems and tools to investigate it. We then review data about the effects of nutrients on β-cell subcellular redox state under normal conditions and in the context of T2D and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Leticia P Roma
- Universität des Saarlandes, Biophysics Department, Center for Human and Molecular Biology, Kirbergerstrasse Building 48, 66421, Homburg/Saar, Germany
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), B-1200 Brussels, Belgium.
| |
Collapse
|
12
|
Baboota RK, Shinde AB, Lemaire K, Fransen M, Vinckier S, Van Veldhoven PP, Schuit F, Baes M. Functional peroxisomes are required for β-cell integrity in mice. Mol Metab 2019; 22:71-83. [PMID: 30795913 PMCID: PMC6437690 DOI: 10.1016/j.molmet.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives Peroxisomes play a crucial role in lipid and reactive oxygen species metabolism, but their importance for pancreatic β-cell functioning is presently unknown. To examine the contribution of peroxisomal metabolism to β-cell homeostasis in mice, we inactivated PEX5, the import receptor for peroxisomal matrix proteins, in an inducible and β-cell restricted manner (Rip-Pex5−/− mice). Methods After tamoxifen-induced recombination of the Pex5 gene at the age of 6 weeks, mice were fed either normal chow or a high-fat diet for 12 weeks and were subsequently phenotyped. Results Increased levels of very long chain fatty acids and reduced levels of plasmalogens in islets confirmed impairment of peroxisomal fatty acid oxidation and ether lipid synthesis, respectively. The Rip-Pex5−/− mice fed on either diet exhibited glucose intolerance associated with impaired insulin secretion. Ultrastructural and biochemical analysis revealed a decrease in the density of mature insulin granules and total pancreatic insulin content, which was further accompanied by mitochondrial disruptions, reduced complex I activity and massive vacuole overload in β-cells. RNAseq analysis suggested that cell death pathways were affected in islets from HFD-fed Rip-Pex5−/− mice. Consistent with this change we observed increased β-cell apoptosis in islets and a decrease in β-cell mass. Conclusions Our data indicate that normal peroxisome metabolism in β-cells is crucial to preserve their structure and function. Pex5 deletion in β-cells impairs glucose tolerance and reduces β-cell mass. Pex5-deficient β-cells display increased apoptosis. Peroxisomal loss causes mitochondrial deterioration and cytoplasmic vacuolization.
Collapse
Affiliation(s)
- Ritesh Kumar Baboota
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium
| | - Katleen Lemaire
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Gene Expression Unit, B-3000, Leuven, Belgium
| | - Marc Fransen
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory for Lipid Biochemistry and Protein Interactions, KU Leuven, B-3000, Leuven, Belgium
| | - Stefan Vinckier
- VIB-KULeuven Centre for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, B-3000, Leuven, Belgium
| | - Paul P Van Veldhoven
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory for Lipid Biochemistry and Protein Interactions, KU Leuven, B-3000, Leuven, Belgium
| | - Frans Schuit
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Gene Expression Unit, B-3000, Leuven, Belgium
| | - Myriam Baes
- KU Leuven - University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, B-3000, Leuven, Belgium.
| |
Collapse
|
13
|
Deglasse JP, Roma LP, Pastor-Flores D, Gilon P, Dick TP, Jonas JC. Glucose Acutely Reduces Cytosolic and Mitochondrial H 2O 2 in Rat Pancreatic Beta Cells. Antioxid Redox Signal 2019; 30:297-313. [PMID: 29756464 DOI: 10.1089/ars.2017.7287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aims: Whether H2O2 contributes to the glucose-dependent stimulation of insulin secretion (GSIS) by pancreatic β cells is highly controversial. We used two H2O2-sensitive probes, roGFP2-Orp1 (reduction/oxidation-sensitive enhanced green fluorescent protein fused to oxidant receptor peroxidase 1) and HyPer (hydrogen peroxide sensor) with its pH-control SypHer, to test the acute effects of glucose, monomethyl succinate, leucine with glutamine, and α-ketoisocaproate on β cell cytosolic and mitochondrial H2O2 concentrations. We then tested the effects of low H2O2 and menadione concentrations on insulin secretion. Results: RoGFP2-Orp1 was more sensitive than HyPer to H2O2 (response at 2-5 vs. 10 μM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15 μM exogenous H2O2. The glucose effects were not affected by overexpression of catalase, mitochondrial catalase, or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5 mM glucose in the cytosol and 10 mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H2O2 (1-15 μM) did not affect insulin secretion. By contrast, menadione (1-5 μM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20 mM glucose. Innovation: Subcellular changes in β cell H2O2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H2O2 levels in β cells and promote degradation of exogenously supplied H2O2 in both cytosolic and mitochondrial compartments. Conclusion: The GSIS occurs independently of a detectable increase in β cell cytosolic or mitochondrial H2O2 levels.
Collapse
Affiliation(s)
- Jean-Philippe Deglasse
- 1 Université catholique de Louvain, Institute of experimental and clinical research , Pole of endocrinology, diabetes and nutrition, Brussels, Belgium
| | - Leticia Prates Roma
- 2 Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany .,3 Department of Biophysics, Center for Human and Molecular Biology, Saarland University , Homburg, Germany
| | - Daniel Pastor-Flores
- 2 Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Patrick Gilon
- 1 Université catholique de Louvain, Institute of experimental and clinical research , Pole of endocrinology, diabetes and nutrition, Brussels, Belgium
| | - Tobias P Dick
- 2 Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Jean-Christophe Jonas
- 1 Université catholique de Louvain, Institute of experimental and clinical research , Pole of endocrinology, diabetes and nutrition, Brussels, Belgium
| |
Collapse
|
14
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
15
|
Barlow J, Solomon TPJ, Affourtit C. Pro-inflammatory cytokines attenuate glucose-stimulated insulin secretion from INS-1E insulinoma cells by restricting mitochondrial pyruvate oxidation capacity - Novel mechanistic insight from real-time analysis of oxidative phosphorylation. PLoS One 2018; 13:e0199505. [PMID: 29953508 PMCID: PMC6023166 DOI: 10.1371/journal.pone.0199505] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/10/2018] [Indexed: 11/30/2022] Open
Abstract
Pro-inflammatory cytokines cause pancreatic beta cell failure during the development of type 2 diabetes. This beta cell failure associates with mitochondrial dysfunction, but the precise effects of cytokines on mitochondrial respiration remain unclear. To test the hypothesis that pro-inflammatory cytokines impair glucose-stimulated insulin secretion (GSIS) by inhibiting oxidative ATP synthesis, we probed insulin release and real-time mitochondrial respiration in rat INS-1E insulinoma cells that were exposed to a combination of 2 ng/mL interleukin-1-beta and 50 ng/mL interferon-gamma. We show that 24-h exposure to these cytokines dampens both glucose- and pyruvate-stimulated insulin secretion (P < 0.0001 and P < 0.05, respectively), but does not affect KCl-induced insulin release. Mirroring secretory defects, glucose- and pyruvate-stimulated mitochondrial respiration are lowered after cytokine exposure (P < 0.01). Further analysis confirms that cytokine-induced mitochondrial respiratory defects occur irrespective of whether fuel oxidation is coupled to, or uncoupled from, ATP synthesis. These observations demonstrate that pro-inflammatory cytokines attenuate GSIS by restricting mitochondrial pyruvate oxidation capacity. Interleukin-1-beta and interferon-gamma also increase mitochondrial superoxide levels (P < 0.05), which may reinforce the inhibition of pyruvate oxidation, and cause a modest (20%) but significant (P < 0.01) loss of INS-1E cells. Cytokine-induced INS-1E cell failure is insensitive to palmitoleate and linoleate, which is at odds with the cytoprotection offered by unsaturated fatty acids against harm caused by nutrient excess. Our data disclose a mitochondrial mechanism for cytokine-impaired GSIS in INS-1E cells, and suggest that inflammatory and nutrient-related beta cell failure emerge, at least partly, through distinct paths.
Collapse
Affiliation(s)
- Jonathan Barlow
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas P. J. Solomon
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Charles Affourtit
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
16
|
Gerencser AA. Metabolic activation-driven mitochondrial hyperpolarization predicts insulin secretion in human pancreatic beta-cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:817-828. [PMID: 29886047 DOI: 10.1016/j.bbabio.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial metabolism plays a central role in insulin secretion in pancreatic beta-cells. Generation of protonmotive force and ATP synthesis from glucose-originated pyruvate are critical steps in the canonical pathway of glucose-stimulated insulin secretion. Mitochondrial metabolism is intertwined with pathways that are thought to amplify insulin secretion with mechanisms distinct from the canonical pathway, and the relative importance of these two pathways is controversial. Here I show that glucose-induced mitochondrial membrane potential (MMP) hyperpolarization is necessary for, and predicts, the rate of insulin secretion in primary cultured human beta-cells. When glucose concentration is elevated, increased metabolism results in a substantial MMP hyperpolarization, as well as in increased rates of ATP synthesis and turnover marked by faster cell respiration. Using modular kinetic analysis I explored what properties of cellular energy metabolism enable a large glucose-induced change in MMP in human beta-cells. I found that an ATP-dependent pathway activates glucose or substrate oxidation, acting as a positive feedback in energy metabolism. This activation mechanism is essential for concomitant fast respiration and high MMP, and for a high magnitude glucose-induced MMP hyperpolarization and therefore for insulin secretion.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States; Image Analyst Software, 43 Nova Lane, Novato, CA 94945, United States.
| |
Collapse
|
17
|
Mehmeti I, Lortz S, Avezov E, Jörns A, Lenzen S. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E β-cells against lipotoxicity by improving the ER antioxidative capacity. Free Radic Biol Med 2017; 112:121-130. [PMID: 28751022 DOI: 10.1016/j.freeradbiomed.2017.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/16/2022]
Abstract
Increased circulating levels of saturated fatty acids (FFAs) and glucose are considered to be major mediators of β-cell dysfunction and death in T2DM. Although it has been proposed that endoplasmic reticulum (ER) and oxidative stress play a crucial role in gluco/lipotoxicity, their interplay and relative contribution to β-cell dysfunction and apoptosis has not been fully elucidated. In addition it is still unclear how palmitate - the physiologically most abundant long-chain saturated FFA - elicits ER stress and which immediate signals commit β-cells to apoptosis. To study the underlying mechanisms of palmitate-mediated ER stress and β-cell toxicity, we exploited the observation that the recently described ER-resident GPx7 and GPx8 are not expressed in rat β-cells. Expression of GPx7 or GPx8 attenuated FFAs-mediated H2O2 generation, ER stress, and apoptosis induction. These results could be confirmed by a H2O2-specific inactivating ER catalase, indicating that accumulation of H2O2 in the ER lumen is critical in FFA-induced ER stress. Furthermore, neither the expression of GPx7 nor of GPx8 increased insulin content or facilitated disulfide bond formation in insulin-secreting INS-1E cells. Hence, reduction of H2O2 by ER-GPx isoforms is not rate-limiting in oxidative protein folding in rat β-cells. These data suggest that FFA-mediated ER stress is partially dependent on oxidative stress and selective expression of GPx7 or GPx8 improves the ER antioxidative capacity of rat β-cells without compromising insulin production and the oxidative protein folding machinery.
Collapse
Affiliation(s)
- Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Edward Avezov
- University of Cambridge, Cambridge Institute for Medical Research, the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, United Kingdom
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany; Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
18
|
Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim Biophys Acta Gen Subj 2017; 1861:1929-1942. [PMID: 28527893 DOI: 10.1016/j.bbagen.2017.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Diabetes mellitus is a serious metabolic disease. Dysfunction and subsequent loss of the β-cells in the islets of Langerhans through apoptosis ultimately cause a life-threatening insulin deficiency. The underlying reason for the particular vulnerability of the β-cells is an extraordinary sensitivity to the toxicity of reactive oxygen and nitrogen species (ROS and RNS) due to its low antioxidative defense status. SCOPE REVIEW This review considers the different aspects of the chemistry and biology of the biologically most important reactive species and their chemico-biological interactions in the β-cell toxicity of proinflammatory cytokines in type 1 diabetes and of lipotoxicity in type 2 diabetes development. MAJOR CONCLUSION The weak antioxidative defense equipment in the different subcellular organelles makes the β-cells particularly vulnerable and prone to mitochondrial, peroxisomal and ER stress. Looking upon the enzyme deficiencies which are responsible for the low antioxidative defense status of the pancreatic β-cells it is the lack of enzymatic capacity for H2O2 inactivation at all major subcellular sites. GENERAL SIGNIFICANCE Diabetes is the most prevalent metabolic disorder with a steadily increasing incidence of both type 1 and type 2 diabetes worldwide. The weak protection of the pancreatic β-cells against oxidative stress is a major reason for their particular vulnerability. Thus, careful protection of the β-cells is required for prevention of the disease.
Collapse
|
19
|
Hu M, Lin H, Yang L, Cheng Y, Zhang H. Interleukin-22 restored mitochondrial damage and impaired glucose-stimulated insulin secretion through down-regulation of uncoupling protein-2 in INS-1 cells. J Biochem 2017; 161:433-439. [PMID: 28069865 DOI: 10.1093/jb/mvw084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/03/2016] [Indexed: 01/17/2023] Open
Abstract
Defective glucose-stimulated insulin secretion (GSIS) induced by chronic exposure to fatty acids is a hallmark of type 2 diabetes (T2D). Interleukin-22 (IL-22) has been shown to exert beneficial effects on insulin secretion and to protect pancreatic β-cells from stress. Moreover, uncoupling protein-2 (UCP-2) plays a central role in the regulation of GSIS and β-cell dysfunction, whereas the role of UCP-2 in IL-22-enhanced glycemic control under conditions of lipotoxicity remains unclear. In this present study, we investigated the effects of IL-22 on rat insulin-secreting cells (INS-1 cells) and the mechanisms that underlie IL-22 and lipotoxicity-impaired GSIS in vitro. Chronic palmitate (PA) treatment impaired insulin secretion and activated UCP-2 expression in INS-1 cells. Furthermore, in INS-1 cells, both reduced mitochondrial membrane potential (ΔΨm) and impaired GSIS induced by PA treatment were effectively reversed by an inhibitor of UCP-2 (genipin). Additionally, compared with the PA-treated group, INS-1 cells treated with IL-22 down-regulated UCP-2 expression, increased mitochondrial membrane potential, and restored GSIS. Together, our findings indicate that chronic exposure to PA could activate UCP-2, resulting in mitochondrial damage and impaired GSIS in INS-1 cells. We also suggest that IL-22 plays a protective role in this process via the down-regulation of UCP-2.
Collapse
Affiliation(s)
- Minling Hu
- Department of Endocrinology, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Hanxiao Lin
- Department of Nutrition, Guangzhou First People's Hospital, Guangzhou Medical University, 602 Ren Min Bei Road, Guangzhou 510180, P.R. China
| | - Li Yang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, S253 Industry Boulevard, Guangzhou 510282, China
| | - Yanzhen Cheng
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, S253 Industry Boulevard, Guangzhou 510282, China
| | - Hua Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, S253 Industry Boulevard, Guangzhou 510282, China
| |
Collapse
|
20
|
de Souza AH, Santos LRB, Roma LP, Bensellam M, Carpinelli AR, Jonas JC. NADPH oxidase-2 does not contribute to β-cell glucotoxicity in cultured pancreatic islets from C57BL/6J mice. Mol Cell Endocrinol 2017; 439:354-362. [PMID: 27664519 DOI: 10.1016/j.mce.2016.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
Abstract
High glucose-induced oxidative stress and increased NADPH oxidase-2 (NOX2) activity may contribute to the progressive decline of the functional β-cell mass in type 2 diabetes. To test that hypothesis, we characterized, in islets from male NOX2 knockout (NOX2-KO) and wild-type (WT) C57BL/6J mice cultured for up to 3 weeks at 10 or 30 mmol/l glucose (G10 or G30), the in vitro effects of glucose on cytosolic oxidative stress using probes sensing glutathione oxidation (GRX1-roGFP2), thiol oxidation (roGFP1) or H2O2 (roGFP2-Orp1), on β-cell stimulus-secretion coupling events and on β-cell apoptosis. After 1-2 days of culture in G10, the glucose stimulation of insulin secretion (GSIS) was ∼1.7-fold higher in NOX2-KO vs. WT islets at 20-30 mmol/l glucose despite similar rises in NAD(P)H and intracellular calcium concentration ([Ca2+]i) and no differences in cytosolic GRX1-roGFP2 oxidation. After long-term culture at G10, roGFP1 and roGFP2-Orp1 oxidation and β-cell apoptosis remained low, and the glucose-induced rises in NAD(P)H, [Ca2+]i and GSIS were similarly preserved in both islet types. After prolonged culture at G30, roGFP1 and roGFP2-Orp1 oxidation increased in parallel with β-cell apoptosis, the glucose sensitivity of the NADPH, [Ca2+]i and insulin secretion responses increased, the maximal [Ca2+]i response decreased, but maximal GSIS was preserved. These responses were almost identical in both islet types. In conclusion, NOX2 is a negative regulator of maximal GSIS in C57BL/6J mouse islets, but it does not detectably contribute to the in vitro glucotoxic induction of cytosolic oxidative stress and alterations of β-cell survival and function.
Collapse
Affiliation(s)
- Arnaldo H de Souza
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium; Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Laila R B Santos
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Leticia P Roma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mohammed Bensellam
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Angelo R Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean-Christophe Jonas
- Université catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium.
| |
Collapse
|
21
|
Aharoni-Simon M, Shumiatcher R, Yeung A, Shih AZL, Dolinsky VW, Doucette CA, Luciani DS. Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic β-Cells. Endocrinology 2016; 157:2270-81. [PMID: 27070098 DOI: 10.1210/en.2015-1964] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In pancreatic β-cells, controlling the levels of reactive oxygen species (ROS) is critical to counter oxidative stress, dysfunction and death under nutrient excess. Moreover, the fine-tuning of ROS and redox balance is important in the regulation of normal β-cell physiology. We recently demonstrated that Bcl-2 and Bcl-xL, in addition to promoting survival, suppress β-cell glucose metabolism and insulin secretion. Here, we tested the hypothesis that the nonapoptotic roles of endogenous Bcl-2 extend to the regulation of β-cell ROS and redox balance. We exposed mouse islet cells and MIN6 cells to the Bcl-2/Bcl-xL antagonist Compound 6 and the Bcl-2-specific antagonist ABT-199 and evaluated ROS levels, Ca(2+) responses, respiratory control, superoxide dismutase activity and cell death. Both acute glucose stimulation and the inhibition of endogenous Bcl-2 progressively increased peroxides and stimulated superoxide dismutase activity in mouse islets. Importantly, conditional β-cell knockout of Bcl-2 amplified glucose-induced formation of peroxides. Bcl-2 antagonism also induced a mitochondrial proton leak that was prevented by the antioxidant N-acetyl-L-cysteine and, therefore, secondary to redox changes. We further established that the proton leak was independent of uncoupling protein 2 but partly mediated by the mitochondrial permeability transition pore. Acutely, inhibitor-induced peroxides promoted Ca(2+) influx, whereas under prolonged Bcl inhibition, the elevated ROS was required for induction of β-cell apoptosis. In conclusion, our data reveal that endogenous Bcl-2 modulates moment-to-moment ROS signaling and suppresses a redox-regulated mitochondrial proton leak in β-cells. These noncanonical roles of Bcl-2 may be important for β-cell function and survival under conditions of high metabolic demand.
Collapse
Affiliation(s)
- Michal Aharoni-Simon
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Rose Shumiatcher
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Anthony Yeung
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Alexis Z L Shih
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Vernon W Dolinsky
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Christine A Doucette
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| | - Dan S Luciani
- Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3P4
| |
Collapse
|
22
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species. Biosci Rep 2016; 36:BSR20150193. [PMID: 26795216 PMCID: PMC4776627 DOI: 10.1042/bsr20150193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/04/2016] [Indexed: 12/29/2022] Open
Abstract
Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress.
Collapse
|
24
|
DINIĆ S, GRDOVIĆ N, USKOKOVIĆ A, ĐORĐEVIĆ M, MIHAILOVIĆ M, JOVANOVIĆ JA, POZNANOVIĆ G, VIDAKOVIĆ M. CXCL12 protects pancreatic β-cells from oxidative stress by a Nrf2-induced increase in catalase expression and activity. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:436-454. [PMID: 27840391 PMCID: PMC5328787 DOI: 10.2183/pjab.92.436] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to intrinsically low levels of antioxidant enzyme expression and activity, insulin producing pancreatic β-cells are particularly susceptible to free radical attack. In diabetes mellitus, which is accompanied by high levels of oxidative stress, this feature of β-cells significantly contributes to their damage and dysfunction. In light of the documented pro-survival effect of chemokine C-X-C Ligand 12 (CXCL12) on pancreatic β-cells, we examined its potential role in antioxidant protection. We report that CXCL12 overexpression enhanced the resistance of rat insulinoma (Rin-5F) and primary pancreatic islet cells to hydrogen peroxide (H2O2). CXCL12 lowered the levels of DNA damage and lipid peroxidation and preserved insulin expression. This effect was mediated through an increase in catalase (CAT) activity. By activating downstream p38, Akt and ERK kinases, CXCL12 facilitated Nrf2 nuclear translocation and enhanced its binding to the CAT gene promoter, inducing constitutive CAT expression and activity that was essential for protecting β-cells from H2O2.
Collapse
Affiliation(s)
- Svetlana DINIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Nevena GRDOVIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra USKOKOVIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Miloš ĐORĐEVIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Mirjana MIHAILOVIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Arambašić JOVANOVIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Goran POZNANOVIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Melita VIDAKOVIĆ
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
- Correspondence should be addressed: M. Vidaković, Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia (e-mail: )
| |
Collapse
|
25
|
Wang J, Li LZ, Liu YG, Teng LR, Lu JH, Xie J, Hu WJ, Liu Y, Liu Y, Wang D, Teng LS. Investigations on the antifatigue and antihypoxic effects of Paecilomyces hepiali extract. Mol Med Rep 2015; 13:1861-8. [PMID: 26717979 DOI: 10.3892/mmr.2015.4734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 12/02/2015] [Indexed: 11/05/2022] Open
Abstract
Paecilomyces hepiali, one of the most valuable and effective Chinese medicinal herbs, possesses potential antioxidant, immunomodulatory, antitumor and anti‑inflammatory properties. The present study aimed to investigate the antifatigue and antihypoxic effects of Paecilomyces hepiali extract (PHC) in a mouse model. Using a rotating rod, forced swimming and running assessment, the antifatigue activity of PHC was determined. PHC administration for 7 days had no effect on mouse horizontal or vertical movement, indicating no neurotoxicity at the selected doses was observed. Using a normobaric hypoxia, sodium nitrite toxicosis and acute cerebral ischemia assessments, PHC was confirmed to possess antihypoxic effects. PHC treatment for 7 days significantly enhanced the serum and liver levels of adenosine triphosphate, superoxide dismutase and glutathione peroxidase, prior to and following 60 min of swimming. The levels of antioxidant‑associated proteins in the livers of the mice were analyzed using western blotting. PHC effectively increased the expression levels of phosphorylated (p)‑5'‑monophosphate (AMP)‑activated protein kinase (AMPK), p‑protein kinase B (AKT) and p‑mammalian target of rapamycin (mTOR). The results of the present study demonstrated that PHC efficiently enhanced endurance from fatigue and had antihypoxic effects through elevation of the antioxidant capacity in the serum and liver, at least in part through the AMPK and AKT/mTOR pathways. These results indicate the potential of this natural product as an antioxidant in the treatment of fatigue, hypoxia and their associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lan Zhou Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yan Ge Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Li Rong Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Jia Hui Lu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Wen Ji Hu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yan Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Le Sheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
26
|
Lortz S, Lenzen S, Mehmeti I. Impact of scavenging hydrogen peroxide in the endoplasmic reticulum for β cell function. J Mol Endocrinol 2015; 55:21-9. [PMID: 26108484 DOI: 10.1530/jme-15-0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
Oxidative folding of nascent proteins in the endoplasmic reticulum (ER), catalysed by one or more members of the protein disulfide isomerase family and the sulfhydryl oxidase ER oxidoreductin 1 (ERO1), is accompanied by generation of hydrogen peroxide (H2O2). Because of the high rate of insulin biosynthesis and the low expression of H2O2-inactivating enzymes in pancreatic β cells, it has been proposed that the luminal H2O2 concentration might be very high. As the role of this H2O2 in ER stress and proinsulin processing is still unsolved, an ER-targeted and luminal-active catalase variant, ER-Catalase N244, was expressed in insulin-secreting INS-1E cells. In these cells, the influence of ER-specific H2O2 removal on cytokine-mediated cytotoxicity and ER stress, insulin gene expression, insulin content and secretion was analysed. The expression of ER-Catalase N244 reduced the toxicity of exogenously added H2O2 significantly with a threefold increase of the EC50 value for H2O2. However, the expression of cytokine-induced ER stress genes and viability after incubation with β cell toxic cytokines (IL1β alone or together with TNFα+IFNγ) was not affected by ER-Catalase N244. In control and ER-Catalase N244 expressing cells, insulin secretion and proinsulin content was identical, while removal of luminal H2O2 reduced insulin gene expression and insulin content in ER-Catalase N244 expressing cells. These data show that ER-Catalase N244 reduced H2O2 toxicity but did not provide protection against pro-inflammatory cytokine-mediated toxicity and ER stress. Insulin secretion was not affected by decreasing H2O2 in the ER in spite of a reduced insulin transcription and processing.
Collapse
Affiliation(s)
- S Lortz
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| | - S Lenzen
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| | - I Mehmeti
- Hannover Medical SchoolInstitute of Clinical Biochemistry, 30623 Hannover, Germany
| |
Collapse
|
27
|
Kluckova K, Sticha M, Cerny J, Mracek T, Dong L, Drahota Z, Gottlieb E, Neuzil J, Rohlena J. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis 2015; 6:e1749. [PMID: 25950479 PMCID: PMC4669690 DOI: 10.1038/cddis.2015.110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/22/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.
Collapse
Affiliation(s)
- K Kluckova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Sticha
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - J Cerny
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - T Mracek
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - L Dong
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Z Drahota
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - E Gottlieb
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - J Neuzil
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - J Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
28
|
Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 2015; 466:203-18. [PMID: 25697093 DOI: 10.1042/bj20141384] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Insulin release from pancreatic β-cells is required to maintain normal glucose homoeostasis in man and many other animals. Defective insulin secretion underlies all forms of diabetes mellitus, a disease currently reaching epidemic proportions worldwide. Although the destruction of β-cells is responsible for Type 1 diabetes (T1D), both lowered β-cell mass and loss of secretory function are implicated in Type 2 diabetes (T2D). Emerging results suggest that a functional deficiency, involving de-differentiation of the mature β-cell towards a more progenitor-like state, may be an important driver for impaired secretion in T2D. Conversely, at least in rodents, reprogramming of islet non-β to β-cells appears to occur spontaneously in models of T1D, and may occur in man. In the present paper, we summarize the biochemical properties which define the 'identity' of the mature β-cell as a glucose sensor par excellence. In particular, we discuss the importance of suppressing a group of 11 'disallowed' housekeeping genes, including Ldha and the monocarboxylate transporter Mct1 (Slc16a1), for normal nutrient sensing. We then survey the changes in the expression and/or activity of β-cell-enriched transcription factors, including FOXO1, PDX1, NKX6.1, MAFA and RFX6, as well as non-coding RNAs, which may contribute to β-cell de-differentiation and functional impairment in T2D. The relevance of these observations for the development of new approaches to treat T1D and T2D is considered.
Collapse
|
29
|
Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic β-cells. Biochem J 2014; 460:411-23. [PMID: 24678915 DOI: 10.1042/bj20131361] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The glucose stimulation of insulin secretion by pancreatic β-cells depends on increased production of metabolic coupling factors, among which changes in NADPH and ROS (reactive oxygen species) may alter the glutathione redox state (EGSH) and signal through changes in thiol oxidation. However, whether nutrients affect EGSH in β-cell subcellular compartments is unknown. Using redox-sensitive GFP2 fused to glutaredoxin 1 and its mitochondria-targeted form, we studied the acute nutrient regulation of EGSH in the cytosol/nucleus or the mitochondrial matrix of rat islet cells. These probes were mainly expressed in β-cells and reacted to low concentrations of exogenous H2O2 and menadione. Under control conditions, cytosolic/nuclear EGSH was close to -300 mV and unaffected by glucose (from 0 to 30 mM). In comparison, mitochondrial EGSH was less negative and rapidly regulated by glucose and other nutrients, ranging from -280 mV in the absence of glucose to -299 mV in 30 mM glucose. These changes were largely independent from changes in intracellular Ca(2+) concentration and in mitochondrial pH. They were unaffected by overexpression of SOD2 (superoxide dismutase 2) and mitochondria-targeted catalase, but were inversely correlated with changes in NAD(P)H autofluorescence, suggesting that they indirectly resulted from increased NADPH availability rather than from changes in ROS concentration. Interestingly, the opposite regulation of mitochondrial EGSH and NAD(P)H autofluorescence by glucose was also observed in human islets isolated from two donors. In conclusion, the present study demonstrates that glucose and other nutrients acutely reduce mitochondrial, but not cytosolic/nuclear, EGSH in pancreatic β-cells under control conditions.
Collapse
|
30
|
Hansen JB, Moen IW, Mandrup-Poulsen T. Iron: the hard player in diabetes pathophysiology. Acta Physiol (Oxf) 2014; 210:717-32. [PMID: 24521359 DOI: 10.1111/apha.12256] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/09/2014] [Accepted: 02/03/2014] [Indexed: 12/14/2022]
Abstract
The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides the relay between inflammation and oxidative β-cell damage. Iron chelation may be a potential therapeutic approach to reduce disease severity and mortality among diabetes patients. However, the therapeutic effect and safety of iron reduction need to be tested in clinical trials before dietary interventions or the use of iron chelation therapy titrated to avoid anaemia.
Collapse
Affiliation(s)
- J. B. Hansen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - I. W. Moen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - T. Mandrup-Poulsen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
31
|
Abstract
The pancreatic islet β cell senses circulating levels of calorigenic nutrients to secrete insulin according to the needs of the organism. Altered insulin secretion is linked to various disorders such as diabetes, hypoglycemic states, and cardiometabolic diseases. Fuel stimuli, including glucose, free fatty acids, and amino acids, promote insulin granule exocytosis primarily via their metabolism in β cells and the production of key signaling metabolites. This paper reviews our current knowledge of the pathways involved in both positive and negative metabolic signaling for insulin secretion and assesses the role of established and candidate metabolic coupling factors, keeping recent developments in focus.
Collapse
Affiliation(s)
- Marc Prentki
- Molecular Nutrition Unit, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, QC, Canada.
| | | | | |
Collapse
|
32
|
Graciano MF, Valle MM, Curi R, Carpinelli AR. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets 2013; 5:139-48. [PMID: 23817296 DOI: 10.4161/isl.25459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.
Collapse
Affiliation(s)
- Maria Fernanda Graciano
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo, SP Brazil
| | | | | | | |
Collapse
|
33
|
Puddu A, Sanguineti R, Mach F, Dallegri F, Viviani GL, Montecucco F. Update on the protective molecular pathways improving pancreatic beta-cell dysfunction. Mediators Inflamm 2013; 2013:750540. [PMID: 23737653 PMCID: PMC3659509 DOI: 10.1155/2013/750540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022] Open
Abstract
The primary function of pancreatic beta-cells is to produce and release insulin in response to increment in extracellular glucose concentrations, thus maintaining glucose homeostasis. Deficient beta-cell function can have profound metabolic consequences, leading to the development of hyperglycemia and, ultimately, diabetes mellitus. Therefore, strategies targeting the maintenance of the normal function and protecting pancreatic beta-cells from injury or death might be crucial in the treatment of diabetes. This narrative review will update evidence from the recently identified molecular regulators preserving beta-cell mass and function recovery in order to suggest potential therapeutic targets against diabetes. This review will also highlight the relevance for novel molecular pathways potentially improving beta-cell dysfunction.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Roberta Sanguineti
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy
| | - François Mach
- Division of Cardiology, Geneva University Hospitals, Faculty of Medicine, Foundation for Medical Researches, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland
| | - Franco Dallegri
- First Medical Clinic, Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Giorgio Luciano Viviani
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Fabrizio Montecucco
- Division of Cardiology, Geneva University Hospitals, Faculty of Medicine, Foundation for Medical Researches, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland
- First Medical Clinic, Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132 Genova, Italy
| |
Collapse
|