1
|
Zucchini S, Scozzarella A, Maltoni G. Multiple influences of the COVID-19 pandemic on children with diabetes: Changes in epidemiology, metabolic control and medical care. World J Diabetes 2023; 14:198-208. [PMID: 37035223 PMCID: PMC10075036 DOI: 10.4239/wjd.v14.i3.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has heavily affected health worldwide, with the various forms of diabetes in children experiencing changes at various levels, including epidemiology, diabetic ketoacidosis rates and medical care. Type 1 diabetes showed an apparent increase in incidence, possibly owing to a direct damage of the virus to the β-cell. Diabetic ketoacidosis also increased in association with the general fear of referring patients to the hospital. Most children with diabetes (both type 1 and type 2) did not show a worsening in metabolic control during the first lockdown, possibly owing to a more controlled diet by their parents. Glucose sensor and hybrid closed loop pump technology proved to be effective in all patients with type 1 diabetes during the pandemic, especially because the downloading of data allowed for the practice of tele-medicine. Telemedicine has in fact grown around the world and National Health Systems have started to consider it as a routine activity in clinical practice. The present review encompasses all the aspects related to the effects of the pandemic on the different forms of diabetes in children.
Collapse
Affiliation(s)
- Stefano Zucchini
- Department of Pediatric, IRCCS AOU di Bologna, Bologna 40138, Italy
| | | | - Giulio Maltoni
- Department of Pediatric, IRCCS AOU di Bologna, Bologna 40138, Italy
| |
Collapse
|
2
|
Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17:150-161. [PMID: 33293704 PMCID: PMC7722981 DOI: 10.1038/s41574-020-00443-4] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus is believed to result from destruction of the insulin-producing β-cells in pancreatic islets that is mediated by autoimmune mechanisms. The classic view is that autoreactive T cells mistakenly destroy healthy ('innocent') β-cells. We propose an alternative view in which the β-cell is the key contributor to the disease. By their nature and function, β-cells are prone to biosynthetic stress with limited measures for self-defence. β-Cell stress provokes an immune attack that has considerable negative effects on the source of a vital hormone. This view would explain why immunotherapy at best delays progression of type 1 diabetes mellitus and points to opportunities to use therapies that revitalize β-cells, in combination with immune intervention strategies, to reverse the disease. We present the case that dysfunction occurs in both the immune system and β-cells, which provokes further dysfunction, and present the evidence leading to the consensus that islet autoimmunity is an essential component in the pathogenesis of type 1 diabetes mellitus. Next, we build the case for the β-cell as the trigger of an autoimmune response, supported by analogies in cancer and antitumour immunity. Finally, we synthesize a model ('connecting the dots') in which both β-cell stress and islet autoimmunity can be harnessed as targets for intervention strategies.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at City of Hope, Los Angeles, CA, USA.
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands.
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - René van Tienhoven
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at City of Hope, Los Angeles, CA, USA
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Fløyel T, Meyerovich K, Prause MC, Kaur S, Frørup C, Mortensen HB, Nielsen LB, Pociot F, Cardozo AK, Størling J. SKAP2, a Candidate Gene for Type 1 Diabetes, Regulates β-Cell Apoptosis and Glycemic Control in Newly Diagnosed Patients. Diabetes 2021; 70:464-476. [PMID: 33203694 PMCID: PMC7881866 DOI: 10.2337/db20-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/10/2020] [Indexed: 01/27/2023]
Abstract
The single nucleotide polymorphism rs7804356 located in the Src kinase-associated phosphoprotein 2 (SKAP2) gene is associated with type 1 diabetes (T1D), suggesting SKAP2 as a causal candidate gene. The objective of the study was to investigate if SKAP2 has a functional role in the β-cells in relation to T1D. In a cohort of children with newly diagnosed T1D, rs7804356 predicted glycemic control and residual β-cell function during the 1st year after diagnosis. In INS-1E cells and rat and human islets, proinflammatory cytokines reduced the content of SKAP2. Functional studies revealed that knockdown of SKAP2 aggravated cytokine-induced apoptosis in INS-1E cells and primary rat β-cells, suggesting an antiapoptotic function of SKAP2. In support of this, overexpression of SKAP2 afforded protection against cytokine-induced apoptosis, which correlated with reduced nuclear content of S536-phosphorylated nuclear factor-κB (NF-κB) subunit p65, lower nitric oxide production, and diminished CHOP expression indicative of decreased endoplasmic reticulum stress. Knockdown of CHOP partially counteracted the increase in cytokine-induced apoptosis caused by SKAP2 knockdown. In conclusion, our results suggest that SKAP2 controls β-cell sensitivity to cytokines possibly by affecting the NF-κB-inducible nitric oxide synthase-endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Tina Fløyel
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kira Meyerovich
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Michala C Prause
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Caroline Frørup
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Henrik B Mortensen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Nielsen
- Department of Pediatrics E, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Rasouli H, Yarani R, Pociot F, Popović-Djordjević J. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives. Pharmacol Res 2020; 155:104723. [PMID: 32105756 DOI: 10.1016/j.phrs.2020.104723] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/07/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease which causes millions of death all over the world each year, and its incidence is on increase. The most prevalent form, type 2 DM, is characterized by insulin resistance and β-cell dysfunction, whereas type 1 DM is due to insulin deficiency as a result of β-cell destruction. Various classes of synthetic drugs have been developed to regulate glucose homeostasis and combat the development of late-diabetic complications. However, several of these chemical agents are either sub-optimal in their effect and/or may have side effects. Biologically, alkaloids unveiled a wide range of therapeutic effects including anti-diabetic properties. The chemical backbones of these compounds have the potential to interact with a wide range of proteins involved in glucose homeostasis, and thus they have received increasing attention as reliable candidates for drug development. This review sets out to investigate the anti-diabetic potential of plant alkaloids (PAs), and therefore, scientific databases were comprehensively screened to highlight the biological activity of 78 PAs with a considerable anti-diabetic profile. There are not enough clinical data available for these phytochemicals to follow their fingerprint in human, but current studies generally recommending PAs as potent α-glucosidase inhibitors. Except for some classes of monoterpene alkaloids, other compounds showed similar features as well as the presently available anti-diabetic drugs such as amino sugars and other relevant drugs. Moreover, the evidence suggests that PAs have the potential to be used as alternative additives for the treatment of DM, however, further in vitro and in vivo studies are needed to validate these findings.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Science, Kermanshah, Iran; Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Reza Yarani
- T1D Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Denmark
| | - Flemming Pociot
- T1D Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Denmark; Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jelena Popović-Djordjević
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Acevedo-Calado MJ, Pietropaolo SL, Morran MP, Schnell S, Vonberg AD, Verge CF, Gianani R, Becker DJ, Huang S, Greenbaum CJ, Yu L, Davidson HW, Michels AW, Rich SS, Pietropaolo M. Autoantibodies Directed Toward a Novel IA-2 Variant Protein Enhance Prediction of Type 1 Diabetes. Diabetes 2019; 68:1819-1829. [PMID: 31167877 PMCID: PMC6702638 DOI: 10.2337/db18-1351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
We identified autoantibodies (AAb) reacting with a variant IA-2 molecule (IA-2var) that has three amino acid substitutions (Cys27, Gly608, and Pro671) within the full-length molecule. We examined IA-2var AAb in first-degree relatives of type 1 diabetes (T1D) probands from the TrialNet Pathway to Prevention Study. The presence of IA-2var-specific AAb in relatives was associated with accelerated progression to T1D in those positive for AAb to GAD65 and/or insulin but negative in the standard test for IA-2 AAb. Furthermore, relatives with single islet AAb (by traditional assays) and carrying both IA-2var AAb and the high-risk HLA-DRB1*04-DQB1*03:02 haplotype progress rapidly to onset of T1D. Molecular modeling of IA-2var predicts that the genomic variation that alters the three amino acids induces changes in the three-dimensional structure of the molecule, which may lead to epitope unmasking in the IA-2 extracellular domain. Our observations suggest that the presence of AAb to IA-2var would identify high-risk subjects who would benefit from participation in prevention trials who have one islet antibody by traditional testing and otherwise would be misclassified as "low risk" relatives.
Collapse
Affiliation(s)
- Maria J. Acevedo-Calado
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Susan L. Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Michael P. Morran
- Department of Surgery, College of Medicine, University of Toledo, Toledo, OH
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Andrew D. Vonberg
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Charles F. Verge
- School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Roberto Gianani
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Dorothy J. Becker
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shuai Huang
- Department of Industrial & Systems Engineering, University of Washington, Seattle, WA
| | | | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Howard W. Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
Nakayasu ES, Qian WJ, Evans-Molina C, Mirmira RG, Eizirik DL, Metz TO. The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Rev Proteomics 2019; 16:569-582. [PMID: 31232620 PMCID: PMC6628911 DOI: 10.1080/14789450.2019.1634548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Introduction: Type 1 diabetes (T1D) is characterized by autoimmune-induced dysfunction and destruction of the pancreatic beta cells. Unfortunately, this process is poorly understood, and the current best treatment for type 1 diabetes is the administration of exogenous insulin. To better understand these mechanisms and to develop new therapies, there is an urgent need for biomarkers that can reliably predict disease stage. Areas covered: Mass spectrometry (MS)-based proteomics and complementary techniques play an important role in understanding the autoimmune response, inflammation and beta-cell death. MS is also a leading technology for the identification of biomarkers. This, and the technical difficulties and new technologies that provide opportunities to characterize small amounts of sample in great depth and to analyze large sample cohorts will be discussed in this review. Expert opinion: Understanding disease mechanisms and the discovery of disease-associated biomarkers are highly interconnected goals. Ideal biomarkers would be molecules specific to the different stages of the disease process that are released from beta cells to the bloodstream. However, such molecules are likely to be present in trace amounts in the blood due to the small number of pancreatic beta cells in the human body and the heterogeneity of the target organ and disease process.
Collapse
Affiliation(s)
- Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Center for Diabetes and Metabolic Diseases, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
7
|
Størling J, Pociot F. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis. Genes (Basel) 2017; 8:genes8020072. [PMID: 28212332 PMCID: PMC5333061 DOI: 10.3390/genes8020072] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis.
Collapse
Affiliation(s)
- Joachim Størling
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, University Hospital Herlev and Gentofte, Herlev 2730, Denmark.
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, University Hospital Herlev and Gentofte, Herlev 2730, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
8
|
Samandari N, Mirza AH, Nielsen LB, Kaur S, Hougaard P, Fredheim S, Mortensen HB, Pociot F. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 2017; 60:354-363. [PMID: 27866223 DOI: 10.1007/s00125-016-4156-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS We aimed to identify circulating microRNA (miRNA) that predicts clinical progression in a cohort of 123 children with new-onset type 1 diabetes mellitus. METHODS Plasma samples were prospectively obtained at 1, 3, 6, 12 and 60 months after diagnosis from a subset of 40 children from the Danish Remission Phase Cohort, and profiled for miRNAs. At the same time points, meal-stimulated C-peptide and HbA1c levels were measured and insulin-dose adjusted HbA1c (IDAA1c) calculated. miRNAs that at 3 months after diagnosis predicted residual beta cell function and glycaemic control in this subgroup were further validated in the remaining cohort (n = 83). Statistical analysis of miRNA prediction for disease progression was performed by multiple linear regression analysis adjusted for age and sex. RESULTS In the discovery analysis, six miRNAs (hsa-miR-24-3p, hsa-miR-146a-5p, hsa-miR-194-5p, hsa-miR-197-3p, hsa-miR-301a-3p and hsa-miR-375) at 3 months correlated with residual beta cell function 6-12 months after diagnosis. Stimulated C-peptide at 12 months was predicted by hsa-miR-197-3p at 3 months (p = 0.034). A doubling of this miRNA level corresponded to a sixfold higher stimulated C-peptide level. In addition, a doubling of hsa-miR-24-3p and hsa-miR-146a-5p levels at 3 months corresponded to a 4.2% (p < 0.014) and 3.5% (p < 0.022) lower IDAA1c value at 12 months. Analysis of the remaining cohort confirmed the initial finding for hsa-miR-197-3p (p = 0.018). The target genes for the six miRNAs revealed significant enrichment for pathways related to gonadotropin-releasing hormone receptor and angiogenesis pathways. CONCLUSIONS/INTERPRETATION The miRNA hsa-miR-197-3p at 3 months was the strongest predictor of residual beta cell function 1 year after diagnosis in children with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Nasim Samandari
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Aashiq H Mirza
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Lotte B Nielsen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Simranjeet Kaur
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Philip Hougaard
- Department of Statistics, University of Southern Denmark, Odense, Denmark
| | - Siri Fredheim
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
| | - Henrik B Mortensen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Paediatrics, Herlev and Gentofte Hospitals, University of Copenhagen, Herlev Ringvej 75, 2730, Herlev, Denmark.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem 2016; 75:99-158. [PMID: 27346618 DOI: 10.1016/bs.acc.2016.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012 Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.
Collapse
Affiliation(s)
| | - M Prause
- University of Copenhagen, Copenhagen, Denmark
| | - J Størling
- Copenhagen Diabetes Research Center, Beta Cell Biology Group, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | |
Collapse
|
10
|
Genetic Risk Score Modelling for Disease Progression in New-Onset Type 1 Diabetes Patients: Increased Genetic Load of Islet-Expressed and Cytokine-Regulated Candidate Genes Predicts Poorer Glycemic Control. J Diabetes Res 2016; 2016:9570424. [PMID: 26904692 PMCID: PMC4745814 DOI: 10.1155/2016/9570424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/04/2015] [Indexed: 01/12/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified over 40 type 1 diabetes risk loci. The clinical impact of these loci on β-cell function during disease progression is unknown. We aimed at testing whether a genetic risk score could predict glycemic control and residual β-cell function in type 1 diabetes (T1D). As gene expression may represent an intermediate phenotype between genetic variation and disease, we hypothesized that genes within T1D loci which are expressed in islets and transcriptionally regulated by proinflammatory cytokines would be the best predictors of disease progression. Two-thirds of 46 GWAS candidate genes examined were expressed in human islets, and 11 of these significantly changed expression levels following exposure to proinflammatory cytokines (IL-1β + IFNγ + TNFα) for 48 h. Using the GWAS single nucleotide polymorphisms (SNPs) from each locus, we constructed a genetic risk score based on the cumulative number of risk alleles carried in children with newly diagnosed T1D. With each additional risk allele carried, HbA1c levels increased significantly within first year after diagnosis. Network and gene ontology (GO) analyses revealed that several of the 11 candidate genes have overlapping biological functions and interact in a common network. Our results may help predict disease progression in newly diagnosed children with T1D which can be exploited for optimizing treatment.
Collapse
|
11
|
Strollo R, Vinci C, Arshad MH, Perrett D, Tiberti C, Chiarelli F, Napoli N, Pozzilli P, Nissim A. Antibodies to post-translationally modified insulin in type 1 diabetes. Diabetologia 2015; 58:2851-60. [PMID: 26350612 DOI: 10.1007/s00125-015-3746-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/11/2015] [Indexed: 01/04/2023]
Abstract
AIM/HYPOTHESIS Insulin is the most specific beta cell antigen and a potential primary autoantigen in type 1 diabetes. Insulin autoantibodies (IAAs) are the earliest marker of beta cell autoimmunity; however, only slightly more than 50% of children and even fewer adults newly diagnosed with type 1 diabetes are IAA positive. The aim of this investigation was to determine if oxidative post-translational modification (oxPTM) of insulin by reactive oxidants associated with islet inflammation generates neoepitopes that stimulate an immune response in individuals with type 1 diabetes. METHODS oxPTM of insulin was generated using ribose and various reactive oxygen species. Modifications were analysed by SDS-PAGE, three-dimensional fluorescence and MS. Autoreactivity to oxPTM insulin (oxPTM-INS) was observed by ELISA and western blotting, using sera from participants with type 1 or type 2 diabetes and healthy controls as probes. IAA was measured using the gold-standard radiobinding assay (RBA). RESULTS MS of oxPTM-INS identified chlorination of Tyr16 and Tyr26; oxidation of His5, Cys7 and Phe24; and glycation of Lys29 and Phe1 in chain B. Significantly higher binding to oxPTM-INS vs native insulin was observed in participants with type 1 diabetes, with 84% sensitivity compared with 61% sensitivity for RBA. oxPTM-INS autoantibodies and IAA co-existed in 50% of those with type 1 diabetes. Importantly 34% of those with diabetes who were IAA negative were oxPTM-INS positive. Altogether, 95% of participants with type 1 diabetes presented with autoimmunity to insulin by RBA, oxPTM-INS or both. Binding to oxPTM-INS was directed towards oxPTM-INS fragments with slower mobility than native insulin. CONCLUSION/INTERPRETATION These data suggest that oxPTM-INS is a potential autoantigen in individuals with new-onset type 1 diabetes.
Collapse
Affiliation(s)
- Rocky Strollo
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Chiara Vinci
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Mayda H Arshad
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - David Perrett
- BioAnalysis, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudio Tiberti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Ospedale Policlinico, Chieti, Italy
| | - Nicola Napoli
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Paolo Pozzilli
- Endocrinology & Diabetes, University Campus Bio-Medico, via Alvaro del Portillo 21, 00128, Rome, Italy.
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
12
|
Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, Ladenvall C, Rönn T, Ling C. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet 2014; 10:e1004735. [PMID: 25375650 PMCID: PMC4222689 DOI: 10.1371/journal.pgen.1004735] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/05/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development. However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of 468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis, corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-DQA1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets. Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified candidate genes (GPX7, GSTT1 and SNX19) directly affect key biological processes such as proliferation and apoptosis in pancreatic β-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation interacts to influence gene expression, islet function and potential diabetes risk in humans. Inter-individual variation in genetics and epigenetics affects biological processes and disease susceptibility. However, most studies have investigated genetic and epigenetic mechanisms independently and to uncover novel mechanisms affecting disease susceptibility there is a highlighted need to study interactions between these factors on a genome-wide scale. To identify novel loci affecting islet function and potentially diabetes, we performed the first genome-wide methylation quantitative trait locus (mQTL) analysis in human pancreatic islets including DNA methylation of 468,787 CpG sites located throughout the genome. Our results showed that DNA methylation of 11,735 CpGs in 4,504 unique genes is regulated by genetic factors located in cis (67,438 SNP-CpG pairs). Furthermore, significant mQTLs cover previously reported diabetes loci including KCNJ11, INS, HLA, PDX1 and GRB10. We also found mQTLs associated with gene expression and insulin secretion in human islets. By performing causality inference tests (CIT), we identified CpGs where DNA methylation potentially mediates the genetic impact on gene expression and insulin secretion. Our functional follow-up experiments further demonstrated that identified mQTLs/genes (GPX7, GSTT1 and SNX19) directly affect pancreatic β-cell function. Together, our study provides a detailed map of genome-wide associations between genetic and epigenetic variation, which affect gene expression and insulin secretion in human pancreatic islets.
Collapse
Affiliation(s)
- Anders H. Olsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Karl Bacos
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tasnim Dayeh
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Elin Hall
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Emma A. Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
- * E-mail:
| |
Collapse
|
13
|
Xie Z, Chang C, Zhou Z. Molecular Mechanisms in Autoimmune Type 1 Diabetes: a Critical Review. Clin Rev Allergy Immunol 2014; 47:174-92. [DOI: 10.1007/s12016-014-8422-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Fuhlbrigge R, Yip L. Self-antigen expression in the peripheral immune system: roles in self-tolerance and type 1 diabetes pathogenesis. Curr Diab Rep 2014; 14:525. [PMID: 25030265 DOI: 10.1007/s11892-014-0525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes (T1D) may result from a breakdown in peripheral tolerance that is partially controlled by the ectopic expression of peripheral tissue antigens (PTAs) in lymph nodes. Various subsets of lymph node stromal cells and certain hematopoietic cells play a role in maintaining T cell tolerance. These specialized cells have been shown to endogenously transcribe, process, and present a range of PTAs to naive T cells and mediate the clonal deletion or inactivation of autoreactive cells. During the progression of T1D, inflammation leads to reduced PTA expression in the pancreatic lymph nodes and the production of novel islet antigens that T cells are not tolerized against. These events allow for the escape and activation of autoreactive T cells and may contribute to the pathogenesis of T1D. In this review, we discuss recent findings in this area and propose possible therapies that may help reestablish self-tolerance during T1D.
Collapse
Affiliation(s)
- Rebecca Fuhlbrigge
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, 269 Campus Drive, CCSR Room 2240, Stanford, CA, 94305-5166, USA,
| | | |
Collapse
|
15
|
Lernmark A. Is there evidence for post-translational modification of beta cell autoantigens in the aetiology and pathogenesis of type 1 diabetes? Diabetologia 2013; 56:2355-2358. [PMID: 24022707 DOI: 10.1007/s00125-013-3041-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/08/2013] [Indexed: 01/10/2023]
Abstract
Størling and colleagues hypothesise in this issue (Diabetologia DOI: 10.1007/s00125-013-3045-3 ) that post-translational modification (PTM) of autoantigens might create tissue-specific neo-epitopes that could trigger type 1 diabetes. Data on PTM of islet autoantigens are scarce and readers should not believe that the PTM hypothesis is supported by strong experimental evidence. The proposed genetic factors are many but their possible contribution is conjectural. There is a lack of a rational approach to test the PTM hypothesis at the different stages of type 1 diabetes. Research that carefully addresses each stage of the type 1 diabetes disease process is warranted to advance our understanding of autoimmune (type 1) diabetes.
Collapse
Affiliation(s)
- Ake Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Jan Waldenströms gata 35, SE-205 02, Malmö, Sweden,
| |
Collapse
|