1
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
2
|
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: a promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2024; 130:13-28. [PMID: 34379994 DOI: 10.1080/13813455.2021.1956976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Liao S, Fu X, Huang J, Wang Y, Lu Y, Zhou S. Suppression of SIRT1/FXR signaling pathway contributes to oleanolic acid-induced liver injury. Toxicol Appl Pharmacol 2023; 467:116509. [PMID: 37028458 DOI: 10.1016/j.taap.2023.116509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Oleanolic acid (OA) is a pentacyclic triterpenoid compound used clinically for acute and chronic hepatitis. However, high dose or long-term use of OA causes hepatotoxicity, which limits its clinical application. Hepatic Sirtuin (SIRT1) participates in the regulation of FXR signaling and maintains hepatic metabolic homeostasis. This study was designed to determine whether SIRT1/FXR signaling pathway contributes to the hepatotoxicity caused by OA. C57BL/6J mice were administered with OA for 4 consecutive days to induce hepatotoxicity. The results showed that OA suppressed the expression of FXR and its downstream targets CYP7A1, CYP8B1, BSEP and MRP2 at both mRNA and protein levels, breaking the homeostasis of bile acid leading to hepatotoxicity. However, treatment with FXR agonist GW4064 noticeably attenuated hepatotoxicity caused by OA. Furthermore, it was found that OA inhibited protein expression of SIRT1. Activation of SIRT1 by its agonist SRT1720 significantly improved OA-induced hepatotoxicity. Meanwhile, SRT1720 significantly reduced the inhibition of protein expression of FXR and FXR-downstream proteins. These results suggested that OA may cause hepatotoxicity through SIRT1 dependent suppression of FXR signaling pathway. In vitro experiments confirmed that OA suppressed protein expressions of FXR and its targets through inhibition of SIRT1. It was further revealed that silencing of HNF1α with siRNA significantly weakened regulatory effects of SIRT1 on the expression of FXR as well as its target genes. In conclusion, our study reveals that SIRT1/FXR pathway is crucial in OA-induced hepatotoxicity. Activation of SIRT1/HNF1α/FXR axis may represent a novel therapeutic target for ameliorating OA and other herb-induced hepatotoxicity.
Collapse
|
4
|
Sonthalia M, Roy BS, Chandrawanshi D, Ganesh GV, Jayasuriya R, Mohandas S, Rajagopal S, Ramkumar KM. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. Eur J Pharmacol 2022; 935:175328. [DOI: 10.1016/j.ejphar.2022.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022]
|
5
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
6
|
Silymarin ameliorates the disordered glucose metabolism of mice with diet-induced obesity by activating the hepatic SIRT1 pathway. Cell Signal 2021; 84:110023. [PMID: 33901577 DOI: 10.1016/j.cellsig.2021.110023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
Obesity-induced insulin resistance is the principal cause of type 2 diabetes worldwide. The use of natural products for the treatment of diabetes is increasingly attracting attention. Silymarin (SLM) is a flavonolignan compound that has been shown to have promise for the treatment of diabetes. In the present study, we aimed to investigate the mechanisms underlying its therapeutic effects. C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks and then orally administered SLM (30 mg/kg) daily for 1 month. The effects of SLM were also investigated in HepG2 cells that had been rendered insulin resistant by palmitic acid (PA) treatment. SLM ameliorated the dyslipidemia, hepatic steatosis, and insulin resistance of the HFD-fed mice. HFD-feeding and PA treatment reduced the expression of sirtuin-1 (SIRT1) in the livers of the mice and in HepG2 cells, respectively. SLM increased the phosphorylation of AKT and FOXO1, and reduced the level of FOXO1 acetylation in PA-treated cells. However, SIRT1 knockdown by RNA interference reduced these effects of SLM. Moreover, the results of molecular dynamic simulation and in vitro activity assays indicated that SLM may directly bind to SIRT1 and increase its enzymatic activity. These findings suggest that hepatic SIRT1 may be an important pharmacological target of SLM and mediate effects on insulin resistance and gluconeogenesis, which may underlie its anti-diabetic activity.
Collapse
|
7
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
8
|
Veitch MR, Thai K, Zhang Y, Desjardins JF, Kabir G, Connelly KA, Gilbert RE. Late intervention in the remnant kidney model attenuates proteinuria but not glomerular filtration rate decline. Nephrology (Carlton) 2021; 26:270-279. [PMID: 33179827 DOI: 10.1111/nep.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/21/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
AIM The use of animal models to predict the response to new therapies in humans is a vexing issue in nephrology. Unlike patients with chronic kidney disease (CKD), few rodent models develop a progressive decline in glomerular filtration rate (GFR) so that experimental studies frequently report a reduction in proteinuria as the primary efficacy outcome. Moreover, while humans present with established kidney disease that continues to progress, many experimental studies investigate therapies in the prevention rather than in a therapeutic setting. METHODS We used the remnant kidney (subtotal nephrectomy [SNX]) rat model that develops a decline in GFR in conjunction with heavy proteinuria and hypertension along with the histological hallmarks of CKD in humans, glomerulosclerosis and tubulointerstitial fibrosis. Using agents that had been shown to improve GFR as well as proteinuria in the prevention setting, angiotensin-converting enzyme (ACE) inhibition with enalapril and SIRT1 activation with SRT3025, treatment was initiated 6 weeks after SNX. RESULTS While enalapril reduced blood pressure, proteinuria and histological injury, it did not improve GFR, as measured by inulin clearance. SRT3025 improved neither GFR nor structural damage despite a reduction in proteinuria. CONCLUSION These findings demonstrate that neither a reduction in proteinuria nor a reversal of structural damage in the kidney will necessarily translate to a restoration of kidney function.
Collapse
Affiliation(s)
- Matthew R Veitch
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Huang JJ, Xia CJ, Wei Y, Yao Y, Dong MW, Lin KZ, Yu LS, Gao Y, Fan YY. Annexin A1-derived peptide Ac2-26 facilitates wound healing in diabetic mice. Wound Repair Regen 2020; 28:772-779. [PMID: 32856346 DOI: 10.1111/wrr.12860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
Impaired wound healing is a common complication of diabetes. In diabetic wounds, macrophages present dysfunctional efferocytosis and abnormal phenotypes, which could result in excessive neutrophil accumulation and prolonged inflammation, thereby eventually hindering wound repair. ANXA1 N-terminal peptide Ac2-26 exhibits a high potential in mitigating inflammation and improving repair; however, its efficacy in diabetic wound repair remains unclear. In this study, a cutaneous excisional wound model was built in genetically diabetic mice. Ac2-26 or a vehicle solution was employed locally in wound sites. Subsequently, wound zones were measured and sampled at different time intervals post-wounding. Using hematoxylin-eosin and Masson's trichrome staining, we observed the histopathological variations and collagen deposition in wound samples. Based on immunohistochemistry and immunofluorescence, the numbers of neutrophils, macrophages, and CD206-positive macrophages in the wound samples were determined. Cytokine expression in wound samples was studied by immunoblot assay. Results showed that Ac2-26 treatment could facilitate diabetic wound closure, down-regulate the number of neutrophils, and improve angiogenesis and collagen deposition. In addition, Ac2-26 application expedited macrophage recruitment and up-regulated the percentage of macrophages expressing CD206, which is a marker for M2 macrophages. Moreover, Ac2-26 inhibited the expressions of TNF-α and IL-6 and up-regulated the expressions of IL-10, TGF-β, and VEGFA during diabetic wound healing. Hence, based on the aforementioned findings, Ac2-26 application in diabetic wounds could exert anti-inflammatory and pro-repair effects by reducing neutrophil accumulation and facilitating M2 macrophage development.
Collapse
Affiliation(s)
- Jun-Jie Huang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Chong-Jian Xia
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ying Wei
- Taizhou Municipal Hospital of Zhejiang Province, Taizhou, PR China
| | - Yi Yao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Miao-Wu Dong
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Ke-Zhi Lin
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Lin-Sheng Yu
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yuan Gao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yan-Yan Fan
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
10
|
Nathanael J, Harsono HCA, Wibawa AD, Suardana P, Vianney YM, Dwi Putra SE. The genetic basis of high-carbohydrate and high-monosodium glutamate diet related to the increase of likelihood of type 2 diabetes mellitus: a review. Endocrine 2020; 69:18-29. [PMID: 32172486 DOI: 10.1007/s12020-020-02256-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/03/2020] [Indexed: 12/27/2022]
Abstract
Diabetes is one of the most common metabolic diseases. Aside from the genetic factor, previous studies stated that other factors such as environment, lifestyle, and paternal-maternal condition play critical roles in diabetes through DNA methylation in specific areas of the genome. One of diabetic cases is caused by insulin resistance and changing the homeostasis of blood glucose control so glucose concentration stood beyond normal rate (hyperglycemia). High fat diet has been frequently studied and linked to triggering diabetes. However, most Asians consume rice (or food with high carbohydrate) and food with monosodium glutamate (MSG). This habit could lead to pathophysiology of type 2 diabetes mellitus (T2D). Previous studies showed that high-carbohydrate or high-MSG diet could change gene expression or modify protein activity in body metabolism. This imbalanced metabolism can lead to pleiotropic effects of diabetes mellitus. In this study, the authors have attempted to relate various changes in genes expression or protein activity to the high-carbohydrate and high-MSG-induced diabetes. The authors have also tried to relate several genes that contribute to pathophysiology of T2D and proposed several ideas of genes as markers and target for curing people with T2D. These are done by investigating altered activities of various genes that cause or are caused by diabetes. These genes are selected based on their roles in pathophysiology of T2D.
Collapse
Affiliation(s)
- Joshua Nathanael
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Hans Cristian Adhinatya Harsono
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Aubrey Druce Wibawa
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Putu Suardana
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Yoanes Maria Vianney
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia.
| |
Collapse
|
11
|
Yang C, Huang X, Wang S, Han M, Kang F, Zhang Z, Li J. Intrathecal administration of SRT1720 relieves bone cancer pain by inhibiting the CREB/CRTC1 signalling pathway. Neurosci Lett 2020; 715:134623. [PMID: 31722235 DOI: 10.1016/j.neulet.2019.134623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
Bone cancer pain (BCP) caused by primary or metastatic bone tumours significantly interferes with the quality of life of patients. However, the relief of BCP remains a major challenge. Our previous study demonstrated that intrathecal administration of the Sirtuin 1 (SIRT1) activator SRT1720 attenuated BCP in a murine model. Nevertheless, the underlying mechanisms have not been fully clarified. Previous studies demonstrated that the activation of the cAMP response element binding (CREB) protein played a critical role in BCP. Furthermore, SIRT1 can also regulate the balance between glucose and lipid metabolism through CREB deacetylation. In this study, we measured the analgesic effects of different intrathecal doses of SRT1720 on BCP in a murine model and further examined whether SRT1720 attenuated BCP by suppressing CREB/CREB-regulated transcription coactivator 1 (CRTC1) signalling pathway. Our results demonstrated that the BCP mice developed significant mechanical allodynia and spontaneous flinching, which were accompanied by the upregulation of phospho-Ser133 CREB (p-CREB) and CRTC1 expression in the spinal cord. SRT1720 treatment produced a dose-dependent analgesic effect on the BCP mice and downregulated the expression of p-CREB and CRTC1. These results suggest that intrathecal administration of SRT1720 reverses BCP likely by inhibiting the CREB/CRTC1 signalling pathway.
Collapse
Affiliation(s)
- Chengwei Yang
- School of Medicine, Shandong University, Jinan, Shandong, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Huang
- School of Medicine, Shandong University, Jinan, Shandong, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi Zhang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui, China.
| | - Juan Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
12
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
13
|
Han W, Wang C, Yang Z, Mu L, Wu M, Chen N, Du C, Duan H, Shi Y. SRT1720 retards renal fibrosis via inhibition of HIF1α /GLUT1 in diabetic nephropathy. J Endocrinol 2019; 241:JOE-18-0536.R2. [PMID: 30798323 DOI: 10.1530/joe-18-0536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022]
Abstract
Renal fibrosis is a major pathological characteristic of diabetic nephropathy (DN). Reportedly, increased SIRT1 expression played a renal protective role in animal models of DN. This study was designed to elucidate the molecular mechanisms underlying the protective effects of SRT1720, an SIRT1 activator, against diabetes-induced renal fibrosis. Type 2 diabetic mice (db/db) were treated with SRT1720 (50 mg/kg/d) by gavage for 10 weeks. Renal proximal tubular epithelial cells (HK-2 cells) were treated with high glucose (HG, 30 mM) in the presence or absence of SRT1720 (2.5 µM) for 48 h. We observed that impaired SIRT1 expression and activity were restored by SRT1720 administration in db/db mice as well as in HG-treated HK-2 cells. Moreover, SRT1720 administration improved renal function, attenuated glomerular hypertrophy, mesangial expansion, glomerulosclerosis and interstitial fibrosis, and inhibited TGFB1 and CTGF expressions and nuclear factor κB (NF-κB) activation in db/db mice. Similarly, HG-induced epithelial-to-mesenchymal transformation (EMT), and collagen IV and fibronectin expressions were inhibited in SRT1720 treated HK-2 cells. Mechanistic studies demonstrated that SRT1720 suppressed HIF1α, GLUT1 and SNAIL expressions both in vivo and in vitro. Furthermore, Hif1α or Glut1 knockdown effectively abrogated HG-induced EMT and collagen IV and fibronectin expressions in HK-2 cells. These findings suggest that SRT1720 prevented diabetes-induced renal fibrosis via the SIRT1/HIF1α/GLUT1/SNAIL pathway.
Collapse
Affiliation(s)
- Weixia Han
- W Han, Department of Pathology, Hebei Medical University, Shijiazhuang City, China
| | - Chen Wang
- C Wang, Department of Pathology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Zhifen Yang
- Z Yang, Department of pathology , Hebei Medical University, Shijiazhuang City, China
| | - Lin Mu
- L Mu, Department of Pathology, Hebei Medical University, Shijiazhuang City, China
| | - Ming Wu
- M Wu, Department of Pathology, Hebei Medical University, Shijiazhuang City, China
| | - Nan Chen
- N Chen, Department of Pathology, Hebei Medical University, Shijiazhuang City, China
| | - Chunyang Du
- C Du, Department of Pathology, Hebei Medical University, Shijiazhuang City, China
| | - Huijun Duan
- H Duan, Department of Pathology, Hebei Medical University, Shijiazhuang City, China
| | - Yonghong Shi
- Y Shi, Department of Pathology, Hebei Medical University, Shijiazhuang City, 050017, China
| |
Collapse
|
14
|
Artsi H, Gurt I, El-Haj M, Müller R, Kuhn GA, Ben Shalom G, Cohen-Kfir E, Abramowitz E, Kandel L, Safran O, Dresner-Pollak R. Sirt1 Promotes a Thermogenic Gene Program in Bone Marrow Adipocytes: From Mice to (Wo)Men. Front Endocrinol (Lausanne) 2019; 10:126. [PMID: 30873124 PMCID: PMC6403178 DOI: 10.3389/fendo.2019.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Bone marrow adipose tissue (MAT) is influenced by nutritional cues, and participates in whole body energy metabolism. To investigate the role of Sirtuin1 (Sirt1), a key player in metabolism, in MAT, marrow adiposity was evaluated in inbred 5-month-old 129/Sv Sirt1 haplo-insufficient (Sirt1 Δ/+) and wild type (WT) mice. Decreased expression of the thermogenic genes: Prdm16, Pgc1α, Foxc2, Dio2, and β3AR was detected in whole tibiae derived from Sirt1 Δ/+ compared to WT female mice. Similarly, decreased expression of Prdm16 and Pgc1α was observed in primary bone marrow mesenchymal stem cell (BM-MSC) cultures obtained from Sirt1 Δ/+ compared to WT female mice, suggesting a cell autonomous effect of Sirt1 in BM-MSCs. In vitro, Sirt1 over-expression in the mesenchymal embryonic fibroblast stem cell line C3HT101/2 increased Pgc1α and Prdm16 protein level. Similarly, pharmacologic activation of Sirt1 by SRT3025 increased Foxc2, Pgc1α, Dio2, Tfam, and Cyc1 expression while inhibition of Sirt1 by EX527 down-regulated UCP1 in C3HT101/2 cells. Importantly, in human femoral BM-MSCs obtained from female patients undergoing hip operations for fracture or osteoarthritis, Sirt1 activation by SRT3025 increased PGC1α mRNA and protein level. Blocking sclerostin, an inhibitor of the WNT pathway and a Sirt1 target, by the monoclonal humanized antibody (Sc-AbII), stimulated β3AR, PRDM16, and UCP1 gene expression, and increased PGC1α protein level. These results show that Sirt1 stimulates a thermogenic gene program in marrow adipocytes in mice and humans via PGC1α activation and sclerostin inhibition. The implications of these findings to bone health, hematopoiesis and whole body energy metabolism remain to be investigated.
Collapse
Affiliation(s)
- Hanna Artsi
- Division of Medicine, Department of Endocrinology and Metabolism, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irina Gurt
- Division of Medicine, Department of Endocrinology and Metabolism, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Madi El-Haj
- Department of Orthopedics, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ralph Müller
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gisela A. Kuhn
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gal Ben Shalom
- Division of Medicine, Department of Endocrinology and Metabolism, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Cohen-Kfir
- Division of Medicine, Department of Endocrinology and Metabolism, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eva Abramowitz
- Division of Medicine, Department of Endocrinology and Metabolism, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Leonid Kandel
- Department of Orthopedics, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Safran
- Department of Orthopedics, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner-Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, Faculty of Medicine, The Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Rivka Dresner-Pollak
| |
Collapse
|
15
|
Treatment of NASH with Antioxidant Therapy: Beneficial Effect of Red Cabbage on Type 2 Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7019573. [PMID: 30363947 PMCID: PMC6186311 DOI: 10.1155/2018/7019573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022]
Abstract
Aims Oxidative stress (OS) plays a major role in type 2 diabetes and its vascular and hepatic complications, and novel therapeutic approaches include natural antioxidants. Our previous chemical and biological studies demonstrated the antioxidant activities of red cabbage (RC), and here, we aimed to determine the in vivo effects of 2-month long RC consumption using a high-fat/high-fructose model of diabetic rats. Results This vegetable, associated with lifestyle measurement, was shown to decrease OS and increase vascular endothelial NO synthase expression, ensuring vascular homeostasis. In the liver, RC consumption decreased OS by inhibiting p22phox expression and Nrf2 degradation and increasing catalase activity. It inhibited the activation of SREBP (1c, 2), ChREBP, NF-κB, ERK1/2, PPARγ, and GS and SIRT1 decrease, as observed in diabetic rats. Conclusion/innovation RC consumption led to metabolic profile improvement, together with hepatic function improvements. Although lifestyle changes are not sufficient to prevent diabetic complications, enrichment with RC avoids progression hepatic complications. This antioxidant strategy using RC does not only able to increase antioxidant defense, such as classical antioxidant, but also able to assure a metabolic and energetic balance to reverse complications. Whereas traditional medical therapy failed to reverse NASH in diabetic patients, consumption of RC should be a natural therapy to treat it.
Collapse
|
16
|
Reversing CXCL10 Deficiency Ameliorates Kidney Disease in Diabetic Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2763-2773. [PMID: 30273603 DOI: 10.1016/j.ajpath.2018.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/04/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
The excessive accumulation of extracellular matrix material in the kidney is a histopathologic hallmark of diabetic kidney disease that correlates closely with declining function. Although considerable research has focused on the role of profibrotic factors, comparatively little attention has been paid to the possibility that a diminution in endogenous antifibrotic factors may also contribute. Among the latter, the ELR- CXC chemokines, CXCL9, CXCL10, and CXCL11, have been shown to provide a stop signal to prevent excessive fibrosis. Although the plasma concentrations of CXCL9 and CXCL11 were similar, those of CXCL10 were markedly lower in diabetic db/db mice compared with control db/m mice. In cell culture, CXCL10 inhibited kidney fibroblast collagen production in response to high glucose and the prosclerotic growth factor, transforming growth factor-β. In vivo, recombinant murine CXCL10 reduced mesangial and peritubular matrix expansion, albuminuria, and glomerular hypertrophy in db/db mice. In bone marrow, a major source of circulating chemokines, the concentration of CXCL10 was lower in cells derived from diabetic mice than from their nondiabetic counterparts. Silencing of CXCR3, the cognate receptor for CXCL10, abrogated the antifibrotic effects of bone marrow-derived secretions. In conclusion, experimental diabetes is a state of CXCL10 deficiency and that restoration of CXCL10 abundance prevented fibrosis and the development of diabetic kidney disease in mice.
Collapse
|
17
|
Zhang Y, Thai K, Jin T, Woo M, Gilbert RE. SIRT1 activation attenuates α cell hyperplasia, hyperglucagonaemia and hyperglycaemia in STZ-diabetic mice. Sci Rep 2018; 8:13972. [PMID: 30228292 PMCID: PMC6143559 DOI: 10.1038/s41598-018-32351-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
The NAD+-dependent lysine deacetylase, Sirtuin 1 (SIRT1), plays a central role in metabolic regulation. With type 1 diabetes a disease that is characterised by metabolic dysregulation, we sought to assess the impact of SIRT1 activation in experimental, streptozotocin (STZ)-induced diabetes. CD1 mice with and without STZ-induced diabetes were randomized to receive the SIRT1 activating compound, SRT3025, or vehicle over 20 weeks. Vehicle treated STZ-CD1 mice developed severe hyperglycaemia with near-absent circulating insulin and widespread beta cell loss in association with hyperglucagonaemia and expanded islet alpha cell mass. Without affecting ß-cell mass or circulating insulin, diabetic mice that received SRT3025 had substantially improved glycaemic control with greatly reduced islet α cell mass and lower plasma glucagon concentrations. Consistent with reduced glucagon abundance, the diabetes-associated overexpression of key gluconeogenic enzymes, glucose-6-phosphatase and PEPCK were also lowered by SRT3025. Incubating cultured α cells with SRT3025 diminished their glucagon secretion and proliferative activity in association with a reduction in the α cell associated transcription factor, Aristaless Related Homeobox (Arx). By reducing the paradoxical increase in glucagon, SIRT1 activation may offer a new, α-cell centric approach to the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Yanling Zhang
- St. Michael's Hospital, Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, M5B 1W8, Canada
| | - Kerri Thai
- St. Michael's Hospital, Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, M5B 1W8, Canada
| | - Tianru Jin
- Toronto General Hospital Research Institute (TGHRI), Toronto, ON, M5G 2C4, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute (TGHRI), Toronto, ON, M5G 2C4, Canada
| | - Richard E Gilbert
- St. Michael's Hospital, Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, M5B 1W8, Canada.
| |
Collapse
|
18
|
Uddin GM, Youngson NA, Doyle BM, Sinclair DA, Morris MJ. Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Sci Rep 2017; 7:15063. [PMID: 29118320 PMCID: PMC5678092 DOI: 10.1038/s41598-017-14866-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD+). We have shown that the NAD+ precursor, nicotinamide mononucleotide (NMN) can reverse some of the negative consequences of high fat diet (HFD) consumption. To investigate whether NMN can impact developmentally-set metabolic deficits, we compared treadmill exercise and NMN injection in offspring of obese mothers. Five week old lean and obese female C57BL6/J mice were mated with chow fed males. Female offspring weaned onto HFD were given treadmill exercise for 9 weeks, or NMN injection daily for 18 days. Maternal obesity programmed increased adiposity and liver triglycerides, with decreased glucose tolerance, liver NAD+ levels and citrate synthase activity in offspring. Both interventions reduced adiposity, and showed a modest improvement in glucose tolerance and improved markers of mitochondrial function. NMN appeared to have stronger effects on liver fat catabolism (Hadh) and synthesis (Fasn) than exercise. The interventions appeared to exert the most global benefit in mice that were most metabolically challenged (HFD-consuming offspring of obese mothers). This work encourages further study to confirm the suitability of NMN for use in reversing metabolic dysfunction linked to programming by maternal obesity.
Collapse
Affiliation(s)
- Golam Mezbah Uddin
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
| | - Neil A Youngson
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
| | - Bronte M Doyle
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
| | - David A Sinclair
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA-02115, USA
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW-2032, Australia.
| |
Collapse
|
19
|
Zhang Y, Connelly KA, Thai K, Wu X, Kapus A, Kepecs D, Gilbert RE. Sirtuin 1 Activation Reduces Transforming Growth Factor-β1-Induced Fibrogenesis and Affords Organ Protection in a Model of Progressive, Experimental Kidney and Associated Cardiac Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:80-90. [PMID: 27993241 DOI: 10.1016/j.ajpath.2016.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/19/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022]
Abstract
Most forms of chronic, progressive kidney disease are characterized by fibrosis whereby the prototypical prosclerotic growth factor, transforming growth factor β (TGF-β), is thought to play a pivotal role. With the recent understanding that TGF-β's canonical signaling pathway may be modified by acetylation as well as phosphorylation, we explored the role of the NAD+-dependent lysine deacetylase, sirtuin 1 (SIRT1) in fibrogenesis in the cell culture, animal model, and human settings. In vitro, the increase in collagen production that results from TGF-β1 stimulation was ameliorated by the allosteric modifier of Sirt1 deacetylase, SRT3025, in association with a reduction in Smad3 reporter activity. In the remnant kidney model (subtotally or 5/6 nephrectomized rats) that develops progressive kidney disease in association with TGF-β overexpression, administration of SRT3025 attenuated glomerular filtration rate decline and proteinuria without affecting blood pressure. Glomerulosclerosis and tubulointerstitial fibrosis were similarly reduced with Sirt1 activation as were cardiac structure and function in this rodent model of primary kidney and secondary cardiac disease. Relating these findings to the human setting, we noted a reduction in SIRT1 mRNA in kidney biopsies obtained from individuals with focal glomerulosclerosis. Together these studies highlight the potential of SIRT1 activation as a therapeutic strategy in progressive, fibrotic kidney disease.
Collapse
MESH Headings
- Acetylation/drug effects
- Anilides/pharmacology
- Animals
- Biopsy
- Blood Pressure/drug effects
- Collagen/biosynthesis
- Disease Models, Animal
- Disease Progression
- Feeding Behavior/drug effects
- Fibrosis
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/physiopathology
- HEK293 Cells
- Heart Diseases/genetics
- Heart Diseases/pathology
- Heart Diseases/physiopathology
- Heart Function Tests/drug effects
- Humans
- Kidney/pathology
- Kidney/physiopathology
- Kidney Diseases/genetics
- Kidney Diseases/pathology
- Kidney Diseases/physiopathology
- Kidney Function Tests
- Proline/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Inbred F344
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Smad3 Protein/metabolism
- Thiazoles/pharmacology
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Yanling Zhang
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Xinglin Wu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - David Kepecs
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Lin Y, Shen J, Li D, Ming J, Liu X, Zhang N, Lai J, Shi M, Ji Q, Xing Y. MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1α signaling. Gen Comp Endocrinol 2017; 246:63-70. [PMID: 28263817 DOI: 10.1016/j.ygcen.2017.02.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/05/2017] [Accepted: 02/28/2017] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes (T2DM) has been considered to be associated with a higher likelihood of hearing impairment (HI). However, the molecular mechanisms underlying the association between diabetes and HI are poorly understood. MicroRNAs have recently been demonstrated to be closely associated with hearing loss and considered as promising therapeutic targets. Herein, we investigated whether miR-34a contributes to diabetes-related cochlear hair cell apoptosis and sought to identify the underlying mechanism. The results showed that miR-34a was up-regulated in the cochleas of db/db mice, accompanied by significant hearing threshold elevation and hair cell loss. However, the expression of SIRT1 was significantly down-regulated, while hypoxia-inducible factor-1alpha (HIF-1α) levels were dramatically increased in the cochleas of db/db mice. In addition, in the high-glucose cultured House Ear Institute-Organ of Corti 1 (HEI-OC1) cell line, miR-34a overexpression inhibited sirtuin1 (SIRT1) expression, increased HIF-1α levels and promoted apoptosis. MiR-34a knockdown exerted effects that were diametrically opposed to those observed with overexpression. Interestingly, HIF-1α knockdown almost eliminated the cell apoptosis induced by high glucose levels. We also examined the modulation of HIF-1α expression by SIRT1. The results showed that SIRT1 knockdown further promoted high-glucose-induced HIF-1α expression, while SIRT1 overexpression significantly inhibited HIF-1α level induced by high glucose. These findings point to a new mechanism by which miR-34a exerts its detrimental effects by negatively regulating SIRT1/HIF-1α signaling and provide new therapeutic targets for treating hearing impairment during diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blotting, Western
- Cells, Cultured
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Hearing Loss/etiology
- Hearing Loss/metabolism
- Hearing Loss/pathology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
Collapse
Affiliation(s)
- Ying Lin
- Department of Otolaryngology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jinjin Shen
- Department of Otolaryngology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Danfeng Li
- Department of Otolaryngology, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Ming
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiangyang Liu
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Nana Zhang
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jingbo Lai
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Min Shi
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiuhe Ji
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ying Xing
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
21
|
Detection of RAGE expression and its application to diabetic wound age estimation. Int J Legal Med 2017; 131:691-698. [PMID: 28078446 DOI: 10.1007/s00414-016-1529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
Abstract
With the prevalence of diabetes, it is becoming important to analyze the diabetic wound age in forensic practice. The present study investigated the time-dependent expression of receptor for advanced glycation end products (RAGE) during diabetic wound healing in mice and its applicability to wound age determination by immunohistochemistry, double immunofluorescence, and Western blotting. After an incision was created in genetically diabetic db/db mice and control mice, mice were killed at posttraumatic intervals ranging from 6 h to 14 days, followed by the sampling of wound margin. Compared with control mice, diabetic mice showed the delayed wound healing. In control and diabetic wound specimens, RAGE immunoreactivity was observed in a small number of polymorphonuclear cells (PMNs), a number of macrophages, and fibroblasts. Morphometrically, the positive ratios of RAGE in macrophages or fibroblasts considerably increased in diabetic wounds during late repair, which exceeded 60% at 7 and 10 days post-injury. There were no control wound specimens to show a ratio of >60% in macrophages or fibroblasts. By Western blotting analysis, the ratios of RAGE to GAPDH were >1.4 in all diabetic wound samples from 7 to 10 days post-injury, which were >1.8 at 10 days after injury. By comparison, no control wound specimens indicated a ratio of >1.4. In conclusion, the expression of RAGE is upregulated and temporally distributed in macrophages and fibroblasts during diabetic wound healing, which might be closely involved in prolonged inflammation and deficient healing. Moreover, RAGE is promising as a useful marker for diabetic wound age determination.
Collapse
|
22
|
Tarahovsky YS, Fadeeva IS, Komelina NP, Khrenov MO, Zakharova NM. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application. Psychopharmacology (Berl) 2017; 234:173-184. [PMID: 27933367 DOI: 10.1007/s00213-016-4496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Irina S Fadeeva
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Natalia P Komelina
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Maxim O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Nadezhda M Zakharova
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|
23
|
Zhou X, Chen S, Ye X. The anti-obesity properties of the proanthocyanidin extract from the leaves of Chinese bayberry (Myrica rubra Sieb.et Zucc.). Food Funct 2017; 8:3259-3270. [DOI: 10.1039/c7fo00816c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anti-obesity effects of different proanthocyanidin extracts (PE) from Chinese bayberry (Myrica rubraSieb.et Zucc.) leaves were evaluated in a high-fat (HF) diet-induced obese rat model.
Collapse
Affiliation(s)
- Xiaozhou Zhou
- Zhejiang University College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Hangzhou 310058
| | - Shiguo Chen
- Zhejiang University College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Hangzhou 310058
| | - Xingqian Ye
- Zhejiang University College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Hangzhou 310058
| |
Collapse
|
24
|
Kulkarni SR, Soroka CJ, Hagey LR, Boyer JL. Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid-fed mouse model of cholestasis. Hepatology 2016; 64:2151-2164. [PMID: 27639250 PMCID: PMC5115990 DOI: 10.1002/hep.28826] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Sirtuin1 (Sirt1; mammalian homolog of Saccharomyces cerevisiae enzyme Sir2) is a transcriptional and transactivational regulator of murine farnesoid X receptor (Fxr), which is the primary bile acid (BA) sensor, and critical regulator of BA metabolism in physiological and pathophysiological conditions. Previous studies have suggested compromised Sirt1 expression in rodent models of cholestatic liver injury. We hypothesized that Sirt1 could be potentially targeted to alleviate cholestatic liver injury. In cultured primary human hepatocytes, SIRT1 messenger RNA was down-regulated after GCA treatment, potentially through induction of microRNA (miR)-34a, whereas tauroursodeoxycholic acid induced SIRT1 expression without affecting miR-34a expression. Sirt1 expression was also significantly down-regulated in three mouse models of liver injury (bile duct ligation, 1% cholic acid [CA] fed, and the Mdr2-/- mouse). Mice fed CA diet also demonstrated hepatic FXR hyperacetylation and induction of the Janus kinase/p53 pathway. Mice fed a CA diet and concurrently administered the Sirt1 activator, SRT1720 (50 mg/kg/day, orally), demonstrated 40% and 45% decrease in plasma alanine aminotransferase and BA levels, respectively. SRT1720 increased hepatic BA hydrophilicity by increasing tri- and tetrahydroxylated and decreasing the dihydroxylated BA fraction. SRT1720 administration also inhibited hepatic BA synthesis, potentially through ileal fibroblast growth factor 15- and Fxr-mediated inhibition of cytochrome p450 (Cyp) 7a1 and Cyp27a1, along with increased hepatic BA hydroxylation in association with Cyp2b10 induction. SRT1720 administration significantly induced renal multidrug resistance-associated protein 2 and 4, peroxisome proliferator-activated receptor gamma coactivator 1-α, and constitutive androstance receptor expression along with ∼2-fold increase in urinary BA concentrations. CONCLUSION SRT1720 administration alleviates cholestatic liver injury in mice by increasing hydrophilicity of hepatic BA composition and decreasing plasma BA concentration through increased BA excretion into urine. Thus, use of small-molecule activators of Sirt1 presents a novel therapeutic target for cholestatic liver injury. (Hepatology 2016;64:2151-2164).
Collapse
Affiliation(s)
- Supriya R Kulkarni
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Carol J Soroka
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Lee R Hagey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, California
| | - James L Boyer
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Sunagawa GA, Takahashi M. Hypometabolism during Daily Torpor in Mice is Dominated by Reduction in the Sensitivity of the Thermoregulatory System. Sci Rep 2016; 6:37011. [PMID: 27845399 PMCID: PMC5109469 DOI: 10.1038/srep37011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/21/2016] [Indexed: 01/20/2023] Open
Abstract
Some mammals enter a hypometabolic state either daily torpor (minutes to hours in length) or hibernation (days to weeks), when reducing metabolism would benefit survival. Hibernators demonstrate deep torpor by reducing both the sensitivity (H) and the theoretical set-point temperature (TR) of the thermogenesis system, resulting in extreme hypothermia close to ambient temperature. However, these properties during daily torpor remain poorly understood due to the very short steady state of the hypometabolism and the large variation among species and individuals. To overcome these difficulties in observing and evaluating daily torpor, we developed a novel torpor-detection algorithm based on Bayesian estimation of the basal metabolism of individual mice. Applying this robust method, we evaluated fasting induced torpor in various ambient temperatures (TAs) and found that H decreased 91.5% during daily torpor while TR only decreased 3.79 °C in mice. These results indicate that thermogenesis during daily torpor shares a common property of sensitivity reduction with hibernation while it is distinct from hibernation by not lowering TR. Moreover, our findings support that mice are suitable model animals to investigate the regulation of the heat production during active hypometabolism, thus suggesting further study of mice may provide clues to regulating hypometabolism in mammals.
Collapse
Affiliation(s)
- Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
26
|
SIRT1 attenuates neuropathic pain by epigenetic regulation of mGluR1/5 expressions in type 2 diabetic rats. Pain 2016; 158:130-139. [DOI: 10.1097/j.pain.0000000000000739] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Zhao S, Li T, Li J, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen H, Zheng Z. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 2016; 59:644-54. [PMID: 26687158 DOI: 10.1007/s00125-015-3832-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. METHODS The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. RESULTS High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. CONCLUSIONS/INTERPRETATION These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.
Collapse
Affiliation(s)
- Shuzhi Zhao
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Tao Li
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Jun Li
- Department of Ophthalmology, Lishui City Center Hospital, Lishui, People's Republic of China
| | - Qianyi Lu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Changjing Han
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Na Wang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Hui Cao
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Yishan Road 301, Shanghai, 200233, People's Republic of China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
28
|
Shi X, Xiong X, Dai Z, Deng H, Sun L, Hu X, Zhou F, Xu Y. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells. Biochem Biophys Res Commun 2015; 468:387-93. [DOI: 10.1016/j.bbrc.2015.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
29
|
Kim HN, Han L, Iyer S, de Cabo R, Zhao H, O'Brien CA, Manolagas SC, Almeida M. Sirtuin1 Suppresses Osteoclastogenesis by Deacetylating FoxOs. Mol Endocrinol 2015; 29:1498-509. [PMID: 26287518 DOI: 10.1210/me.2015-1133] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of Sirtuin1 (Sirt1), an nicotinamide adenine dinucleotide oxidized-dependent deacetylase, by natural or synthetic compounds like resveratrol, SRT2104, or SRT3025 attenuates the loss of bone mass caused by ovariectomy, aging, or unloading in mice. Conversely, Sirt1 deletion in osteoclast progenitors increases osteoclast number and bone resorption. Sirt1 deacetylates forkhead box protein (Fox) O1, FoxO3, and FoxO4, and thereby modulates their activity. FoxOs restrain osteoclastogenesis and bone resorption. Here, we tested the hypothesis that the antiresorptive effects of Sirt1 are mediated by FoxOs. We report that Sirt1 activation by SRT2104 and SRT3025 inhibited murine osteoclast progenitor proliferation and reduced osteoclastogenesis. The effect of Sirt1 stimulators on osteoclastogenesis was abrogated in cells lacking FoxO1, FoxO3, and FoxO4. FoxO1 acetylation was increased by knocking down Sirt1 or addition of receptor activator of nuclear factor kappa-B ligand, the critical cytokine for osteoclast differentiation. Furthermore, acetylation inhibited, whereas deacetylation promoted, FoxO-mediated transcription. SRT3025 increased the expression of the FoxO-target genes catalase and hemeoxygenase-1 (HO-1) in osteoclast progenitors, in a FoxO-dependent manner. HO-1 catabolizes heme and attenuates mitochondrial oxidative phosphorylation and ATP production in macrophages. HO-1 levels were strongly reduced and ATP levels increased by Receptor activator of nuclear factor kappa-B ligand. In contrast, SRT3025 and FoxOs decreased ATP production, and the effect of SRT3025 was mediated by FoxOs. These findings reveal that the antiosteoclastogenic actions of Sirt1 are mediated by FoxOs and result from impaired mitochondria activity. Along with earlier findings that the osteoblastogenic effects of Sirt1 are also mediated by FoxOs, these results establish that the dual antiosteoporotic efficacy of Sirt1 stimulators (ie, decreasing bone resorption and promoting bone formation) is mediated via FoxO deacetylation.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| | - Li Han
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| | - Srividhya Iyer
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| | - Rafael de Cabo
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| | - Haibo Zhao
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| | - Maria Almeida
- Division of Endocrinology and Metabolism (H.-N.K., L.H., S.I., H.Z., C.A.O., S.C.M., M.A.), Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205; and Translational Gerontology Branch (R.d.C.), National Institute on Aging, Baltimore, Maryland 21224
| |
Collapse
|