1
|
Raeisi-Dehkordi H, Thorand B, Beigrezaei S, Peters A, Rathman W, Adamski J, Chatelan A, van der Schouw YT, Franco OH, Muka T, Nano J. The mediatory role of androgens on sex differences in glucose homeostasis and incidence of type 2 diabetes: the KORA study. Cardiovasc Diabetol 2024; 23:411. [PMID: 39548547 PMCID: PMC11568628 DOI: 10.1186/s12933-024-02494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sex differences exist in type 2 diabetes (T2D), and androgens have been implicated in the etiology of T2D in a sex-specific manner. We therefore aimed to investigate whether androgens play a role in explaining sex differences in glucose homeostasis and incidence of T2D. METHODS We used observational data from the German population-based KORA F4 study (n = 1975, mean age: 54 years, 41% women) and its follow-up examination KORA FF4 (median follow-up 6.5 years, n = 1412). T2D was determined through self-reporting and confirmed by contacting the physicians and/or reviewing the medical charts. Multivariable linear and logistic regression models were employed to explore associations. Mediation analyses were performed to assess direct effects (DE) and indirect effects (IE), and the mediating role of androgens (total testosterone (TT), dehydroepiandrosterone (DHEA), dehydroepiandrosterone-sulfate (DHEAs)) in the association between sex (women vs. men) and glucose- and insulin-related traits (cross-sectional analysis) and incidence of T2D (longitudinal analysis). RESULTS After adjustment for confounders, (model 1: adjusted for age; model 2: model 1 + smoking + alcohol consumption + physical activity), women had lower levels of TT, DHEAs, fasting glucose levels, fasting insulin levels, 2 h-glucose levels and HOMA-IR, compared to men. An inverse association was observed for TT and glucose- and insulin-related traits in men, while a positive association was observed for TT and fasting glucose levels in women. We found a mediatory role of TT on the association of sex with fasting glucose levels (IE: β = 3.08, 95% CI: 2.04, 4.30), fasting insulin levels (IE: β = 0.39, 95% CI:0.30, 0.47), 2 h-glucose levels (IE: β = 12.77, 95% CI: 9.01, 16.03) and HOMA-IR (IE: β = 0.41, 95% CI: 0.33, 0.50). Also, the inconsistent mediatory role of TT was seen on the association of sex with incidence of T2D (DE: 0.12, 95% CI: 0.06, 0.20 and IE: OR = 7.60, 95% CI: 3.43, 24.54). The opposing DE and IE estimates suggest that the association between sex and either glucose homeostasis or the incidence of T2D may differ when TT is considered as a potential mediator, with higher TT levels being beneficial for glucose metabolism or incidence of T2D in men, while in women, detrimental. No mediatory role was observed for either DHEA or DHEAs on glucose homeostasis or the incidence of T2D. CONCLUSIONS The dimorphic mediatory role of TT highlights its complex role in metabolic health, contributing differently to the glucose dysregulation and risk of T2D in men and women.
Collapse
Affiliation(s)
- Hamidreza Raeisi-Dehkordi
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Enviromental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), partner site Munich-Neuherberg, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany
| | - Sara Beigrezaei
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Enviromental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), partner site Munich-Neuherberg, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Chair of Epidemiology, Medical Faculty, IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Rathman
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia
| | - Angeline Chatelan
- Department of Nutrition and Dietetics, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Yvonne T van der Schouw
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Oscar H Franco
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München- German Research Center for Enviromental Health (GmbH), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany.
| |
Collapse
|
2
|
Ravi H, Das S, Devi Rajeswari V, Venkatraman G, Choudhury AA, Chakraborty S, Ramanathan G. Hormonal regulation in diabetes: Special emphasis on sex hormones and metabolic traits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:257-291. [PMID: 39059988 DOI: 10.1016/bs.apcsb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diabetes constitutes a significant global public health challenge that is rapidly reaching epidemic proportions. Among the non-communicable diseases, the incidence of diabetes is rising at an alarming rate. The International Diabetes Federation has documented a 9.09% prevalence of diabetes among individuals aged between 20 and 79 years. The interplay of gonadal hormones and gender differences is critical in regulating insulin sensitivity and glucose tolerance, and this dynamic is particularly crucial because of the escalating incidence of diabetes. Variations in insulin sensitivity are observed across genders, levels of adiposity, and age groups. Both estrogen and testosterone are seen to influence glucose metabolism and insulin sensitivity. This chapter surveys the present knowledge of sex differences, sex hormones, and chromosomes on insulin imbalance and diabetes development. It further highlights the influence of metabolic traits in diabetes and changes in sex hormones during diabetic pregnancy. Notably, even stressful lifestyles have been acknowledged to induce hormonal imbalances. Furthermore, it discusses the potential of hormonal therapy to help stabilize sex hormones in diabetic individuals and focuses on the most recent research investigating the correlation between sex hormones and diabetes.
Collapse
Affiliation(s)
- Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Abbas Alam Choudhury
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Li S, Li W, Chang L, Wan J, Chen S, Zhang X, He Q, Liu M. Sex-specific association of serum dehydroepiandrosterone and its sulfate levels with osteoporosis in type 2 diabetes. J Bone Miner Metab 2024; 42:361-371. [PMID: 38769209 DOI: 10.1007/s00774-024-01511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION This study is to investigate the relation between serum dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) levels and the risk of osteoporosis in patients with T2DM. MATERIALS AND METHODS This cross-sectional study involved 938 hospitalized patients with T2DM. Linear regression models were used to explore the relationship between DHEA and DHEAS and the BMD at different skeletal sites. Multinominal logistic regression models and the restricted cubic spline (RCS) were used to evaluate the associations of DHEA and DHEAS with the risks of osteopenia and/or osteoporosis. RESULTS In postmenopausal women with T2DM, after adjustment for confounders including testosterone and estradiol, DHEA showed a significant positive correlation with lumbar spine BMD (P = 0.013). Moreover, DHEAS exhibited significant positive correlations with BMD at three skeletal sites: including femoral neck, total hip, and lumbar spine (all P < 0.05). Low DHEA and DHEAS levels were associated with increased risk of osteopenia and/or osteoporosis (all P < 0.05) and the risk of osteoporosis gradually decreased with increasing DHEAS levels (P overall = 0.018, P-nonlinear = 0.559). However, DHEA and DHEAS levels in men over the age of 50 with T2DM were not associated with any of above outcomes. CONCLUSION In patients with T2DM, independent of testosterone and estradiol, higher DHEA and DHEAS levels are associated with higher BMD and lower risk of osteopenia/osteoporosis in postmenopausal women but not men over the age of 50.
Collapse
Affiliation(s)
- Shuo Li
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lina Chang
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jieying Wan
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shanshan Chen
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xinxin Zhang
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Qing He
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Department of Nephrology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
4
|
Masango B, Goedecke JH, Ramsay M, Storbeck KH, Micklesfield LK, Chikowore T. Postprandial glucose variability and clusters of sex hormones, liver enzymes, and cardiometabolic factors in a South African cohort of African ancestry. BMJ Open Diabetes Res Care 2024; 12:e003927. [PMID: 38453238 PMCID: PMC10921533 DOI: 10.1136/bmjdrc-2023-003927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION This study aimed to, first, determine the clusters of sex hormones, liver enzymes, and cardiometabolic factors associated with postprandial glucose (PPG) and, second to evaluate the variation these clusters account for jointly and independently with polygenic risk scores (PRSs) in South Africans of African ancestry men and women. RESEARCH DESIGN AND METHODS PPG was calculated as the integrated area under the curve for glucose during the oral glucose tolerance test (OGTT) using the trapezoidal rule in 794 participants from the Middle-aged Soweto Cohort. Principal component analysis was used to cluster sex hormones, liver enzymes, and cardiometabolic factors, stratified by sex. Multivariable linear regression was used to assess the proportion of variance in PPG accounted for by principal components (PCs) and type 2 diabetes (T2D) PRS while adjusting for selected covariates in men and women. RESULTS The T2D PRS did not contribute to the PPG variability in both men and women. In men, the PCs' cluster of sex hormones, liver enzymes, and cardiometabolic explained 10.6% of the variance in PPG, with PC1 (peripheral fat), PC2 (liver enzymes and steroid hormones), and PC3 (lipids and peripheral fat) contributing significantly to PPG. In women, PC factors of sex hormones, cardiometabolic factors, and liver enzymes explained a similar amount of the variance in PPG (10.8%), with PC1 (central fat) and PC2 (lipids and liver enzymes) contributing significantly to PPG. CONCLUSIONS We demonstrated that inter-individual differences in PPG responses to an OGTT may be differentially explained by body fat distribution, serum lipids, liver enzymes, and steroid hormones in men and women.
Collapse
Affiliation(s)
- Bontle Masango
- Division of Human Genetics, National Health Laboratory Service (NHLS), School of Pathology, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
- South African Medical Research Council/University of the Witwatersrand, Developmental Pathways for Health Research Unit (DPHRU), University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Julia H Goedecke
- South African Medical Research Council/University of the Witwatersrand, Developmental Pathways for Health Research Unit (DPHRU), University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Lisa K Micklesfield
- South African Medical Research Council/University of the Witwatersrand, Developmental Pathways for Health Research Unit (DPHRU), University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Tinashe Chikowore
- South African Medical Research Council/University of the Witwatersrand, Developmental Pathways for Health Research Unit (DPHRU), University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Rentflejsz J, Wojszel ZB. Diabetes Mellitus Should Be Considered While Analysing Sarcopenia-Related Biomarkers. J Clin Med 2024; 13:1107. [PMID: 38398421 PMCID: PMC10889814 DOI: 10.3390/jcm13041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenia is a chronic, progressive skeletal muscle disease characterised by low muscle strength and quantity or quality, leading to low physical performance. Patients with type 2 diabetes mellitus (T2DM) are more at risk of sarcopenia than euglycemic individuals. Because of several shared pathways between the two diseases, sarcopenia is also a risk factor for developing T2DM in older patients. Various biomarkers are under investigation as potentially valuable for sarcopenia diagnosis and treatment monitoring. Biomarkers related to sarcopenia can be divided into markers evaluating musculoskeletal status (biomarkers specific to muscle mass, markers of the neuromuscular junction, or myokines) and markers assuming causal factors (adipokines, hormones, and inflammatory markers). This paper reviews the current knowledge about how diabetes and T2DM complications affect potential sarcopenia biomarker concentrations. This review includes markers recently proposed by the expert group of the European Society for the Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) as those that may currently be useful in phase II and III clinical trials of sarcopenia: myostatin (MSTN); follistatin (FST); irisin; brain-derived neurotrophic factor (BDNF); procollagen type III N-terminal peptide (PIIINP; P3NP); sarcopenia index (serum creatinine to serum cystatin C ratio); adiponectin; leptin; insulin-like growth factor-1 (IGF-1); dehydroepiandrosterone sulphate (DHEAS); C-reactive protein (CRP); interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). A better understanding of factors influencing these biomarkers' levels, including diabetes and diabetic complications, may lead to designing future studies and implementing results in clinical practice.
Collapse
Affiliation(s)
- Justyna Rentflejsz
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland;
| | - Zyta Beata Wojszel
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland;
| |
Collapse
|
6
|
Jee YH, Jumani S, Mericq V. The Association of Accelerated Early Growth, Timing of Puberty, and Metabolic Consequences in Children. J Clin Endocrinol Metab 2023; 108:e663-e670. [PMID: 37029976 PMCID: PMC10686698 DOI: 10.1210/clinem/dgad202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Accelerated early growth and early timing of puberty or pubertal variant have been noticed as risk factors for metabolic syndrome, more frequently observed in children born small for gestational age (SGA) or children with premature adrenarche (PA). Children with SGA, especially if they make an accelerated catch-up growth in early life, carry a higher risk for long-term metabolic consequences, such as type 2 diabetes, insulin resistance, and cardiovascular diseases. Furthermore, multiple studies support that these children, either born SGA or with a history of PA, may have earlier pubertal timing, which is also associated with various metabolic risks. This review aims to summarize the recent studies investigating the association between early infantile growth, the timing of puberty, and metabolic risks to expand our knowledge and gain more insight into the underlying pathophysiology.
Collapse
Affiliation(s)
- Youn Hee Jee
- Section on Growth, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
- Division of Endocrinology and Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20012, USA
| | - Sanjay Jumani
- Section on Growth, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Veronica Mericq
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago 13101, Chile
| |
Collapse
|
7
|
Persky V, Abasilim C, Tsintsifas K, Day T, Sargis RM, Daviglus ML, Cai J, Freels S, Unterman T, Chavez N, Kaplan R, Isasi CR, Pirzada A, Meyer ML, Talavera GA, Thyagarajan B, Peters BA, Madrigal JM, Grieco A, Turyk ME. Sex Hormones and Diabetes in 45- to 74-year-old Men and Postmenopausal Women: The Hispanic Community Health Study. J Clin Endocrinol Metab 2023; 108:1709-1726. [PMID: 36633580 PMCID: PMC10271226 DOI: 10.1210/clinem/dgad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Previous studies demonstrated associations of endogenous sex hormones with diabetes. Less is known about their dynamic relationship with diabetes progression through different stages of the disease, independence of associations, and role of the hypothalamic-pituitary gonadal axis. The purpose of this analysis was to examine relationships of endogenous sex hormones with incident diabetes, prediabetes, and diabetes traits in 693 postmenopausal women and 1015 men aged 45 to 74 years without diabetes at baseline participating in the Hispanic Community Health Study/Study of Latinos and followed for 6 years. Baseline hormones included estradiol, luteinizing hormone (LH), follicle stimulating hormone (FSH), sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), and, in men, testosterone and bioavailable testosterone. Associations were analyzed using multivariable Poisson and linear regressions. In men, testosterone was inversely associated with conversion from prediabetes to diabetes (incidence rate ratio [IRR] for 1 SD increase in testosterone: 0.821; 95% CI, 0.676, 0.997; P = 0.046), but not conversion from normoglycemia to prediabetes. Estradiol was positively associated with increase in fasting insulin and homeostatic model assessment of insulin resistance. In women, SHBG was inversely associated with change in glycosylated hemoglobin, postload glucose, and conversion from prediabetes to diabetes (IRR = 0.62; 95% CI, 0.44, 0.86, P = 0.005) but not from normoglycemia to prediabetes. Relationships with other hormones varied across glycemic measures. Stronger associations of testosterone and SHBG with transition from prediabetes to diabetes than from normoglycemic to prediabetes suggest they are operative at later stages of diabetes development. Biologic pathways by which sex hormones affect glucose homeostasis await future studies.
Collapse
Affiliation(s)
- Victoria Persky
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Chibuzor Abasilim
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Konstantina Tsintsifas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Tessa Day
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago and Medical Service, Jesse Brown VA Medical Center, Chicago, IL,USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL,USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC,USA
| | - Sally Freels
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Terry Unterman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago and Medical Service, Jesse Brown VA Medical Center, Chicago, IL,USA
| | - Noel Chavez
- Division of Community Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amber Pirzada
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL,USA
| | - Michelle L Meyer
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,USA
| | | | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica M Madrigal
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Arielle Grieco
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| | - Mary E Turyk
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL,USA
| |
Collapse
|
8
|
Vergroesen JE, Kaynak A, Aribas E, Kavousi M, van Meurs JBJ, Klaver CCW, Ramdas WD. Higher testosterone is associated with open-angle glaucoma in women: a genetic predisposition? Biol Sex Differ 2023; 14:27. [PMID: 37161452 PMCID: PMC10170716 DOI: 10.1186/s13293-023-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Testosterone may be a possible modifiable risk factor for open-angle glaucoma (OAG) and intraocular pressure (IOP), but evidence has been scarce and conflicting. In this study we evaluated the association of testosterone and its genetic predisposition with incident (i) OAG, IOP, retinal nerve fiber layer (RNFL), and ganglion cell-inner plexiform layer (GCL +). METHODS Participants aged 45-100 years were derived from the prospective, population-based Rotterdam Study. Ophthalmic examinations and serum testosterone measurements (including bioavailable and free testosterone) were performed from 1991 onwards. Follow-up took place every 4-5 years. A total of 187 out of 7898 participants were diagnosed with incident (i) OAG during follow-up. Genotyping was performed in 165 glaucoma cases and 6708 controls. We calculated sex-specific weighted genetic risk scores (GRS) for total and bioavailable testosterone. Associations with iOAG were analyzed using multivariable logistic regression. Associations with IOP, RNFL, and GCL + were analyzed with multivariable linear regression. Analyses were stratified on sex and adjusted for at least age, body mass index, and follow-up duration. RESULTS In men, testosterone was not associated with iOAG. However, the GRS for higher total testosterone was associated with an increased iOAG risk (odds ratio [OR] with 95% confidence interval [95% CI]: 2.48 [1.18; 5.22], per unit). In women, higher values of bioavailable testosterone (2.05 [1.00; 4.18] per nmol/L) and free testosterone (1.79 [1.00; 3.20] per ng/dL) were significantly associated with increased risk of iOAG. Moreover, the GRS for higher bioavailable testosterone was associated with an increased iOAG risk (2.48 [1.09; 5.65], per unit). Higher bioavailable and free testosterone were adversely associated with IOP (0.58 [0.05; 1.10] per nmol/L and 0.47 [0.04; 0.90] per ng/dL). Higher total testosterone was inversely associated with peripapillary RNFL and GCL + (Beta [95% CI]: - 3.54 [- 7.02; - 0.06] per nmol/L and - 2.18 [- 4.11; - 0.25] per nmol/L, respectively). CONCLUSIONS In women, higher testosterone levels increased the risk of iOAG. Both IOP-dependent and IOP-independent mechanisms may underlie this association. Managing testosterone levels may be particularly relevant for the prevention of neurodegeneration in the eye. Future research should confirm these findings.
Collapse
Affiliation(s)
- Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Adem Kaynak
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Elif Aribas
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, University of Basel, CH-4031, Basel, Switzerland
| | - Wishal D Ramdas
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Fontes AFS, Reis FM, Cândido AL, Gomes KB, Tosatti JAG. Influence of metformin on hyperandrogenism in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized clinical trials. Eur J Clin Pharmacol 2023; 79:445-460. [PMID: 36763111 DOI: 10.1007/s00228-023-03461-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE To summarize the effects of metformin treatment on markers of hyperandrogenism in patients diagnosed with polycystic ovary syndrome (PCOS). METHODS A systematic review, with meta-analysis, of randomized placebo-controlled clinical trials that evaluated the effects of metformin treatment in adult patients with PCOS on the levels of hyperandrogenism markers was conducted. The literature search, data extraction, risk of bias, and the assessment of certainty of evidence were performed independently by two reviewers using a structured form. The results were combined by applying the random effect, and the effect measure presented as a standardized mean difference (SMD). Significant values were considered as p < 0.05 with 95% CI. Furthermore, sensitivity analyses were performed in order to explore possible heterogeneity between studies. RESULTS Were included 18 studies in the quantitative evaluation and 17 studies (23 reports) in the quantitative evaluation. A significant reduction in total testosterone levels was seen in the metformin-treated group when compared to the control group after combining the results by the sensitivity analysis [SMD: - 0.46 (95% CI: - 0.89 to - 0.02)]. Therefore, FAI values were also regulated by metformin treatment. CONCLUSION We showed that metformin proved to be effective in reducing total testosterone levels, and the same was observed for free androgen index (FAI) values-a measure influenced by testosterone levels. The protocol of this study was registered at Prospero (CRD42021235761).
Collapse
Affiliation(s)
- Adriana F S Fontes
- Department of Clinical and Toxicological Analyses - Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando M Reis
- Department of Gynecology and Obstetrics - Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Lúcia Cândido
- Department of Clinical Medicine - Faculty of Medicine, Federal University of Minas Gerais, Professor Alfredo Balena Avenue, 190, Santa Efigênia, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Department of Clinical and Toxicological Analyses - Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| | - Jéssica A G Tosatti
- Department of Clinical and Toxicological Analyses - Faculty of Pharmacy, Federal University of Minas Gerais, Presidente Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Marciniak M, Sato M, Rutkowski R, Zawada A, Juchacz A, Mahadea D, Grzymisławski M, Dobrowolska A, Kawka E, Korybalska K, Bręborowicz A, Witowski J, Kanikowska D. Effect of the one-day fasting on cortisol and DHEA daily rhythm regarding sex, chronotype, and age among obese adults. Front Nutr 2023; 10:1078508. [PMID: 36814510 PMCID: PMC9940638 DOI: 10.3389/fnut.2023.1078508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Physiological and biochemical processes in the human body occur in a specific order and show rhythmic variability. Time dependence characterizes the secretion of cortisol and dehydroepiandrosterone (DHEA). One-day fasting implies alternating fasting days and eating days. The study aimed to determine how 24-h fasting affects the daily rhythm of cortisol and DHEA levels in obese people while taking into account gender and chronotype. Methods Forty-nine obese patients (BMI 32.2-67.1 kg/m2; 25 women and 24 men) underwent a 3-week hospital-controlled calorie restriction diet to reduce body weight. During hospitalization, patients fasted for 1 day, during which only water could be consumed. Samples of whole mixed unstimulated saliva were collected at 2-3-h intervals over a 64-h period and analyzed for cortisol and DHEA by immunoassays. The individual chronotypes were assessed by the morning and evening questionnaire, according to Horne and Östberg. Three components of daily rhythm were evaluated: amplitude, acrophase, and the so-called MESOR. Results Cortisol rhythm showed differences in amplitude (p = 0.0127) and acrophase (p = 0.0005). The amplitude on the fasting day was 11% higher (p = 0.224) than the day after. The acrophase advanced on the day of fasting, 48 min earlier than the day before (p = 0.0064), and by 39 min to the day after fasting (p = 0.0005). In the rhythm of DHEA, differences were found in the MESOR (p = 0.0381). The MESOR on the fasting day increased. Discussion Our results obtained during 64 consecutive hours of saliva sampling suggest that one-day fasting may affect three components of cortisol and DHEA daily rhythm. Additionally, no differences were found in the daily rhythm between the morning and evening chronotypes and between females and males. Although aging did not influence daily cortisol rhythm, DHEA amplitude, MESOR, and acrophase changed with age. To the best of our knowledge, this is the first presentation of changes in DHEA rhythm during one-day fasting.
Collapse
Affiliation(s)
- Martyna Marciniak
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland,Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Maki Sato
- Institutional Research, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rafał Rutkowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Aldona Juchacz
- Greater Poland Center of Pulmonology and Thoracic Surgery of Eugenia and Janusz Zeyland, Poznan, Poland
| | - Dagmara Mahadea
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Marian Grzymisławski
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Science, Poznan, Poland
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Korybalska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland,Collegium Medicum, Zielona Góra University, Zielona Góra, Poland
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominika Kanikowska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Dominika Kanikowska,
| |
Collapse
|
11
|
Early Changes in Androgen Levels in Individuals with Spinal Cord Injury: A Longitudinal SwiSCI Study. J Clin Med 2022; 11:jcm11216559. [DOI: 10.3390/jcm11216559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
We aimed to explore longitudinal changes in androgen levels in individuals with spinal cord injury (SCI) within initial inpatient rehabilitation stay and identify clinical/injury characteristics associated with hormone levels. Linear regression analysis was applied to explore the association between personal/injury characteristics and androgen hormones (total testosterone, free testosterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone (DHEA), and dehydroepiandrosterone sulfate (DHEA-S)) at admission to rehabilitation. Longitudinal changes in androgen levels were studied using linear mixed models. Analyses were stratified by sex and by injury type. We included 70 men and 16 women with SCI. We observed a non-linear association between age, time since injury, and androgens at baseline. At admission to initial rehabilitation, mature serum SHBG (full-length, protein form which lacks the N-terminal signaling peptide) was higher, while DHEA and DHEA-S were lower among opioid users vs. non-users. Serum levels of total testosterone and DHEA-S increased over rehabilitation period [β 3.96 (95%CI 1.37, 6.56), p = 0.003] and [β 1.77 (95%CI 0.73, 2.81), p = 0.01], respectively. We observed no significant changes in other androgens. Restricting our analysis to men with traumatic injury did not materially change our findings. During first inpatient rehabilitation over a median follow up of 5.6 months, we observed an increase in total testosterone and DHEA-S in men with SCI. Future studies need to explore whether these hormonal changes influence neurological and functional recovery as well as metabolic parameters during initial rehabilitation stay.
Collapse
|
12
|
Hameed A, Adamska-Patruno E, Godzien J, Czajkowski P, Miksza U, Pietrowska K, Fiedorczuk J, Moroz M, Bauer W, Sieminska J, Górska M, Krętowski AJ, Ciborowski M. The Beneficial Effect of Cinnamon and Red Capsicum Intake on Postprandial Changes in Plasma Metabolites Evoked by a High-Carbohydrate Meal in Men with Overweight/Obesity. Nutrients 2022; 14:nu14204305. [PMID: 36296989 PMCID: PMC9610620 DOI: 10.3390/nu14204305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
The relationship of high-carbohydrate (HC) meal intake to metabolic syndrome is still not fully explained. Metabolomics has the potential to indicate metabolic pathways altered by HC meals, which may improve our knowledge regarding the mechanisms by which HC meals may contribute to metabolic syndrome development. The fasting and postprandial metabolic response to HC or normo-carbohydrate (NC) meals with/without cinnamon + capsicum intake was evaluated using untargeted metabolomics and compared between normal-weight (NW) and overweight/obese (OW/OB) healthy men. Healthy male participants (age-matched) were divided into two groups (12 subjects per group). One was composed of men with normal weight (NW) and the other of men with overweight/obesity (OW/OB). On separate visits (with 2-3 week intervals), the participants received standardized HC or NC meals (89% or 45% carbohydrates, respectively). Fasting (0 min) and postprandial (30, 60, 120, 180 min) blood were collected for untargeted plasma metabolomics. Based on each metabolic feature's intensity change in time, the area under the curve (AUC) was calculated. Obtained AUCs were analyzed using multivariate statistics. Several metabolic pathways were found dysregulated after an HC meal in people from the OW/OB group but not the NW group. The consumption of HC meals by people with overweight/obesity led to a substantial increase in AUC, mainly for metabolites belonging to phospholipids and fatty acid amides. The opposite was observed for selected sphingolipids. The intake of cinnamon and capsicum normalized the concentration of selected altered metabolites induced by the intake of HC meals. A HC meal may induce an unfavourable postprandial metabolic response in individuals with overweight/obesity, and such persons should avoid HC meals.
Collapse
Affiliation(s)
- Ahsan Hameed
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Edyta Adamska-Patruno
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Clinical Support Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Przemyslaw Czajkowski
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Clinical Support Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Urszula Miksza
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Clinical Support Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Joanna Fiedorczuk
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Clinical Support Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Monika Moroz
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Clinical Support Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Witold Bauer
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Maria Górska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24 A, 15-276 Bialystok, Poland
| | - Adam Jacek Krętowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Clinical Support Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24 A, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
- Correspondence:
| |
Collapse
|
13
|
Campos-Obando N, Bosman A, Kavousi M, Medina-Gomez C, van der Eerden BCJ, Bos D, Franco OH, Uitterlinden AG, Zillikens MC. Genetic Evidence for a Causal Role of Serum Phosphate in Coronary Artery Calcification: The Rotterdam Study. J Am Heart Assoc 2022; 11:e023024. [PMID: 35904204 PMCID: PMC9375490 DOI: 10.1161/jaha.121.023024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Hyperphosphatemia has been associated with coronary artery calcification (CAC) mostly in chronic kidney disease, but the association between phosphate levels within the normal phosphate range and CAC is unclear. Our objectives were to evaluate associations between phosphate levels and CAC among men and women from the general population and assess causality through Mendelian randomization. Methods and Results CAC, measured by electron‐beam computed tomography, and serum phosphate levels were assessed in 1889 individuals from the RS (Rotterdam Study). Phenotypic associations were tested through linear models adjusted for age, body mass index, blood pressure, smoking, prevalent cardiovascular disease and diabetes, 25‐hydroxyvitamin D, total calcium, C‐reactive protein, glucose, and total cholesterol : high‐density lipoprotein cholesterol ratio. Mendelian randomization was implemented through an allele score including 8 phosphate‐related single‐nucleotide polymorphisms. In phenotypic analyses, serum phosphate (per 1 SD) was associated with CAC with evidence for sex interaction (Pinteraction=0.003) (men β, 0.44 [95% CI, 0.30–0.59]; P=3×10−9; n=878; women β, 0.24 [95% CI, 0.08–0.40]; P=0.003; n=1011). Exclusion of hyperphosphatemia, chronic kidney disease (estimated glomerular filtration rate <60 mL/min per 1.73 m2) and prevalent cardiovascular disease yielded similar results. In Mendelian randomization analyses, instrumented phosphate was associated with CAC (total population β, 0.93 [95% CI: 0.07–1.79]; P=0.034; n=1693), even after exclusion of hyperphosphatemia, chronic kidney disease and prevalent cardiovascular disease (total population β, 1.23 [95% CI, 0.17–2.28]; P=0.023; n=1224). Conclusions Serum phosphate was associated with CAC in the general population with stronger effects in men. Mendelian randomization findings support a causal relation, also for serum phosphate and CAC in subjects without hyperphosphatemia, chronic kidney disease, and cardiovascular disease. Further research into underlying mechanisms of this association and sex differences is needed.
Collapse
Affiliation(s)
- Natalia Campos-Obando
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Ariadne Bosman
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Daniel Bos
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Radiology and Nuclear Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - Oscar H Franco
- Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Institute of Social and Preventive Medicine (ISPM) University of Bern Switzerland
| | - André G Uitterlinden
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands.,Department of Epidemiology Erasmus MC, University Medical Center Rotterdam Rotterdam the Netherlands
| |
Collapse
|
14
|
Tian H, Ni Z, Lam SM, Jiang W, Li F, Du J, Wang Y, Shui G. Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features. SMALL METHODS 2022; 6:e2200130. [PMID: 35527334 DOI: 10.1002/smtd.202200130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Mass spectrometry-based metabolomics has emerged as a powerful technique for biomedical research, although technical issues with its analytical precision and structural characterization remain. Herein, a robust non-targeted strategy for accurate quantitation and precise profiling of metabolomes is developed and applied to investigate plasma metabolic features associated with human aging. A comprehensive set of isotope-labeled standards (ISs) covering major metabolic pathways is incorporated to quantify polar metabolites. Matching rules to select ISs for calibration follow a primary criterion of minimal coefficients of variations (COVs). If minimal COVs between specific ISs for a particular metabolite fall within 5% window, a further selection of ISs is conducted based on structural similarities and proximity in retention time. The introduction and refined selection of appropriate ISs for quantitation reduces the COVs of 480 identified metabolites in quality control samples from 14.3% to 9.8% and facilitates identification of additional metabolite. Finally, the precise metabolomics approach reveals perturbations in a diverse array of metabolic pathways across aging that principally implicate steroid metabolism, amino acid metabolism, lipid metabolism, and purine metabolism, which allows the authors to draw correlates to the pathology of various age-related diseases. These findings provide clues for the prevention and treatment of these age-related diseases.
Collapse
Affiliation(s)
- He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Ni
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, 213022, China
| | - Wenxi Jiang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Fengjuan Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yuan Wang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Zhang X, Xiao J, Li X, Cui J, Wang K, He Q, Liu M. Low Serum Dehydroepiandrosterone Is Associated With Diabetic Kidney Disease in Men With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:915494. [PMID: 35784547 PMCID: PMC9240345 DOI: 10.3389/fendo.2022.915494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background The associations of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with diabetic kidney disease (DKD) remained unclear. Thus, this cross-sectional study aimed to explore the associations of DHEA and DHEAS with the risk of DKD in patients with T2DM. Methods The information of 1251 patients with T2DM were included in this study. Serum DHEA and DHEAS were quantified using liquid chromatography-tandem mass spectrometry assays. Multivariate logistic regression analyses were used to assess the associations of DHEA and DHEAS with DKD as well as high urine albumin to creatinine ratio (ACR). Results In men with T2DM, the risk of DKD decreased with an increasing DHEA concentration after adjustment for traditional risk factors; the fully adjusted OR (95% CI) for tertile3 vs tertile1 was 0.37 (0.19-0.70; P = 0.010 for trend). Similarly, when taking high ACR as the outcome, low DHEA levels were still significantly associated with increased odds of high ACR (OR, 0.37; 95% CI, 0.19-0.72 for tertile3 vs tertile1; P = 0.012 for trend). The restricted cubic spline showed that the risk of DKD gradually decreased with the increment of serum DHEA levels (P-overall = 0.007; P-nonlinear = 0.161). DHEAS was not independently associated with the risk of DKD in men. In contrast, no significant relationships were found between DHEA and DHEAS and the risk of DKD in women (all P > 0.05). Conclusions In men with T2DM, low serum DHEA levels were independently related to the risk of DKD after adjustment for traditional risk factors. Our finding highlights the potential role of DHEA in the development of DKD in men with T2DM.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Kunling Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
16
|
Singh P, Covassin N, Marlatt K, Gadde KM, Heymsfield SB. Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk. Compr Physiol 2021; 12:2949-2993. [PMID: 34964120 PMCID: PMC10068688 DOI: 10.1002/cphy.c210014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in adults, highlighting the need to develop novel strategies to mitigate cardiovascular risk. The advancing obesity epidemic is now threatening the gains in CVD risk reduction brought about by contemporary pharmaceutical and surgical interventions. There are sex differences in the development and outcomes of CVD; premenopausal women have significantly lower CVD risk than men of the same age, but women lose this advantage as they transition to menopause, an observation suggesting potential role of sex hormones in determining CVD risk. Clear differences in obesity and regional fat distribution among men and women also exist. While men have relatively high fat in the abdominal area, women tend to distribute a larger proportion of their fat in the lower body. Considering that regional body fat distribution is an important CVD risk factor, differences in how men and women store their body fat may partly contribute to sex-based alterations in CVD risk as well. This article presents findings related to the role of obesity and sex hormones in determining CVD risk. Evidence for the role of sex hormones in determining body composition in men and women is also presented. Lastly, the clinical potential for using sex hormones to alter body composition and reduce CVD risk is outlined. © 2022 American Physiological Society. Compr Physiol 12:1-45, 2022.
Collapse
Affiliation(s)
- Prachi Singh
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | - Kara Marlatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Kishore M Gadde
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
17
|
Li L, Wang H, Yao Y, Cao J, Jiang Z, Yan W, Chu X, Li Q, Lu M, Ma H. The sex steroid precursor dehydroepiandrosterone prevents nonalcoholic steatohepatitis by activating the AMPK pathway mediated by GPR30. Redox Biol 2021; 48:102187. [PMID: 34781165 PMCID: PMC8604675 DOI: 10.1016/j.redox.2021.102187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) caused by estrogen deficiency increased sharply in recent decades and has become a major threat to liver health in postmenopausal women. There is no effective strategy to control the incidence and development of NASH. Dehydroepiandrosterone (DHEA) is the most abundant circulating steroid with immune and metabolic regulatory properties, and its level markedly declines with increasing age in humans. Importantly, DHEA can convert into active sex hormones depending on the local needs of target tissues with little diffusion, which serves to avoid systemic side-effects from other tissues' exposure to estrogen. Here, we found that DHEA prevented the incidence and development of NASH, which is characterized by the reduction of hepatic steatosis, fibrosis, and inflammation in female mice fed with high-fat/high-cholesterol diets and effectively attenuated lipid accumulation, inflammatory response, and oxidative stress in palmitic acid-challenged hepatocytes. Mechanistically, in vitro and in vivo studies showed that the anti-NASH function of DHEA depended on its biotransformation into estrogen rather than androgen, and which up-regulates the expression of G protein-coupled estrogen receptor (GPR30), a non-classical estrogen receptor. The activation of GPR30-mediated AMP-activated protein kinase signaling is a necessary prerequisite for the alleviative effects of DHEA on NASH. Collectively, our data show the mechanisms of DHEA treatment and its effects on NASH that were previously overlooked; the data also show that GPR30 can be used as a target for treating lipid metabolism disorders and related diseases, such as NASH. Furthermore, these findings have the potential to help researchers develop new strategies for preventing NASH in postmenopausal women.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjun Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyuan Yan
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Chu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaomiao Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Roa-Díaz ZM, Raguindin PF, Bano A, Laine JE, Muka T, Glisic M. Menopause and cardiometabolic diseases: What we (don't) know and why it matters. Maturitas 2021; 152:48-56. [PMID: 34674807 DOI: 10.1016/j.maturitas.2021.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 01/11/2023]
Abstract
This narrative review discusses the current understanding, knowledge gaps and challenges in expanding our knowledge of the association between menopause and the reproductive aging process and cardiometabolic disease (CMD) in women, with a focus on type 2 diabetes and cardiovascular disease. The physiological changes that occur at different stages of the reproductive life span, as well as type of menopause and timing, are factors widely associated with CMD risk; however, the underlying mechanisms remain either unclear or insufficiently studied. Decreased ovarian estrogen production and relative androgen excess around menopause onset are the most studied factors linking menopause and cardiometabolic health; nevertheless, the evidence is not persuasive and other hypotheses might explain the changes in CMD risk during menopausal transition. In this context, hormone therapy has been widely adopted in the treatment and prevention of CMD, although uncertainty regarding its cardiometabolic effects has raised the need to optimize therapeutic modalities. Mechanisms such as the "iron overload theory" and new "omics" platforms could provide new insights into potential pathways underlying the association between menopause and cardiometabolic health, such as the DNA damage response. Although it has been widely reported that environmental and lifestyle factors affect both menopause and cardiometabolic health, there is little evidence on the role of these exposures in menopause-associated CMD risk.
Collapse
Affiliation(s)
- Zayne M Roa-Díaz
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Peter Francis Raguindin
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland
| | - Arjola Bano
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Jessica E Laine
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Swiss Paraplegic Research, Nottwil, Switzerland.
| |
Collapse
|
19
|
Isehunwa OO, Warner ET, Spiegelman D, Huang T, Tworoger SS, Kent BV, Shields AE. Religion, spirituality and diurnal rhythms of salivary cortisol and dehydroepiandrosterone in postmenopausal women. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 7. [PMID: 34308392 PMCID: PMC8297624 DOI: 10.1016/j.cpnec.2021.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Religion and spirituality (R/S) are important resources for coping with stress and are hypothesized to influence health outcomes via modulation of the hypothalamic-pituitary-adrenal (HPA) axis, though this has not been evaluated extensively. In this study, we examined associations between several measures of religiosity or spirituality (R/S) and three HPA axis biomarkers: cortisol, dehydroepiandrosterone (DHEA), and cortisol:DHEA ratio. Methods Sample included 216 female postmenopausal Nurses’ Health Study II participants who provided up to five timed saliva samples: immediately upon awakening, 45 min, 4 h, and 10 h after waking, and prior to going to sleep during a single day in 2013. Multivariable-adjusted linear mixed models with piecewise cubic spline functions and adjustment for potential covariates were used to estimate the cross-sectional associations of eight R/S measures with diurnal rhythms of cortisol, DHEA, and the cortisol/DHEA ratio. Results There was little evidence of association between the eight R/S measures analyzed and diurnal rhythms of cortisol, DHEA, and the cortisol/DHEA ratio. Women who reported that R/S was very involved in understanding or dealing with stressful situations had slower night rise in cortisol than those who did not. Greater levels of religious struggles were associated with higher cortisol levels throughout the day. Higher non-theistic daily spiritual experiences scores were associated with slower DHEA night rise, and a higher cortisol/DHEA ratio upon waking and at night. However, these associations were significantly attenuated when we excluded women reporting bedtimes at least 30 min later than usual. Conclusion Observed associations were driven by those with late sleep schedules, and given the number of comparisons made, could be due to chance. Future research using larger, more diverse samples of individuals is needed to better understand the relationship between R/S and HPA axis biomarkers. We examined the influence of religion and spirituality on HPA-axis diurnal rhythms of cortisol, DHEA, and their ratio. Religious coping, religious struggles, and non-theistic DSES were associated with modest alterations in HPA axis rhythms. Observed associations were driven by those with late sleep schedules.
Collapse
Affiliation(s)
- Oluwaseyi O. Isehunwa
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Corresponding author. 50 Staniford St., Suite 802, Boston, MA, 02114, USA.
| | - Erica T. Warner
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Clinical Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Donna Spiegelman
- Department of Biostatistics and Global Health, Yale School of Public Health, New Haven, CT, USA
- Center for Methods on Implementation and Prevention Science, Yale School of Public Health, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Blake Victor Kent
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Sociology, Westmont College, Santa Barbara, CA, USA
| | - Alexandra E. Shields
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Matulevicius V, Urbanavicius V, Lukosevicius S, Banisauskaite I, Donielaite G, Galkine A. Importance of Dehydroepiandrosterone Sulfate Assessment with Special Attention for Adrenal Tumours and Arterial Hypertension. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2021; 17:68-76. [PMID: 34539912 PMCID: PMC8417495 DOI: 10.4183/aeb.2021.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the significance of DHEAS assessment in males of different ages. METHODS Retrospective cohort study of patients investigated in two large academic centres. RESULTS The data of DHEAS assessment of 3533 patients (3013 females and 520 males) was analysed. DHEAS was 1.6 - 13.5 times more frequently investigated in women than in men. A peak of DHEAS evaluation test for women was at 25 years old and distribution was uniform in males over decades, excepting being lower in 0-9 and 75+ages. In the age group 10-24 years, DHEAS levels were higher in females. After 45 years, DHEAS was higher in men than in women. Analysis of 510 case records showed low DHEAS levels in boys (0-9 years) and in men aged 65 - 84+. Higher DHEAS levels were detected as a peak at 30 years old, but never after 55 years. In individuals with low DHEAS levels prevailed congenital adrenal hyperplasia (32%), adrenal tumours (30%) and primary or secondary adrenal insufficiency (19%). High DHEAS levels prevailed in patients with arterial hypertension (26%), overweight-obesity -(19%), non-toxic goiter (17%) and alopecia (9%). In the normal DHEAS miscellaneous diagnoses were met most frequently - 40%. Disorders exceeding 5% were non-toxic goiter (19%), adrenal tumours - 17%, overweight/obesity - 16% and arterial hypertension- 8%. In 71 women and 124 men adrenal neoplasms were detected. Higher frequency of these was observed in women in their 30s. A peak of adrenal neoplasms in men was at their 70s. This gender difference was not conditioned by earlier attempts to seek medical care by women. A significant correlation of DHEAS, weight, body mass index and systolic blood pressure with diastolic blood pressure was found. CONCLUSION Our study permits to determine which DHEAS secretion and clinical pattern might be associated in males of different ages.
Collapse
Affiliation(s)
- V. Matulevicius
- Lithuanian University of Health Sciences - Institute of Endocrinology, Department of Endocrinology
| | - V. Urbanavicius
- Lithuanian University of Health Sciences - Institute of Endocrinology, Vilnius University - Faculty of Medicine, Department of Endocrinology, Vilnius, Lithuania
| | - S. Lukosevicius
- Lithuanian University of Health Sciences - Institute of Endocrinology, Department of Radiology, Kaunas
| | - I. Banisauskaite
- Lithuanian University of Health Sciences - Institute of Endocrinology, Department of Endocrinology
| | - G. Donielaite
- Lithuanian University of Health Sciences - Institute of Endocrinology, Department of Endocrinology
| | - A. Galkine
- Lithuanian University of Health Sciences - Institute of Endocrinology, Vilnius University - Faculty of Medicine, Department of Endocrinology, Vilnius, Lithuania
| |
Collapse
|
21
|
Kiersztan A, Gaanga K, Witecka A, Jagielski AK. DHEA-pretreatment attenuates oxidative stress in kidney-cortex and liver of diabetic rabbits and delays development of the disease. Biochimie 2021; 185:135-145. [PMID: 33771656 DOI: 10.1016/j.biochi.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
In view of reported discrepancies concerning antioxidant activity of dehydroepiandrosterone (DHEA), a widely used dietary supplement, the current investigation was undertaken to evaluate the antioxidant properties of DHEA in both kidney-cortex and liver of alloxan (ALX)-induced diabetic rabbits, as this diabetogenic compound exhibits the ROS-dependent action. ALX was injected to animals following 7 days of DHEA administration. Four groups of rabbits were used in the experiments: control, DHEA-treated control, diabetic and DHEA-treated diabetic. Our results show for the first time, that in kidney-cortex DHEA resulted in normalization of hydroxyl free radicals (HFR) levels and restoration of catalase (CAT) and glutathione peroxidase (GPx) activities to near the control values, while in liver DHEA prevented the malondialdehyde (MDA) accumulation and normalized glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH) activities. Moreover, in both kidney-cortex and liver DHEA supplementation prevented GSSG elevation accompanied by a decrease in GSH/GSSG ratio. Although DHEA attenuated oxidative stress in both kidney-cortex and liver of ALX-induced diabetic rabbits and significantly delayed the onset of diabetes in time, it did not protect against the final development of diabetes. In conclusion, the current investigation underscores the complexity of the antioxidant action of DHEA. The data are of clinical interest since DHEA supplementation could prevent the deleterious effects of ROS and delay, or even prevent the onset of many diseases. However, in view of the reported pro-oxidant effects of high DHEA doses, the potential use of this agent as a supplement needs a careful evaluation.
Collapse
Affiliation(s)
- Anna Kiersztan
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Kongorzul Gaanga
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Adam K Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
22
|
Lu Y, Wang E, Chen Y, Zhou B, Zhao J, Xiang L, Qian Y, Jiang J, Zhao L, Xiong X, Lu Z, Wu D, Liu B, Yan J, Zhang R, Zhang H, Hu C, Li X. Obesity-induced excess of 17-hydroxyprogesterone promotes hyperglycemia through activation of glucocorticoid receptor. J Clin Invest 2021; 130:3791-3804. [PMID: 32510471 DOI: 10.1172/jci134485] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become an expanding global public health problem. Although the glucocorticoid receptor (GR) is an important regulator of glucose metabolism, the relationship between circulating glucocorticoids (GCs) and the features of T2DM remains controversial. Here, we show that 17-hydroxyprogesterone (17-OHP), an intermediate steroid in the biosynthetic pathway that converts cholesterol to cortisol, binds to and stimulates the transcriptional activity of GR. Hepatic 17-OHP concentrations are increased in diabetic mice and patients due to aberrantly increased expression of Cyp17A1. Systemic administration of 17-OHP or overexpression of Cyp17A1 in the livers of lean mice promoted the pathogenesis of hyperglycemia and insulin resistance, whereas knockdown of Cyp17A1 abrogated metabolic disorders in obese mice. Therefore, our results identify a Cyp17A1/17-OHP/GR-dependent pathway in the liver that mediates obesity-induced hyperglycemia, suggesting that selectively targeting hepatic Cyp17A1 may provide a therapeutic avenue for treating T2DM.
Collapse
Affiliation(s)
- Yan Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - E Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Ying Chen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Bing Zhou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Jiejie Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Liping Xiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Yiling Qian
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Jingjing Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Lin Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Xuelian Xiong
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Zhiqiang Lu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| | - Duojiao Wu
- Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Liu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and.,Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jing Yan
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, and
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, and.,Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, and.,Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai, China.,Institute for Metabolic Disease, Fengxian Central Hospital, Southern Medical University, Shanghai, China
| | - Xiaoying Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education and Department of Endocrinology and Metabolism, and
| |
Collapse
|
23
|
Wang X, Feng H, Fan D, Zou G, Han Y, Liu L. The influence of dehydroepiandrosterone (DHEA) on fasting plasma glucose, insulin levels and insulin resistance (HOMA-IR) index: A systematic review and dose response meta-analysis of randomized controlled trials. Complement Ther Med 2020; 55:102583. [DOI: 10.1016/j.ctim.2020.102583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
|
24
|
Hidalgo-Mora JJ, Cortés-Sierra L, García-Pérez MÁ, Tarín JJ, Cano A. Diet to Reduce the Metabolic Syndrome Associated with Menopause. The Logic for Olive Oil. Nutrients 2020; 12:nu12103184. [PMID: 33081027 PMCID: PMC7603201 DOI: 10.3390/nu12103184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
The rates of metabolic syndrome are increasing in parallel with the increasing prevalence of obesity, primarily due to its concomitant insulin resistance. This is particularly concerning for women, as the years around menopause are accompanied by an increase in visceral obesity, a strong determinant of insulin resistance. A fall in estrogens and increase in the androgen/estrogen ratio is attributed a determining role in this process, which has been confirmed in other physiological models, such as polycystic ovary syndrome. A healthy lifestyle, with special emphasis on nutrition, has been recommended as a first-line strategy in consensuses and guidelines. A consistent body of evidence has accumulated suggesting that the Mediterranean diet, with olive oil as a vital component, has both health benefits and acceptable adherence. Herein, we provide an updated overview of current knowledge on the benefits of olive oil most relevant to menopause-associated metabolic syndrome, including an analysis of the components with the greatest health impact, their effect on basic mechanisms of disease, and the state of the art regarding their action on the main features of metabolic syndrome.
Collapse
Affiliation(s)
- Juan José Hidalgo-Mora
- Service of Obstetrics and Gynecology, Hospital Clínico Universitario—INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain; (J.J.H.-M.); (L.C.-S.)
| | - Laura Cortés-Sierra
- Service of Obstetrics and Gynecology, Hospital Clínico Universitario—INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain; (J.J.H.-M.); (L.C.-S.)
| | - Miguel-Ángel García-Pérez
- Department of Genetics, Faculty of Biological Sciences, University of Valencia, Burjassot, and INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain;
| | - Juan J. Tarín
- Department of Cellular Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Burjassot, 46100 Valencia, Spain;
| | - Antonio Cano
- Service of Obstetrics and Gynecology, Hospital Clínico Universitario—INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain; (J.J.H.-M.); (L.C.-S.)
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Av Blasco Ibáñez 15, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-983087
| |
Collapse
|
25
|
Selyatitskaya VG, Epanchintseva EA, Novikova EG, Shilina NI, Pinkhasov BB. Hormonal Characteristics of Androgen Status in Males of Different Age Groups. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020030169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Rasmussen JJ, Selmer C, Frøssing S, Schou M, Faber J, Torp-Pedersen C, Gislason GH, Køber L, Hougaard DM, Cohen AS, Kistorp C. Endogenous Testosterone Levels Are Associated with Risk of Type 2 Diabetes in Women without Established Comorbidity. J Endocr Soc 2020; 4:bvaa050. [PMID: 32537541 PMCID: PMC7278278 DOI: 10.1210/jendso/bvaa050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The impact of endogenous androgen levels on the risk of type 2 diabetes in women remains uncertain. The objective was to investigate associations between endogenous androgen levels and risk of type 2 diabetes in young women without established comorbidity. Methods In this retrospective cohort study, women aged 18 to 50 years who underwent measurement of plasma testosterone, dehydroepiandrosterone-sulfate (DHEA-S), dihydrotestosterone (DHT), and sex hormone-binding globulin (SHBG) for the first time from January 2007 to December 2015 were included. Androgens were analyzed using tandem liquid chromatography mass spectrometry. Women with established comorbidity were excluded, using Danish healthcare registries. We calculated incidence rate ratios (IRRs, 95% confidence intervals) of type 2 diabetes according to quartiles of plasma androgens using multivariate Poisson regression models. Results A total of 8876 women, with a mean ± SD age of 38.5 ± 4.6 years and a median (interquartile range [IQR]) follow-up duration of 8.1 (6.6-9.4) years, were eligible for analyses. During 69 728 person-years, 69 women were diagnosed with type 2 diabetes. Women in the highest quartile of plasma total testosterone and calculated free testosterone displayed increased risk of type 2 diabetes compared with the lowest quartile: IRR 1.97 (1.01; 3.85), P = .048 and IRR 7.32 (2.84; 18.83), P < .001. SHBG was inversely associated with type 2 diabetes, Q4 versus Q1; IRR 0.06 (0.02; 0.21), P < .001. Plasma DHEA-S and DHT were not associated with incident type 2 diabetes. Conclusions Higher levels of plasma total and free testosterone were associated with increased risk of type 2 diabetes among women.
Collapse
Affiliation(s)
- Jon J Rasmussen
- Department of Endocrinology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Department of Internal Medicine, Holbæk Hospital, Holbæk, Denmark
| | - Christian Selmer
- Department of Endocrinology, Bispebjerg/Frederiksberg University Hospital, Copenhagen, Denmark
| | - Signe Frøssing
- Department of Internal Medicine, Endocrinology Unit, Herlev/Gentofte University Hospital, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev/Gentofte University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Faber
- Department of Internal Medicine, Endocrinology Unit, Herlev/Gentofte University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Gunnar H Gislason
- Department of Cardiology, Herlev/Gentofte University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David M Hougaard
- Department of Congenital Disorders, Danish State Serum Institute, Copenhagen, Denmark
| | - Arieh S Cohen
- Department of Congenital Disorders, Danish State Serum Institute, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, Kieboom BCT, Klaver CCW, de Knegt RJ, Luik AI, Nijsten TEC, Peeters RP, van Rooij FJA, Stricker BH, Uitterlinden AG, Vernooij MW, Voortman T. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol 2020; 35:483-517. [PMID: 32367290 PMCID: PMC7250962 DOI: 10.1007/s10654-020-00640-5] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
The Rotterdam Study is an ongoing prospective cohort study that started in 1990 in the city of Rotterdam, The Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. The study focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1700 research articles and reports. This article provides an update on the rationale and design of the study. It also presents a summary of the major findings from the preceding 3 years and outlines developments for the coming period.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Liu X, Wei D, Jiang J, Liu X, Tu R, Luo Z, Wang Y, Dong X, Qiao D, Shen F, Li R, Wang Y, Jin Y, Yu S, Huo W, Li L, Li W, Jing T, Wang C, Mao Z. Associations of SRD5A1 gene variants and testosterone with dysglycemia: Henan Rural Cohort study. Nutr Metab Cardiovasc Dis 2020; 30:599-607. [PMID: 31870594 DOI: 10.1016/j.numecd.2019.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Multiple studies support a complex relationship between testosterone and type 2 diabetes mellitus (T2DM) and the transformation of testosterone is affected by several reductases. Thus, we aimed to explore the associations of steroid-5α-reductase type 1 (SRD5A1) gene polymorphism with impaired fasting glucose (IFG) and T2DM and the interactive effects of testosterone and genotypes on glycometabolism. METHODS AND RESULTS A case-control study including 2365 participants was performed. Genomic DNA was extracted from the whole blood and genotyped for the SRD5A1 single nucleotide polymorphisms (SNP) rs1691053. Multivariable logistic regression and linear regression were performed to estimate the associations of SRD5A1 rs1691053 alleles and genotypes with glycometabolism. Generalized linear models were used to investigate the modulatory effects of serum testosterone on glycometabolism indexes in males. After multivariable adjustment, the odds ratio (OR) of homozygous CC genotypes in male carriers was 2.62 (95%CI: 1.11-6.18) for IFG. Furthermore, significant associations of SRD5A1 rs1691053 polymorphisms with adverse indices of glycometabolism were observed in males. Interestingly, the opposite associations in females were observed. The interactive associations of SNP and testosterone were found and mutations were more likely to lead unfavorable metabolic phenotypes. CONCLUSION These results showed that SRD5A1 rs1691053 gene polymorphism was independently associated with glycometabolism. The interaction between a genetic polymorphism from SRD5A1 and testosterone involved glycometabolism was identified in males. Although this preliminary data should be replicated with other rigorous researches, it highlighted the importance of the SNP-testosterone interaction over the present of glycometabolism.
Collapse
Affiliation(s)
- Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jingjing Jiang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Fang Shen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yikang Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuxi Jin
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, PR China.
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
29
|
Strac DS, Konjevod M, Perkovic MN, Tudor L, Erjavec GN, Pivac N. Dehydroepiandrosterone (DHEA) and its Sulphate (DHEAS) in Alzheimer's Disease. Curr Alzheimer Res 2020; 17:141-157. [PMID: 32183671 DOI: 10.2174/1567205017666200317092310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease. OBJECTIVE The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer's disease. METHODS PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. RESULTS We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer's disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. CONCLUSION Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer's disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.
Collapse
Affiliation(s)
- Dubravka S Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea N Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana N Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
30
|
Teixeira CJ, Veras K, de Oliveira Carvalho CR. Dehydroepiandrosterone on metabolism and the cardiovascular system in the postmenopausal period. J Mol Med (Berl) 2020; 98:39-57. [PMID: 31713639 DOI: 10.1007/s00109-019-01842-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Abstract
Dehydroepiandrosterone (DHEA), mostly present as its sulfated ester (DHEA-S), is an anabolic hormone that naturally declines with age. Furthermore, it is the most abundant androgen and estrogen precursor in humans. Low plasma levels of DHEA have been strongly associated with obesity, insulin resistance, dyslipidemia, and high blood pressure, increasing the risk of cardiovascular disease. In this respect, DHEA could be regarded as a promising agent against metabolic syndrome (MetS) in postmenopausal women, since several age-related metabolic diseases are reported during aging. There are plenty of experimental evidences showing beneficial effects after DHEA therapy on carbohydrate and lipid metabolism, as well as cardiovascular health. However, its potential as a therapeutic agent appears to attract controversy, due to the lack of effects on some symptoms related to MetS. In this review, we examine the available literature regarding the impact of DHEA therapy on adiposity, glucose metabolism, and the cardiovascular system in the postmenopausal period. Both clinical studies and in vitro and in vivo experimental models were selected, and where possible, the main cellular mechanisms involved in DHEA therapy were discussed. Schematic representation showing some of the general effects observed after administration DHEA therapy on target tissues of energy metabolism and the cardiovascular system. ↑ represents an increase, ↓ represents a decrease, - represents a worsening and ↔ represents no change after DHEA therapy.
Collapse
Affiliation(s)
- Caio Jordão Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, 105 Alexander Fleming St, Campinas, SP, 13083-881, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Sao Paulo, SP, 05508-900, Brazil
| | - Katherine Veras
- Department of Nutrition, University of Mogi das Cruzes, 200 Dr. Cândido X. A. Souza Ave., Sao Paulo, SP, 08780-911, Brazil
| | - Carla Roberta de Oliveira Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof. Lineu Prestes Ave., ICB 1, Sao Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
31
|
Wan H, Zhang K, Wang Y, Chen Y, Zhang W, Xia F, Zhang Y, Wang N, Lu Y. The Associations Between Gonadal Hormones and Serum Uric Acid Levels in Men and Postmenopausal Women With Diabetes. Front Endocrinol (Lausanne) 2020; 11:55. [PMID: 32153501 PMCID: PMC7044188 DOI: 10.3389/fendo.2020.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: In assessing the development of hyperuricemia in diabetic adults, the role of the sex steroid axis is underappreciated. Furthermore, dehydroepiandrosterone (DHEA) has been recommended as a nutritional supplement. However, is DHEA suitable for diabetic adults with hyperuricemia? This issue has received little attention. Aim: The objective of this study was to investigate the associations between gonadal hormones and uric acid (UA) levels in diabetic adults, paying particular attention to the association between DHEA and UA levels. Methods: We analyzed 4,426 participants out of 4,813 diabetic adults enrolled from seven communities in a cross-sectional survey conducted in 2018. Participants underwent several examinations, including assessments of anthropometric parameters, blood pressure, glucose, lipid profiles, UA, total testosterone (TT), estradiol (E2), the follicle-stimulating hormone (FSH), the luteinizing hormone (LH), and dehydroepiandrosterone (DHEA). Results: Among men and compared with individuals in the first quartile, participants in the fourth quartile of TT and FSH had odds of hyperuricemia that were significantly decreased by so much as 48 and 34%, respectively (both P < 0.05). However, participants in the fourth quartile of DHEA had 79% increased odds of hyperuricemia (P < 0.05). Among postmenopausal women, participants in the fourth quartile of DHEA, TT, and LH had odds of hyperuricemia that were significantly increased by 155, 99, and 76%, respectively (all P < 0.05). These associations were adjusted for potential confounding factors. Conclusions: Sex differences were found in the associations between gonadal hormones and UA levels in diabetic men and postmenopausal women, which should be monitored to prevent hyperuricemia when sex hormone treatment, especially DHEA, is administered. Further studies are needed.
Collapse
Affiliation(s)
- Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunping Zhang
- Department of Endocrinology and Metabolism, The People's Hospital of Xiangyun, Shanghai, China
- *Correspondence: Yunping Zhang p3134582163.com
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ningjian Wang
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yingli Lu
| |
Collapse
|
32
|
Yang S, Gu YY, Jing F, Yu CX, Guan QB. The Effect of Statins on Levels of Dehydroepiandrosterone (DHEA) in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Med Sci Monit 2019; 25:590-597. [PMID: 30698163 PMCID: PMC6348753 DOI: 10.12659/msm.914128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Currently, statins are used to treat polycystic ovary syndrome (PCOS). This systematic review and meta-analysis aimed to investigate the effect of statins on serum or plasma levels of dehydroepiandrosterone (DHEA) in women with PCOS. MATERIAL AND METHODS Databases that were searched included PubMed, Embase, and the Cochrane Library from their inception to August of 2018. Published randomized controlled trials (RCTs) were identified that evaluated the impact of statins on plasma DHEA levels in women with PCOS. The Cochrane risk of bias tool was used to assess the quality of the included RCTs. A random-effects model was used to analyze the pooled results. RESULTS Meta-analysis was performed on data from ten published studies that included 735 patients and showed that statin treatment could significantly reduce plasma DHEA levels when compared with controls (SMD, -0.43; 95% CI, -0.81-0.06; p=0.02; I²=82%). Statins were significantly more effective than placebo in reducing the levels of DHEAs. Subgroup analysis based on statin type showed that atorvastatin significantly reduced DHEA levels (SMD, -0.63; 95% CI, -1.20 - -0.05; p=0.03; I²=38%) but simvastatin did not significantly reduce DHEA levels (SMD: -0.14; 95% CI, -0.49-0.28; p=0.43; I²=77%). Subgroup analysis based on duration of treatment showed no significant difference between 12 weeks of statin treatment (SMD, -0.61; 95% CI, -1.23-0.02; p=0.06; I²=85%) and 24 weeks (SMD, -0.34; 95% CI -0.95-0.28; p=0.29; I²=83%). CONCLUSIONS Meta-analysis showed that statins significantly reduced the levels of DHEA when compared with placebo in patients with PCOS.
Collapse
Affiliation(s)
- Song Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
- Department of Endocrinology, Tai'an City Central Hospital, Tai'an, Shandong, China (mainland)
| | - Yuan-Yuan Gu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong, China (mainland)
| | - Fei Jing
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Chun-Xiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Qing-Bo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
33
|
Mäntyselkä A, Lindi V, Viitasalo A, Eloranta AM, Ågren J, Väisänen S, Voutilainen R, Laitinen T, Lakka TA, Jääskeläinen J. Associations of Dehydroepiandrosterone Sulfate With Cardiometabolic Risk Factors in Prepubertal Children. J Clin Endocrinol Metab 2018; 103:2592-2600. [PMID: 29757399 DOI: 10.1210/jc.2018-00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/07/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Premature adrenarche (PA) has been associated with overweight and insulin resistance, but the associations of serum dehydroepiandrosterone sulfate (DHEAS) concentration with other cardiometabolic risk factors are uncertain. OBJECTIVE To examine the associations of serum DHEAS concentration with several cardiometabolic risk factors in children. DESIGN Cross-sectional data from the Physical Activity and Nutrition in Children Study. PARTICIPANTS Population sample of 207 girls and 225 boys aged 7.6 ± 0.4 years. MAIN OUTCOME MEASURES Cardiometabolic risk factors by serum DHEAS concentration. RESULTS DHEAS correlated positively with body mass index standard deviation score, body fat percentage, lean body mass, high-sensitivity C-reactive protein (hs-CRP), and alanine aminotransferase (ALT) when adjusted for age and sex. The associations of DHEAS with hs-CRP and ALT disappeared when adjusted also for body fat percentage. When further adjusted for birth weight SD score, DHEAS correlated negatively with low-density lipoprotein (LDL) cholesterol and LDL/high-density lipoprotein (HDL) cholesterol ratio. LDL cholesterol was lower in children with DHEAS ≥40 µg/dL than in those with DHEAS <40 µg/dL, adjusted for age, sex, and body fat percentage (86.5 vs 92.3 mg/dL, P = 0.029). This association strengthened after further adjustment for birth weight SD score (85.3 vs 92.3 mg/dL, P = 0.012). CONCLUSION Higher DHEAS is not associated with an increased cardiometabolic risk in prepubertal children. Instead, it may be protective, evidenced by an association with lower LDL cholesterol and LDL/HDL cholesterol ratio. The increased cardiometabolic risk in PA shown in many studies may be due to low birth weight and childhood overweight associated with PA.
Collapse
Affiliation(s)
- Aino Mäntyselkä
- Department of Pediatrics, School of Medicine, Kuopio University Hospital, and University of Eastern Finland Kuopio, Finland
| | - Virpi Lindi
- Institute of Biomedicine, Physiology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna Viitasalo
- Institute of Biomedicine, Physiology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Biomedicine, Physiology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jyrki Ågren
- Institute of Biomedicine, Physiology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sari Väisänen
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio Finland
| | - Raimo Voutilainen
- Department of Pediatrics, School of Medicine, Kuopio University Hospital, and University of Eastern Finland Kuopio, Finland
| | - Tomi Laitinen
- Department of Clinical Physiology and Nuclear Medicine, School of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Institute of Biomedicine, Physiology, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, School of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jarmo Jääskeläinen
- Department of Pediatrics, School of Medicine, Kuopio University Hospital, and University of Eastern Finland Kuopio, Finland
| |
Collapse
|
34
|
Abstract
Despite an increased understanding of the pathogenesis of osteoarthritis (OA) and the availability of a number of drugs designed to ameliorate its symptoms, a successful disease-modifying therapy remains elusive. Recent lines of evidence suggest that dehydroepiandrosterone (DHEA), a 19-carbon steroid hormone classified as an adrenal androgen, exerts a chondroprotective effect in OA patients, and it has been proven to be an effective DMOAD candidate that slows OA progression. However, the exact mechanisms underlying its anti-OA effect is largely unknown. This review summarizes emerging observations from studies of cell biology, preclinical animal studies, and preliminary clinical trials and describes the findings of investigations on this topic to develop an initial blueprint of the mechanisms by which DHEA slows OA progression. Presently, studies on DMOADs are increasing in importance but have met limited success. Encouragingly, the current data on DHEA are promising and may prove that DHEA-based treatment is efficacious for preventing and slowing human OA progression.
Collapse
|
35
|
Yao QM, Wang B, An XF, Zhang JA, Ding L. Testosterone level and risk of type 2 diabetes in men: a systematic review and meta-analysis. Endocr Connect 2018; 7:220-231. [PMID: 29233816 PMCID: PMC5793809 DOI: 10.1530/ec-17-0253] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Type 2 diabetes is a risk factor for testosterone deficiency and impaired sex steroid status. Some studies also investigated the association of testosterone level with diabetes risk in men, but reported controversial findings. To clarify this issue, we conducted a systematic review and meta-analysis. METHODS PubMed, EMBASE and Web of Science were searched for eligible cohort or nested case-control studies published up to August 15, 2017. Meta-analysis was used to calculate the pooled relative risk (RR) of type 2 diabetes associated with higher testosterone level. RESULTS Thirteen cohort or nested case-control studies with 16,709 participants were included. Meta-analysis showed that higher total testosterone level could significantly decrease the risk of type 2 diabetes in men (RR = 0.65; 95% CI 0.50-0.84; P = 0.001), and higher free testosterone level could also decrease the risk of type 2 diabetes in men (RR = 0.94; 95% CI 0.90-0.99; P = 0.014). After excluding two studies that did not calculate RRs by quartiles of testosterone levels, both higher total testosterone and free testosterone levels could decrease the risk of type 2 diabetes in men, and the pooled RRs were 0.62 (95% CI 0.51-0.76; P < 0.001) and 0.77 (95% CI 0.61-0.98; P = 0.03), respectively. CONCLUSION This meta-analysis suggests that higher testosterone level can significantly decrease the risk of type 2 diabetes in men. Therefore, combined with previous researches, the findings above suggest a reverse-causality scenario in the relation between testosterone deficiency and risk of type 2 diabetes in men.
Collapse
Affiliation(s)
- Qiu-Ming Yao
- Department of EndocrinologyJinshan Hospital of Fudan University, Shanghai, China
| | - Bin Wang
- Department of EndocrinologyJinshan Hospital of Fudan University, Shanghai, China
| | - Xiao-Fei An
- Department of EndocrinologyJinshan Hospital of Fudan University, Shanghai, China
| | - Jin-An Zhang
- Department of EndocrinologyShanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Liumei Ding
- Department of Clinical LaboratoryJinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
36
|
Paschou SA, Palioura E, Ioannidis D, Anagnostis P, Panagiotakou A, Loi V, Karageorgos G, Goulis DG, Vryonidou A. Adrenal hyperandrogenism does not deteriorate insulin resistance and lipid profile in women with PCOS. Endocr Connect 2017; 6:601-606. [PMID: 28912337 PMCID: PMC5640571 DOI: 10.1530/ec-17-0239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the impact of adrenal hyperandrogenism on insulin resistance and lipid profile in women with polycystic ovary syndrome (PCOS). PATIENTS AND METHODS We studied 372 women with PCOS according to the NIH criteria. 232 age- and BMI-matched women served as controls in order to define adrenal hyperandrogenism (DHEA-S >95th percentile). Then, patients with PCOS were classified into two groups: with adrenal hyperandrogenism (PCOS-AH, n = 108) and without adrenal hyperandrogenism (PCOS-NAH, n = 264). Anthropometric measurements were recorded. Fasting plasma glucose, insulin, lipid profile, sex hormone-binding globulin (SHBG) and androgen (TT, Δ4A, DHEA-S) concentrations were assessed. Free androgen index (FAI) and homeostatic model assessment-insulin resistance (HOMA-IR) index were calculated. RESULTS Women with PCOS-AH were younger than PCOS-NAH (P < 0.001), but did not differ in the degree and type of obesity. No differences were found in HOMA-IR, total cholesterol, HDL-c, LDL-c and triglyceride concentrations (in all comparisons, P > 0.05). These metabolic parameters did not differ between the two groups even after correction for age. Women with PCOS-AH had lower SHBG (29.2 ± 13.8 vs 32.4 ± 11.8 nmol/L, P = 0.025) and higher TT (1.0 ± 0.2 vs 0.8 ± 0.4 ng/mL, P = 0.05) and Δ4A (3.9 ± 1.2 vs 3.4 ± 1.0 ng/mL, P = 0.007) concentrations, as well as FAI (14.1 ± 8.0 vs 10.2 ± 5.0, P < 0.001). These results were confirmed by a multiple regression analysis model in which adrenal hyperandrogenism was negatively associated with age (P < 0.001) and SHBG concentrations (P = 0.02), but not with any metabolic parameter. CONCLUSIONS Women with PCOS and adrenal hyperandrogenism do not exhibit any deterioration in insulin resistance and lipid profile despite the higher degree of total androgens.
Collapse
Affiliation(s)
- Stavroula A Paschou
- Department of Endocrinology and DiabetesHellenic Red Cross Hospital, Athens, Greece
| | - Eleni Palioura
- Department of Endocrinology and DiabetesHellenic Red Cross Hospital, Athens, Greece
| | - Dimitrios Ioannidis
- Department of Endocrinology and DiabetesSismanoglio-Amalia Fleming Hospital, Athens, Greece
| | - Panagiotis Anagnostis
- Unit of Reproductive EndocrinologyFirst Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Argyro Panagiotakou
- Department of Endocrinology and DiabetesSismanoglio-Amalia Fleming Hospital, Athens, Greece
| | - Vasiliki Loi
- Department of Endocrinology and DiabetesHellenic Red Cross Hospital, Athens, Greece
| | - Georgios Karageorgos
- Department of Endocrinology and DiabetesSismanoglio-Amalia Fleming Hospital, Athens, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive EndocrinologyFirst Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and DiabetesHellenic Red Cross Hospital, Athens, Greece
| |
Collapse
|
37
|
Muka T, Asllanaj E, Avazverdi N, Jaspers L, Stringa N, Milic J, Ligthart S, Ikram MA, Laven JSE, Kavousi M, Dehghan A, Franco OH. Age at natural menopause and risk of type 2 diabetes: a prospective cohort study. Diabetologia 2017; 60:1951-1960. [PMID: 28721436 PMCID: PMC6448832 DOI: 10.1007/s00125-017-4346-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS In this study, we aimed to examine the association between age at natural menopause and risk of type 2 diabetes, and to assess whether this association is independent of potential mediators. METHODS We included 3639 postmenopausal women from the prospective, population-based Rotterdam Study. Age at natural menopause was self-reported retrospectively and was treated as a continuous variable and in categories (premature, <40 years; early, 40-44 years; normal, 45-55 years; and late menopause, >55 years [reference]). Type 2 diabetes events were diagnosed on the basis of medical records and glucose measurements from Rotterdam Study visits. HRs and 95% CIs were calculated using Cox proportional hazards models, adjusted for confounding factors; in another model, they were additionally adjusted for potential mediators, including obesity, C-reactive protein, glucose and insulin, as well as for levels of total oestradiol and androgens. RESULTS During a median follow-up of 9.2 years, we identified 348 individuals with incident type 2 diabetes. After adjustment for confounders, HRs for type 2 diabetes were 3.7 (95% CI 1.8, 7.5), 2.4 (95% CI 1.3, 4.3) and 1.60 (95% CI 1.0, 2.8) for women with premature, early and normal menopause, respectively, relative to those with late menopause (p trend <0.001). The HR for type 2 diabetes per 1 year older at menopause was 0.96 (95% CI 0.94, 0.98). Further adjustment for BMI, glycaemic traits, metabolic risk factors, C-reactive protein, endogenous sex hormone levels or shared genetic factors did not affect this association. CONCLUSIONS/INTERPRETATION Early onset of natural menopause is an independent marker for type 2 diabetes in postmenopausal women.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Naim Avazverdi
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Najada Stringa
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Jelena Milic
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Joop S E Laven
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA29-14, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
38
|
Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, Klaver CCW, Nijsten TEC, Peeters RP, Stricker BH, Tiemeier H, Uitterlinden AG, Vernooij MW, Hofman A. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol 2017; 32:807-850. [PMID: 29064009 PMCID: PMC5662692 DOI: 10.1007/s10654-017-0321-4] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1500 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy ). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Guy G O Brusselle
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sarwa Darwish Murad
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Gastro-Enterology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otolaryngology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|