1
|
O'Byrne AM, van Baarsen LGM. Lymph nodes as gatekeepers of autoimmune diseases. RMD Open 2024; 10:e004097. [PMID: 39658052 PMCID: PMC11647372 DOI: 10.1136/rmdopen-2024-004097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Secondary lymphoid organs such as lymph nodes (LNs) are the home of peripheral tolerance mechanisms which control autoreactive T cells and prevent immune responses to self-antigen. In systemic autoimmunity, there is a clear failure of these peripheral tolerance mechanisms that leads to chronic inflammation and tissue destruction, highlighting the role for LNs as possible gatekeepers of autoimmunity. In recent years there has been a shift in research focus towards tissue sites in autoimmune diseases ranging from type 1 diabetes to rheumatoid arthritis in an effort to better characterise pathogenesis and guide diagnostic and therapeutic decisions. Although this has yielded great insight, it fails to tackle the initial break in tolerance that initiates disease progression which is most likely originating in peripheral LNs. In the majority of autoimmune diseases a preclinical phase is recognised. This is characterised by the presence of autoantibodies, which is indicative of a break in immune tolerance, and the absence of clinically apparent inflammation or tissue destruction. This review explores how our current knowledge of LNs in the preclinical and established phases of autoimmune diseases provides insight into possibly shared pathological mechanisms that drive disease progression and highlight the gaps in our knowledge that may help uncover new therapeutic avenues for intervention and prevention.
Collapse
Affiliation(s)
- Aoife M O'Byrne
- Rheumatology & Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Rheumatology & Clinical Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam, The Netherlands
| |
Collapse
|
2
|
Sun F, Yang CL, Wang FX, Rong SJ, Luo JH, Lu WY, Yue TT, Wang CY, Liu SW. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell Biosci 2023; 13:156. [PMID: 37641145 PMCID: PMC10464122 DOI: 10.1186/s13578-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Fei Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Devision of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
4
|
CCL21 and beta-cell antigen releasing hydrogels as tolerance-inducing therapy in Type I diabetes. J Control Release 2022; 348:499-517. [PMID: 35691500 DOI: 10.1016/j.jconrel.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
Type-I Diabetes (T1D) is caused by defective immunotolerance mechanisms enabling autoreactive T cells to escape regulation in lymphoid organs and destroy insulin-producing β-cells in the pancreas, leading to insulin dependence. Strategies to promote β-cell tolerance could arrest T1D. We previously showed that secretion of secondary lymphoid chemokine CCL21 by CCL21 transgenic β-cells induced tolerance and protected non-obese diabetic (NOD) mice from T1D. T1D protection was associated with formation of lymph node-like stromal networks containing tolerogenic fibroblastic reticular cells (FRCs). Here, we developed a polyethylene glycol (PEG) hydrogel platform with hydrolytically degradable PEG-diester dithiol crosslinkers to provide controlled and sustained delivery of CCL21 and β-cell antigens for at least 28 days in vitro and recapitulate properties associated with the tolerogenic environment of CCL21 transgenic β-cells in our previous studies. CCL21 and MHC-II restricted antigens were tethered to gels via simple click-chemistry while MHC-I restricted antigens were loaded in PEG-based polymeric nanovesicles and incorporated in the gel networks. CCL21 and antigen release kinetics depended on the PEG gel tethering strategy and the linkers. Importantly, in vitro functionality, chemotaxis, and activation of antigen-specific T cells were preserved. Implantation of CCL21 and β-cell antigen gels under the kidney capsule of pre-diabetic NOD mice led to enrichment of adoptively transferred antigen-specific T cells, formation of gp38 + FRC-like stromal cell networks, and increased regulation of specific T cells with reduced accumulation within pancreatic islets. Thus, our platform for sustained release of β-cell antigens and CCL21 immunomodulatory molecule could enable the development of antigen-specific tolerance therapies for T1D.
Collapse
|
5
|
Benne N, Ter Braake D, Stoppelenburg AJ, Broere F. Nanoparticles for Inducing Antigen-Specific T Cell Tolerance in Autoimmune Diseases. Front Immunol 2022; 13:864403. [PMID: 35392079 PMCID: PMC8981588 DOI: 10.3389/fimmu.2022.864403] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autoimmune diseases affect many people worldwide. Current treatment modalities focus on the reduction of disease symptoms using anti-inflammatory drugs which can lead to side effects due to systemic immune suppression. Restoration of immune tolerance by down-regulating auto-reactive cells in an antigen-specific manner is currently the “holy grail” for the treatment of autoimmune diseases. A promising strategy is the use of nanoparticles that can deliver antigens to antigen-presenting cells which in turn can enhance antigen-specific regulatory T cells. In this review, we highlight some promising cell targets (e.g. liver sinusoidal endothelial cells and splenic marginal zone macrophages) for exploiting natural immune tolerance processes, and several strategies by which antigen-carrying nanoparticles can target these cells. We also discuss how nanoparticles carrying immunomodulators may be able to activate tolerance in other antigen-presenting cell types. Finally, we discuss some important aspects that must be taken into account when translating data from animal studies to patients.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniëlle Ter Braake
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arie Jan Stoppelenburg
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Amodio G, Mandelli A, Curto R, Rancoita PMV, Stabilini A, Bonfanti R, de Pellegrin M, Bosi E, Di Serio C, Battaglia M, Gregori S. Altered Frequency and Phenotype of HLA-G-Expressing DC-10 in Type 1 Diabetes Patients at Onset and in Subjects at Risk to Develop the Disease. Front Immunol 2021; 12:750162. [PMID: 34659254 PMCID: PMC8517474 DOI: 10.3389/fimmu.2021.750162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 01/21/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease resulting in progressive destruction of β-cells. Several factors affecting lymphocyte and antigen-presenting cells, including dendritic cells (DCs), contribute to defective maintenance of tolerance in T1D. DC-10 are a subset of human DCs involved in IL-10-mediated tolerance. A precise monitoring of DC-10 in the peripheral blood is possible thanks to the discovery of specific biomarkers. DC-10, being cells that naturally express HLA-G, may be used for the appropriate staging of the disease. By enumerating and phenotypically characterizing DC-10 in the peripheral blood of subjects at different stages of T1D development-first-degree relatives (FDRs) of T1D patients, without (Abneg) or with (Abpos) autoantibodies, T1D patients at onset, and age-matched healthy controls (HCs)-we showed that DC-10 contain a high proportion of HLA-G-expressing cells as compared with monocytes. We reported that a low frequency of DC-10 during disease development is paralleled with the increased proportion of pro-inflammatory cDC2 cells. Moreover, DC-10 number and phenotype differ from Abneg FDRs, Abpos FDRs, and T1D patients compared with HCs, and DC-10 from T1D patients express low levels of CD83. Finally, multiple regression analysis, considering DC-10 and HLA-G-related parameters, showed that Abneg FDRs are more similar to subjects with autoimmunity than to HCs. This is the first demonstration that impairment in DC-10 number and phenotype, specifically CD83 expression, is associated with risk of developing T1D, suggesting a possible use of CD83+ DC-10 to stratify individuals at risk of T1D in conjunction with classical prognostic factors.
Collapse
Affiliation(s)
- Giada Amodio
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Mandelli
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosalia Curto
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola M. V. Rancoita
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Stabilini
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Bonfanti
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pediatrics and Neonatology, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Emanuele Bosi
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy
- TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Clelia Di Serio
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Manuela Battaglia
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Ferreira BO, Gamarra LF, Nucci MP, Oliveira FA, Rego GNA, Marti L. LN-Derived Fibroblastic Reticular Cells and Their Impact on T Cell Response—A Systematic Review. Cells 2021; 10:1150. [DOI: https:/doi.org/10.3390/cells10051150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nodes, have recently been described as much more than simple structural cells. Originally, these cells were described to form a conduit system called the “reticular fiber network” and for being responsible for transferring the lymph fluid drained from tissues through afferent lymphatic vessels to the T cell zone. However, nowadays, these cells are described as being capable of secreting several cytokines and chemokines and possessing the ability to interfere with the immune response, improving it, and also controlling lymphocyte proliferation. Here, we performed a systematic review of the several methods employed to investigate the mechanisms used by fibroblastic reticular cells to control the immune response, as well as their ability in determining the fate of T cells. We searched articles indexed and published in the last five years, between 2016 and 2020, in PubMed, Scopus, and Cochrane, following the PRISMA guidelines. We found 175 articles published in the literature using our searching strategies, but only 24 articles fulfilled our inclusion criteria and are discussed here. Other articles important in the built knowledge of FRCs were included in the introduction and discussion. The studies selected for this review used different strategies in order to access the contribution of FRCs to different mechanisms involved in the immune response: 21% evaluated viral infection in this context, 13% used a model of autoimmunity, 8% used a model of GvHD or cancer, 4% used a model of Ischemic-reperfusion injury (IRI). Another four studies just targeted a particular signaling pathway, such as MHC II expression, FRC microvesicles, FRC secretion of IL-15, FRC network, or ablation of the lysophosphatidic acid (LPA)-producing ectoenzyme autotaxin. In conclusion, our review shows the strategies used by several studies to isolate and culture fibroblastic reticular cells, the models chosen by each one, and dissects their main findings and implications in homeostasis and disease.
Collapse
|
8
|
LN-Derived Fibroblastic Reticular Cells and Their Impact on T Cell Response-A Systematic Review. Cells 2021; 10:cells10051150. [PMID: 34068712 PMCID: PMC8151444 DOI: 10.3390/cells10051150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Fibroblastic reticular cells (FRCs), usually found and isolated from the T cell zone of lymph nodes, have recently been described as much more than simple structural cells. Originally, these cells were described to form a conduit system called the “reticular fiber network” and for being responsible for transferring the lymph fluid drained from tissues through afferent lymphatic vessels to the T cell zone. However, nowadays, these cells are described as being capable of secreting several cytokines and chemokines and possessing the ability to interfere with the immune response, improving it, and also controlling lymphocyte proliferation. Here, we performed a systematic review of the several methods employed to investigate the mechanisms used by fibroblastic reticular cells to control the immune response, as well as their ability in determining the fate of T cells. We searched articles indexed and published in the last five years, between 2016 and 2020, in PubMed, Scopus, and Cochrane, following the PRISMA guidelines. We found 175 articles published in the literature using our searching strategies, but only 24 articles fulfilled our inclusion criteria and are discussed here. Other articles important in the built knowledge of FRCs were included in the introduction and discussion. The studies selected for this review used different strategies in order to access the contribution of FRCs to different mechanisms involved in the immune response: 21% evaluated viral infection in this context, 13% used a model of autoimmunity, 8% used a model of GvHD or cancer, 4% used a model of Ischemic-reperfusion injury (IRI). Another four studies just targeted a particular signaling pathway, such as MHC II expression, FRC microvesicles, FRC secretion of IL-15, FRC network, or ablation of the lysophosphatidic acid (LPA)-producing ectoenzyme autotaxin. In conclusion, our review shows the strategies used by several studies to isolate and culture fibroblastic reticular cells, the models chosen by each one, and dissects their main findings and implications in homeostasis and disease.
Collapse
|
9
|
Lymph Node Stromal Cells: Mapmakers of T Cell Immunity. Int J Mol Sci 2020; 21:ijms21207785. [PMID: 33096748 PMCID: PMC7588999 DOI: 10.3390/ijms21207785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
Stromal cells (SCs) are strategically positioned in both lymphoid and nonlymphoid organs to provide a scaffold and orchestrate immunity by modulating immune cell maturation, migration and activation. Recent characterizations of SCs have expanded our understanding of their heterogeneity and suggested a functional specialization of distinct SC subsets, further modulated by the microenvironment. Lymph node SCs (LNSCs) have been shown to be particularly important in maintaining immune homeostasis and T cell tolerance. Under inflammation situations, such as viral infections or tumor development, SCs undergo profound changes in their numbers and phenotype and play important roles in contributing to either the activation or the control of T cell immunity. In this review, we highlight the role of SCs located in LNs in shaping peripheral T cell responses in different immune contexts, such as autoimmunity, viral and cancer immunity.
Collapse
|
10
|
Hähnlein JS, Nadafi R, de Jong TA, Semmelink JF, Remmerswaal EBM, Safy M, van Lienden KP, Maas M, Gerlag DM, Tak PP, Mebius RE, Wähämaa H, Catrina AI, G. M. van Baarsen L. Human Lymph Node Stromal Cells Have the Machinery to Regulate Peripheral Tolerance during Health and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21165713. [PMID: 32784936 PMCID: PMC7460812 DOI: 10.3390/ijms21165713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In rheumatoid arthritis (RA) the cause for loss of tolerance and anti-citrullinated protein antibody (ACPA) production remains unidentified. Mouse studies showed that lymph node stromal cells (LNSCs) maintain peripheral tolerance through presentation of peripheral tissue antigens (PTAs). We hypothesize that dysregulation of peripheral tolerance mechanisms in human LNSCs might underlie pathogenesis of RA. METHOD Lymph node (LN) needle biopsies were obtained from 24 RA patients, 23 individuals positive for RA-associated autoantibodies but without clinical disease (RA-risk individuals), and 14 seronegative healthy individuals. Ex vivo human LNs from non-RA individuals were used to directly analyze stromal cells. Molecules involved in antigen presentation and immune modulation were measured in LNSCs upon interferon γ (IFNγ) stimulation (n = 15). RESULTS Citrullinated targets of ACPAs were detected in human LN tissue and in cultured LNSCs. Human LNSCs express several PTAs, transcription factors autoimmune regulator (AIRE) and deformed epidermal autoregulatory factor 1 (DEAF1), and molecules involved in citrullination, antigen presentation, and immunomodulation. Overall, no clear differences between donor groups were observed with exception of a slightly lower induction of human leukocyte antigen-DR (HLA-DR) and programmed cell death 1 ligand (PD-L1) molecules in LNSCs from RA patients. CONCLUSION Human LNSCs have the machinery to regulate peripheral tolerance making them an attractive target to exploit in tolerance induction and maintenance.
Collapse
Affiliation(s)
- Janine S. Hähnlein
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Reza Nadafi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (R.N.); (R.E.M.)
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tineke A. de Jong
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Johanna F. Semmelink
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Ester B. M. Remmerswaal
- Renal Transplant Unit, Division of Internal Medicine and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Mary Safy
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
| | - Krijn P. van Lienden
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Mario Maas
- Department of Radiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.P.v.L.); (M.M.)
| | - Danielle M. Gerlag
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
| | - Paul P. Tak
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Kintai Therapeutics, Cambridge, MA 02140, USA
- Internal Medicine, Cambridge University, Cambridge, CB2 1TN, UK
- Rheumatology, Ghent University, 9000 Ghent, Belgium
| | - Reina E. Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, VU Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (R.N.); (R.E.M.)
| | - Heidi Wähämaa
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, 17176 Stockholm, Sweden; (H.W.); (A.I.C.)
| | - Anca I. Catrina
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, 17176 Stockholm, Sweden; (H.W.); (A.I.C.)
| | - Lisa G. M. van Baarsen
- Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.S.H.); (T.A.d.J.); (J.F.S.); (M.S.); (D.M.G.); (P.P.T.)
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
11
|
Tissue-Engineered Stromal Reticula to Study Lymph Node Fibroblastic Reticular Cells in Type I Diabetes. Cell Mol Bioeng 2020; 13:419-434. [PMID: 33184575 PMCID: PMC7596159 DOI: 10.1007/s12195-020-00627-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/12/2020] [Indexed: 01/25/2023] Open
Abstract
Introduction Fibroblastic reticular cells (FRCs) support and remodel the lymph node (LN), express and present self-antigens to T cells to promote tolerance. In Type 1 diabetes (T1D), decrease in FRC frequency and in their expression of T1D-related self-antigens may hinder tolerogenic engagement of autoreactive T cells. FRC reticular organization in LNs is critical for adaptive immunity. Thus, we engineered LN-like FRC reticula to determine if FRC reticular properties were altered in T1D and to study engagement of autoreactive T cells in vitro. Methods We characterized FRC networks in pancreatic and skin-draining LNs of 4- and 12-week old non-obese diabetic (NOD) and diabetes resistant NOR mice by immunofluorescence. Murine FRCs isolated from NOR, NOD or human pancreatic LNs were cultured in collagen sponges for up to 21 days before immunofluorescence and flow cytometry analysis. NOD FRCs expressing T1D antigens were co-cultured with CellTrace-labeled specific T cells in 2D or in scaffolds. T cell engagement was quantified by CD25 upregulation, CellTrace dilution and by T cell tracking. Results FRC networks in both 4- and 12-week old NOD LNs displayed larger reticular pores than NOR controls. NOD FRCs had delayed scaffold remodeling compared to NOR FRCs. Expression of the gp38 FRC marker in NOD FRCs was lower than in NOR but improved in 3D. FRC reticula expressing T1D antigens promoted higher engagement of specific T cells than 2D. Conclusion We engineered LN-like FRC reticula that recapitulate FRC organization and phenotype of T1D LNs for studying tolerogenic autoreactive T cell engagement in T1D.
Collapse
|
12
|
Firdessa-Fite R, Creusot RJ. Nanoparticles versus Dendritic Cells as Vehicles to Deliver mRNA Encoding Multiple Epitopes for Immunotherapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 16:50-62. [PMID: 31871957 PMCID: PMC6909218 DOI: 10.1016/j.omtm.2019.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
The efficacy of antigen-specific immunotherapy relies heavily on efficient antigen delivery to antigen-presenting cells and engagement of as many disease-relevant T cells as possible in various lymphoid tissues, which are challenging to achieve. Here, we compared two approaches to deliver mRNA encoding multiple epitopes targeting both CD4+ and CD8+ T cells: a lipid-based nanoparticle platform to target endogenous antigen-presenting cells in vivo versus ex vivo mRNA-electroporated dendritic cells. After intraperitoneal injection, the nanoparticle platform facilitated efficient entry of mRNA into various endogenous antigen-presenting cells, including lymph node stromal cells, and elicited robust T cell responses within a wider network of lymphoid tissues compared with dendritic cells. Following intravenous injection, mRNA-electroporated dendritic cells and the nanoparticle platform localized primarily in lung and spleen, respectively. When administered locally via an intradermal route, both platforms resulted in mRNA expression at the injection site and in robust T cell responses in draining lymph nodes. This study indicates that multiple epitopes, customizable for specific patient populations and encoded by mRNA, can be targeted to different lymphoid tissues based on delivery vehicle and route, and constitute the groundwork for future studies using mRNA to reprogram exogenous or endogenous APCs for immunotherapy.
Collapse
Affiliation(s)
- Rebuma Firdessa-Fite
- Columbia Center for Translational Immunology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
| | - Rémi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Postigo-Fernandez J, Farber DL, Creusot RJ. Phenotypic alterations in pancreatic lymph node stromal cells from human donors with type 1 diabetes and NOD mice. Diabetologia 2019; 62:2040-2051. [PMID: 31486854 PMCID: PMC6812633 DOI: 10.1007/s00125-019-04984-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Tolerance induction in lymph nodes can be mediated by both haematopoietic cells (e.g. specific dendritic cells subsets) and by non-haematopoietic cells (e.g. lymph node stromal cells [LNSCs]) when they present peripheral tissue antigens to autoreactive T cells. LNSCs normally regulate T cell trafficking and survival and help to maintain peripheral tolerance by exerting immunosuppressive effects. However, whether autoimmunity can be associated with defective tolerogenic functions of LNSCs is unknown and studies aimed at characterising LNSCs in humans are lacking. We hypothesised that dysregulated T cell responses in pancreatic lymph nodes (PLNs) from donors with type 1 diabetes and from NOD mice may be associated with altered LNSC function. METHODS We analysed PLNs from donors with type 1 diabetes and NOD mice for LNSC distribution and phenotype using flow cytometry. We assessed the expression of tolerance-related genes in different subsets of LNSCs from human donors, as well as in a population of dendritic cells enriched in autoimmune regulator (AIRE)+ cells and identified as HLA-DRhigh CD45low. RESULTS The relative frequency of different LNSC subsets was altered in both donors with type 1 diabetes and NOD mice, and both MHC class II and programmed death-ligand 1 (PD-L1) expression were upregulated in human type 1 diabetes. Tolerance-related genes showed similar expression profiles between mouse and human LNSCs at steady state but were generally upregulated in the context of human type 1 diabetes, while, at the same time, many such genes were downregulated in the AIRE-enriched dendritic cell population. CONCLUSION/INTERPRETATION Our study shows that LNSCs are substantially altered in type 1 diabetes, but, surprisingly, they exhibit an enhanced tolerogenic phenotype along with increased antigen-presenting potential, which may indicate an attempt to offset dendritic cell-related tolerogenic defects in tolerance. Thus, LNSCs could constitute alternative therapeutic targets in which to deliver antigens to help re-establish tolerance and prevent or treat type 1 diabetes. DATA AVAILABILITY All data generated or analysed during this study are included in the published article (and its online supplementary files). Biomark gene expression data were deposited on the Mendeley repository at https://data.mendeley.com/datasets/d9rdzdmvyf/1 . Any other raw datasets are available from the corresponding author on reasonable request. No applicable resources were generated or analysed during the current study.
Collapse
Affiliation(s)
- Jorge Postigo-Fernandez
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 W. 168th Street, New York, NY, 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 W. 168th Street, New York, NY, 10032, USA
- Department of Surgery, Columbia University Medical Center, New York, NY, USA
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Rémi J Creusot
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 W. 168th Street, New York, NY, 10032, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|