1
|
Mitochondrial uncoupling protein 2 (UCP2) gene polymorphism - 866 G/A in the promoter region is associated with type 2 diabetes mellitus among Kashmiri population of Northern India. Mol Biol Rep 2023; 50:475-483. [PMID: 36346492 DOI: 10.1007/s11033-022-08055-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The study aimed to evaluate the association of UCP2 gene polymorphism - 866 G/A and its expression with diabetes predisposition in the North Indian population. METHODS The study involved 850 subjects, including 425 each T2DM and control subjects. The serum metabolic and clinical parameters were estimated using standard protocols. The PCR-RFLP based genotyping was performed to determine UCP2 gene polymorphism, while the expression was measured by real-time quantitative PCR. RESULTS The genotypic and allelic frequencies showed a significant difference in cases compared to controls (p < 0.05). The diabetes patients had a 4.2-fold decrease in UCP2 gene expression. The expression was 29.8 and 8.4 fold lower in diabetes patients with homozygous (AA) and heterozygous (GA) mutation at - 866 locus of UCP2 nucleotide sequence, respectively. When categorized according to age and BMI, the T2DM subjects with age ≥ 50 and BMI ≥ 25 had a 5.53 and 8.2-fold decrease in UCP2 expression, respectively. The diabetes subjects with homozygous and heterozygous mutation demonstrated a pathological increase in serum metabolic and clinical parameters, which corroborated with UCP2 gene expression, indicating a strong association between the two. Intriguingly, we did not find any association between - 866 G/A polymorphism of UCP2 with serum insulin levels. CONCLUSION Our investigation is the first among the studies conducted in Jammu and Kashmir to work on adipose tissue and UCP2 gene polymorphism. The association of - 866 G/A SNP of the UCP2 gene with its expression in diabetes patients appears to be an important genetic determinant in the progression of T2DM. Moreover, age ≥ 50 years and BMI ≥ 25 could be considered risk factors for developing T2DM in the studied population.
Collapse
|
2
|
Venkatachalapathy P, Padhilahouse S, Sellappan M, Subramanian T, Kurian SJ, Miraj SS, Rao M, Raut AA, Kanwar RK, Singh J, Khadanga S, Mondithoka S, Munisamy M. Pharmacogenomics and Personalized Medicine in Type 2 Diabetes Mellitus: Potential Implications for Clinical Practice. Pharmgenomics Pers Med 2021; 14:1441-1455. [PMID: 34803393 PMCID: PMC8598203 DOI: 10.2147/pgpm.s329787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of diabetes, and is rising in incidence with widespread prevalence. Multiple gene variants are associated with glucose homeostasis, complex T2DM pathogenesis, and its complications. Exploring more effective therapeutic strategies for patients with diabetes is crucial. Pharmacogenomics has made precision medicine possible by allowing for individualized drug therapy based on a patient's genetic and genomic information. T2DM is treated with various classes of oral hypoglycemic agents, such as biguanides, sulfonylureas, thiazolidinediones, meglitinides, DPP4 inhibitors, SGLT2 inhibitors, α-glucosidase inhibitors, and GLP1 analogues, which exhibit various pharmacogenetic variants. Although genomic interventions in monogenic diabetes have been implemented in clinical practice, they are still in the early stages for complex polygenic disorders, such as T2DM. Precision DM medicine has the potential to be effective in personalized therapy for those suffering from various forms of DM, such as T2DM. With recent developments in genetic techniques, the application of candidate-gene studies, large-scale genotyping investigations, genome-wide association studies, and "multiomics" studies has begun to produce results that may lead to changes in clinical practice. Enhanced knowledge of the genetic architecture of T2DM presents a bigger translational potential. This review summarizes the genetics and pathophysiology of T2DM, candidate-gene approaches, genome-wide association studies, personalized medicine, clinical relevance of pharmacogenetic variants associated with oral hypoglycemic agents, and paths toward personalized diabetology.
Collapse
Affiliation(s)
| | - Sruthi Padhilahouse
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, Tamilnadu, India
| | - Mohan Sellappan
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, Tamilnadu, India
| | | | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwin Ashok Raut
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rupinder Kaur Kanwar
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Jitendra Singh
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sagar Khadanga
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sukumar Mondithoka
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Murali Munisamy
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Dieter C, Assmann TS, Lemos NE, Massignam ET, de Souza BM, Bauer AC, Crispim D. -866G/A and Ins/Del polymorphisms in the UCP2 gene and diabetic kidney disease: case-control study and meta-analysis. Genet Mol Biol 2020; 43:e20180374. [PMID: 31479096 PMCID: PMC7198021 DOI: 10.1590/1678-4685-gmb-2018-0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Uncoupling protein 2 (UCP2) decreases reactive oxygen species (ROS). ROS overproduction is a key contributor to the pathogenesis of diabetic kidney disease (DKD). Thus, UCP2 polymorphisms are candidate risk factors for DKD; however, their associations with this complication are still inconclusive. Here, we describe a case-control study and a meta-analysis conducted to investigate the association between UCP2 -866G/A and Ins/Del polymorphisms and DKD. The case-control study comprised 385 patients with type 1 diabetes mellitus (T1DM): 223 patients without DKD and 162 with DKD. UCP2 -866G/A (rs659366) and Ins/Del polymorphisms were genotyped by real-time PCR and conventional PCR, respectively. For the meta-analysis, a literature search was conducted to identify all studies that investigated associations between UCP2 polymorphisms and DKD in patients with T1DM or type 2 diabetes mellitus. Pooled odds ratios were calculated for different inheritance models. Allele and genotype frequencies of -866G/A and Ins/Del polymorphisms did not differ between T1DM case and control groups. Haplotype frequencies were also similar between groups. Four studies plus the present one were eligible for inclusion in the meta-analysis. In agreement with case-control data, the meta-analysis results showed that the -866G/A and Ins/Del polymorphisms were not associated with DKD. In conclusion, our case-control and meta-analysis studies did not indicate an association between the analyzed UCP2 polymorphisms and DKD.
Collapse
Affiliation(s)
- Cristine Dieter
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | - Taís Silveira Assmann
- Universidad de Navarra, Department of Nutrition, Food Science
and Physiology, Pamplona, Spain
| | - Natália Emerim Lemos
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | | | - Bianca Marmontel de Souza
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| | - Andrea Carla Bauer
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Nephrology Division, Porto
Alegre, RS, Brazil
| | - Daisy Crispim
- Hospital de Clínicas de Porto Alegre, Endocrine Division, Porto
Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de
Medicina, Programa de Pós-Graduação em Ciências Médicas: Endocrinologia, Porto
Alegre, RS, Brazil
| |
Collapse
|
4
|
Saini S, Walia GK, Sachdeva MP, Gupta V. Genetics of obesity and its measures in India. J Genet 2018. [DOI: 10.1007/s12041-018-0987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
Kaabi YA. The Deletion Polymorphism in Exon 8 of Uncoupling Protein 2 is Associated with Severe Obesity in a Saudi Arabian Case-control Study. Indian J Endocrinol Metab 2018; 22:200-203. [PMID: 29911031 PMCID: PMC5972474 DOI: 10.4103/ijem.ijem_655_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Obesity is a major health concern in Saudi Arabia. Uncoupling protein 2 (UCP2) seems to play a major role in the regulation of human metabolism; therefore, genetic polymorphisms in the UCP2 gene might contribute to obesity. AIM This study aims to establish whether 45-blood pressure (BP) insertion (I)/deletion (D) polymorphisms in UCP2 are associated with moderate and/or severe obesity in a Saudi Arabian population. SETTINGS AND DESIGN Case-control study design. MATERIALS AND METHODS The study enrolled 151 male and female subjects originating from the eastern province of Saudi Arabia, and assigned each to a "nonobese," "moderately obese," or "severely obese" group. Genomic DNA was extracted from all subjects and screened for UCP2 I/D polymorphisms using a standard polymerase chain response protocol. STATISTICAL ANALYSIS USED Analysis of variance, Chi-squared tests, and logistic regression analysis. RESULTS The frequencies of the UCP2 45-BP I/D genotypes D/D, I/D, and I/I within the analyzed population were 58.3%, 36.4%, and 5.3%, respectively. The D/D genotype was highly prevalent within the severely obese group (82.9%) compared to the nonobese (46.2%) and moderately obese (53.3%) groups. Using a dominance model, the conducted logistic regression analysis showed a strong association between the deletion allele and severe obesity (Odds ratio = 0.18, 95% confidence interval: 0.07-0.44, P = 0.0004). CONCLUSIONS The present study reported that the frequency of UCP2 45-BP I/D polymorphisms in a population originating from eastern Saudi Arabia and identified a strong association between the D/D genotype and severe obesity.
Collapse
Affiliation(s)
- Yahia A. Kaabi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Say YH. The association of insertions/deletions (INDELs) and variable number tandem repeats (VNTRs) with obesity and its related traits and complications. J Physiol Anthropol 2017; 36:25. [PMID: 28615046 PMCID: PMC5471687 DOI: 10.1186/s40101-017-0142-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the fact that insertions/deletions (INDELs) are the second most common type of genetic variations and variable number tandem repeats (VNTRs) represent a large portion of the human genome, they have received far less attention than single nucleotide polymorphisms (SNPs) and larger forms of structural variation like copy number variations (CNVs), especially in genome-wide association studies (GWAS) of complex diseases like polygenic obesity. This is exemplified by the vast amount of review papers on the role of SNPs and CNVs in obesity, its related traits (like anthropometric measurements, biochemical variables, and eating behavior), and its related complications (like hypertension, hypertriglyceridemia, hypercholesterolemia, and insulin resistance-collectively known as metabolic syndrome). Hence, this paper reviews the types of INDELs and VNTRs that have been studied for association with obesity and its related traits and complications. These INDELs and VNTRs could be found in the obesity loci or genes from the earliest GWAS and candidate gene association studies, like FTO, genes in the leptin-proopiomelanocortin pathway, and UCP2/3. Given the important role of the brain serotonergic and dopaminergic reward system in obesity susceptibility, the association of INDELs and VNTRs in these neurotransmitters' metabolism and transport genes with obesity is also reviewed. Next, the role of INS VNTR in obesity and its related traits is questionable, since recent large-scale studies failed to replicate the earlier positive associations. As obesity results in chronic low-grade inflammation of the adipose tissue, the proinflammatory cytokine gene IL1RA and anti-inflammatory cytokine gene IL4 have VNTRs that are implicated in obesity. A systemic proinflammatory state in combination with activation of the renin-angiotensin system and decreased nitric oxide bioavailability as found in obesity leads to endothelial dysfunction. This explains why VNTR and INDEL in eNOS and ACE, respectively, could be predisposing factors of obesity. Finally, two novel genes, DOCK5 and PER3, which are involved in the regulation of the Akt/MAPK pathway and circadian rhythm, respectively, have VNTRs and INDEL that might be associated with obesity. SHORT CONCLUSION In conclusion, INDELs and VNTRs could have important functional consequences in the pathophysiology of obesity, and research on them should be continued to facilitate obesity prediction, prevention, and treatment.
Collapse
Affiliation(s)
- Yee-How Say
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.
| |
Collapse
|
7
|
Dhamrait SS, Maubaret C, Pedersen-Bjergaard U, Brull DJ, Gohlke P, Payne JR, World M, Thorsteinsson B, Humphries SE, Montgomery HE. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. Bioessays 2016; 38 Suppl 1:S107-18. [DOI: 10.1002/bies.201670909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Sukhbir S. Dhamrait
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
- Department of Cardiology; Western Sussex Hospitals NHS Trust; West Sussex UK
| | - Cecilia Maubaret
- Centre INSERM U897-Epidemiologie-Biostatistique; Bordeaux France
| | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology; Hillerød Hospital; Hillerød Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - David J. Brull
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
- Department of Cardiology; The Whittington Hospital NHS Trust; London UK
| | - Peter Gohlke
- Institute of Experimental and Clinical Pharmacology; University Hospital of Schleswig-Holstein; Kiel Germany
| | - John R. Payne
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
- Scottish National Advanced Heart Failure Service; Golden Jubilee National Hospital; Clydebank UK
| | - Michael World
- Royal Centre for Defence Medicine; Queen Elizabeth Hospital; Birmingham UK
| | - Birger Thorsteinsson
- Department of Cardiology, Nephrology and Endocrinology; Hillerød Hospital; Hillerød Denmark
- Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Steve E. Humphries
- Centre for Cardiovascular Genetics, BHF Laboratories; University College London; London UK
| | - Hugh E. Montgomery
- UCL and National Centre for Sport, Exercise & Health; University College London; London UK
- UCL Institute for Human Health and Performance; University College London; London UK
| |
Collapse
|
8
|
Liu WC, Lai SJ. A synonymous mutation of uncoupling protein 2 (UCP2) gene is associated with growth performance, carcass characteristics and meat quality in rabbits. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2016; 58:3. [PMID: 26755944 PMCID: PMC4707775 DOI: 10.1186/s40781-016-0086-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Background Uncoupling proteins 2 (UCP2) plays an important role in energy regulation, previous studies suggested that UCP2 is an excellent candidate gene for human obesity and growth-related traits in cattle and chicks. The current study was designed to detect the genetic variation of UCP2 gene, and to explore the association between polymorphism of UCP2 gene and growth, carcass and meat quality traits in rabbits. Results A synonymous mutation in exon 1 and four variants in the first intron of the UCP2 gene were identified by using PCR-sequencing. The synonymous mutation c.72G>A was subsequently genotyped by MassArray system (Sequenom iPLEXassay) in 248 samples from three meat rabbit breeds (94 Ira rabbits, 83 Champagne rabbits, and 71 Tianfu black rabbits). Association analysis suggested that the individuals with AA and AG genotypes showed greater 70 d body weight (P < 0.05), 84 d body weight (P < 0.01), ADG from 28 to 84 days of age (P < 0.05), eviscerated weight (P < 0.01), semi-eviscerated weight (P < 0.01) and semi-eviscerated slaughter percentage (P < 0.05), respectively. Additionally, the individuals with AA and AG genotype had a lower pH value of longissimus muscle (P < 0.01) and hind leg muscle (P < 0.05) after slaughter 24 h. Conclusions These findings indicated that UCP2 could be a candidate gene that associated with growth performance, body composition and meat quality in rabbits, and this would contribute to advancements in meat rabbit breeding practice.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130 China ; Department of Animal Resource and Science, Dankook University, Cheonan, Choognam 330-714 South Korea
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130 China
| |
Collapse
|
9
|
Dhamrait SS, Maubaret C, Pedersen-Bjergaard U, Brull DJ, Gohlke P, Payne JR, World M, Thorsteinsson B, Humphries SE, Montgomery HE. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies. ACTA ACUST UNITED AC 2015; 1:70-81. [PMID: 27347560 PMCID: PMC4915277 DOI: 10.1002/icl3.1019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.
Collapse
Affiliation(s)
- Sukhbir S Dhamrait
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Department of Cardiology Western Sussex Hospitals NHS Trust West Sussex UK
| | | | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology Hillerød Hospital Hillerød Denmark; Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - David J Brull
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Department of Cardiology The Whittington Hospital NHS Trust London UK
| | - Peter Gohlke
- Institute of Experimental and Clinical Pharmacology University Hospital of Schleswig-Holstein Kiel Germany
| | - John R Payne
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK; Scottish National Advanced Heart Failure Service Golden Jubilee National Hospital Clydebank UK
| | - Michael World
- Royal Centre for Defence Medicine Queen Elizabeth Hospital Birmingham UK
| | - Birger Thorsteinsson
- Department of Cardiology, Nephrology and Endocrinology Hillerød Hospital Hillerød Denmark; Faculty of Health Sciences University of Copenhagen Copenhagen Denmark
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, BHF Laboratories University College London London UK
| | - Hugh E Montgomery
- UCL and National Centre for Sport, Exercise & Health University College London London UK; UCL Institute for Human Health and Performance University College London London UK
| |
Collapse
|
10
|
de Souza BM, Michels M, Sortica DA, Bouças AP, Rheinheimer J, Buffon MP, Bauer AC, Canani LH, Crispim D. Polymorphisms of the UCP2 Gene Are Associated with Glomerular Filtration Rate in Type 2 Diabetic Patients and with Decreased UCP2 Gene Expression in Human Kidney. PLoS One 2015; 10:e0132938. [PMID: 26218518 PMCID: PMC4517748 DOI: 10.1371/journal.pone.0132938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/20/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Uncoupling protein 2 (UCP2) reduces production of reactive oxygen species (ROS) by mitochondria. ROS overproduction is one of the major contributors to the pathogenesis of chronic diabetic complications, such as diabetic kidney disease (DKD). Thus, deleterious polymorphisms in the UCP2 gene are candidate risk factors for DKD. In this study, we investigated whether UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms were associated with DKD in patients with type 2 diabetes mellitus (T2DM), and whether they had an effect on UCP2 gene expression in human kidney tissue biopsies. MATERIALS AND METHODS In a case-control study, frequencies of the UCP2 -866G/A, Ala55Val and Ins/Del polymorphisms as well as frequencies of the haplotypes constituted by them were analyzed in 287 T2DM patients with DKD and 281 T2DM patients without this complication. In a cross-sectional study, UCP2 gene expression was evaluated in 42 kidney biopsy samples stratified according to the presence of the UCP2 mutated -866A/55Val/Ins haplotype. RESULTS In the T2DM group, multivariate logistic regression analysis showed that the -866A/55Val/Ins haplotype was an independent risk factor for DKD (OR = 2.136, 95% CI 1.036-4.404), although neither genotype nor allele frequencies of the individual polymorphisms differed between case and control groups. Interestingly, T2DM patients carrying the mutated haplotype showed decreased estimated glomerular filtration rate (eGFR) when compared to subjects with the reference haplotype (adjusted P= 0.035). In kidney biopsy samples, UCP2 expression was significantly decreased in UCP2 mutated haplotype carriers when compared to kidneys from patients with the reference haplotype (0.32 ± 1.20 vs. 1.85 ± 1.16 n fold change; adjusted P< 0.000001). DISCUSSION Data reported here suggest that the UCP2 -866A/55Val/Ins haplotype is associated with an increased risk for DKD and with a lower eGFR in T2DM patients. Furthermore, this mutated haplotype was associated with decreased UCP2 gene expression in human kidneys.
Collapse
Affiliation(s)
- Bianca Marmontel de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcus Michels
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Denise Alves Sortica
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Bouças
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jakeline Rheinheimer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marjoriê Piuco Buffon
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea Carla Bauer
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luís Henrique Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Liu Z, Xie J, Luo T, Zhang T, Zhao X, Zhao H, Li P. An epidemiologic study of mitochondrial membrane transporter protein gene polymorphism and risk factors for neural tube defects in Shanxi, China. Neural Regen Res 2015; 7:463-9. [PMID: 25774190 PMCID: PMC4350134 DOI: 10.3969/j.issn.1673-5374.2011.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/02/2011] [Indexed: 01/25/2023] Open
Abstract
The present study involved a questionnaire survey of 156 mothers that gave birth to children with neural tube defects or had a history of pregnancy resulting in children with neural tube defects (case group) and 156 control mothers with concurrent healthy children (control group) as well as detection of mitochondrial membrane transporter protein gene [uncoupling protein 2 (UCP2)] polymorphism. The maternal UCP2 3’ untranslated region (UTR) D/D genotype and D allele frequency were significantly higher in the case group compared with the control group (odds ratio (OR) 3.233; 95% confidence interval (CI) 1.103–9.476; P = 0.040; OR: 3.484; 95% CI: for neural tube defects 2.109–5.753; P < 0.001). Univariate and multivariate logistic regression analysis of risk factors for neural tube defects showed that a maternal UCP2 3’ UTR D/D genotype was negatively interacted with the mothers’ consumption of frequent fresh fruit and vegetables (S = 0.007), positively interacted with the mothers’ frequency of germinated potato consumption (S = 2.15) and positively interacted with the mothers’ body mass index (S = 3.50). These findings suggest that maternal UCP2 3’ UTR gene polymorphism, pregnancy time, consumption of germinated potatoes and body mass index are associated with an increased risk for neural tube defects in children from mothers living in Shanxi province, China. Moreover, there is an apparent gene-environment interaction involved in the development of neural tube defects in offspring.
Collapse
Affiliation(s)
- Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Tian'e Luo
- Department of Epidemiology and Statistics, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Tao Zhang
- Shanghai Yangpu District Center for Disease Control and Prevention, Shanghai 200093, China
| | - Xia Zhao
- Department of Physical and Chemical Detection, Shanxi Centre for Disease Control and Prevention, Taiyuan 030001, Shanxi Province, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Peizhen Li
- Department of Epidemiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| |
Collapse
|
12
|
Park J, Bose S, Hong SW, Lee DK, Yoo JW, Lim CY, Lee M, Kim H. Impact of GNB3-C825T, ADRB3-Trp64Arg, UCP2-3'UTR 45 bp del/ins, and PPARγ-Pro12Ala polymorphisms on Bofutsushosan response in obese subjects: a randomized, double-blind, placebo-controlled trial. J Med Food 2014; 17:558-70. [PMID: 24827746 DOI: 10.1089/jmf.2013.2836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Obesity is known to be influenced by a number of genes, including the β3 subunit of G protein (GNB3), β3-adrenergic receptor (ADRB3), uncoupling protein 2 (UCP2), and peroxisome proliferator activated receptor gamma (PPARγ). The single nucleotide polymorphisms (SNPs) of the above genes, such as GNB3-C825T, ADRB3-Trp64Arg, UCP2-3'UTR 45 bp del/ins, and PPARγ-Pro12Ala, are associated with obesity and body mass index. The present study evaluates the impact of Bofutsushosan, a traditional Eastern Asian herbal medicine with known anti-obesity properties, on obese subjects according to the presence of the above-mentioned SNPs. Upon randomization, the volunteers were allocated to receive Bofutsushosan (n=55) or placebo (n=56) treatments for 8 weeks. Following the treatment schedule, significant reductions in total cholesterol and significant improvement in the Korean version of obesity-related quality of life scale were seen in the Bofutsushosan-treated group, but not in placebo. Bofutsushosan exerted significant anti-obesity effects on a number of parameters in the carriers of the GNB3-825T allele, but only on waist circumference in the GNB3-C/C homozygote. Significant anti-obesity impact of Bofutsushosan was also seen on a number of obesity-indices in both ADRB3-Arg64 carriers and ADRB3-Trp64 homozygotes, as well as in UCP2-D/D carriers, but not in UCP2-D/I+I/I variants. The effect of Bofutsushosan was more pronounced in PPARγ-Pro/Pro genotype compared to PPARγ-Pro/Ala variants. Thus, the results revealed differential responses of the subjects to the anti-obesity effects of Bofutsushosan treatment according to the polymorphism of the vital obesity-related genes. Our study provides new insight into individualized clinical applications of Bofutsushosan for obesity.
Collapse
Affiliation(s)
- Junghyun Park
- 1 Department of Oriental Rehabilitation, Gangnam Korean Hospital, Kyunghee University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Say YH, Ban ZL, Arumugam Y, Kaur T, Tan ML, Chia PP, Fan SH. Uncoupling protein 2 gene (UCP2) 45-bp I/D polymorphism is associated with adiposity among Malaysian women. J Biosci 2014; 39:867-75. [PMID: 25431415 DOI: 10.1007/s12038-014-9488-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/07/2014] [Indexed: 12/27/2022]
Abstract
This study investigated the association of Uncoupling Protein 2 gene (UCP2) 45-bp I/D polymorphism with obesity and adiposity in 926 Malaysian subjects (416 males;265 obese; 102/672/152 Malays/Chinese/Indians). The overall minor allele frequency (MAF) was 0.14, while MAFs according to Malay/Chinese/Indian were 0.17/0.12/0.21. The polymorphism was associated with ethnicity, obesity and overall adiposity (total body fat percentage, TBF), but not gender and central adiposity (waist-hip ratio, WHR). Gender- and ethnicity-stratified analysis revealed that within males, the polymorphism was not associated with ethnicity and anthropometric classes. However, within females, significantly more Indians, obese and those with high TBF carried I allele. Logistic regression analysis among females further showed the polymorphism was associated with obesity and overall adiposity; however, when adjusted for age and ethnicity, this association was abolished for obesity but remained significant for overall adiposity [Odds Ratio (OR) for ID genotype = 2.02 (CI=1.18, 3.45; p=0.01); I allele =1.81 (CI=1.15, 2.84; p=0.01)]. Indeed, covariate analysis controlling for age and ethnicity also showed that those carrying ID genotype or I allele had significantly higher TBF than the rest. In conclusion, UCP2 45-bp I/D polymorphism is associated with overall adiposity among Malaysian women.
Collapse
Affiliation(s)
- Yee-How Say
- Department of Biomedical Science, Faculty of Science, Centre for Foundation Studies, Universiti Tunku Abdul Rahman (UTAR) Perak Campus, Kampar, Perak, Malaysia,
| | | | | | | | | | | | | |
Collapse
|
14
|
Brondani LDA, de Almeida Brondani L, de Souza BM, Assmann TS, Bouças AP, Bauer AC, Canani LH, Crispim D. Association of the UCP polymorphisms with susceptibility to obesity: case-control study and meta-analysis. Mol Biol Rep 2014; 41:5053-67. [PMID: 24752406 DOI: 10.1007/s11033-014-3371-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/05/2014] [Indexed: 12/25/2022]
Abstract
This paper describes a case-control study and a meta-analysis performed to evaluate if the following polymorphisms are associated with presence of obesity: -3826A/G (UCP1); -866G/A, Ala55Val and Ins/Del (UCP2) and -55C/T (UCP3). The case-control study enrolled 282 obese and 483 non-obese patients with type 2 diabetes. A literature search was made to identify all studies that evaluated associations between UCP1-3 polymorphisms and obesity. In the case-control study the distributions of the UCP variants did not differ between obese and non-obese groups (P > 0.05). Forty-seven studies were eligible for the meta-analysis and the results showed that the UCP2 -866G/A and UCP3 -55C/T polymorphisms were associated with protection to obesity in Europeans (OR = 0.89, 95% CI 0.82-0.97 and OR = 0.88, 95% CI 0.80-0.97, respectively). The UCP2 Ala55 val polymorphism was associated with obesity in Asians (OR = 1.61, 95% CI 1.13-2.30). The UCP2 Ins/Del polymorphism was associated with obesity mainly in Europeans (OR = 1.19, 95% CI 1.00-1.42). There was no significant association of the UCP1 -3826A/G polymorphism with obesity. In our case-control study we were not able to demonstrate any association between UCP polymorphisms and obesity in T2DM patients; however, in the meta-analysis we detected a significant association of UCP2 -866G/A, Ins/Del, Ala55Val and UCP3 -55C/T polymorphisms with obesity.
Collapse
|
15
|
Hashemi M, Rezaei H, Kaykhaei MA, Taheri M. A 45-bp insertion/deletion polymorphism of UCP2 gene is associated with metabolic syndrome. J Diabetes Metab Disord 2014; 13:12. [PMID: 24398006 PMCID: PMC3937167 DOI: 10.1186/2251-6581-13-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/21/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Metabolic syndrome (MeS) is being recognized as a risk factor for insulin resistance and cardiovascular disease. The present study was aimed to find out the possible association between 45-bp I/D polymorphism of uncoupling protein 2 (UCP2) and MeS. METHODS DNA was extracted from peripheral blood of 151 subjects with and 149 subjects without MeS. 45-bp I/D variant of UCP2 was detected using polymerase chain reaction (PCR). RESULTS Our finding showed that 45-bp I/D polymorphism was associated with protection against MeS (OR = 0.56, 95% CI = 0.34-0.92, p = 0.020 D/I vs DD and OR = 0.54, 95% CI = 0.34-0.86, p = 0.009; D/I + I/I vs D/D). The I allele decreased the risk of MeS (OR = 0.62, 95% CI = 0.44-0.90, p = 0.011) in comparison with D allele. CONCLUSION In conclusion, our result suggests that 45-bp I/D polymorphism is associated with the risk of MeS, which remains to be cleared.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamzeh Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmoud-Ali Kaykhaei
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetics of Non Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
16
|
Lucock MD, Martin CE, Yates ZR, Veysey M. Diet and our genetic legacy in the recent anthropocene: a Darwinian perspective to nutritional health. J Evid Based Complementary Altern Med 2013; 19:68-83. [PMID: 24647381 DOI: 10.1177/2156587213503345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nutrient-gene research tends to focus on human disease, although such interactions are often a by-product of our evolutionary heritage. This review explores health in this context, reframing genetic variation/epigenetic phenomena linked to diet in the framework of our recent evolutionary past. This "Darwinian/evolutionary medicine" approach examines how diet helped us evolve among primates and to adapt (or fail to adapt) our metabolome to specific environmental conditions leading to major diseases of civilization. This review presents updated evidence from a diet-gene perspective, portraying discord that exists with respect to health and our overall nutritional, cultural, and activity patterns. While Darwinian theory goes beyond nutritional considerations, a significant component within this concept does relate to nutrition and the mismatch between genes, modern diet, obesogenic lifestyle, and health outcomes. The review argues that nutritional sciences should expand knowledge on the evolutionary connection between food and disease, assimilating it into clinical training with greater prominence.
Collapse
Affiliation(s)
- Mark D Lucock
- University of Newcastle, Ourimbah, New South Wales, Australia
| | | | | | | |
Collapse
|
17
|
Sharma R, Agrawal S, Saxena A, Pandey M, Sharma RK. Association of genetic variants of ghrelin, leptin and UCP2 with malnutrition inflammation syndrome and survival in end-stage renal disease patients. GENES AND NUTRITION 2013; 8:611-21. [PMID: 23925522 DOI: 10.1007/s12263-013-0353-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/03/2013] [Indexed: 11/24/2022]
Abstract
Malnutrition inflammation syndrome (MIS) is common among ESRD patients. In the present study, we have investigated the association of genetic markers associated with appetite and energy regulation with malnutrition inflammation syndrome among end-stage renal disease (ESRD) patients. Two hundred and fifty-seven patients on maintenance hemodialysis and 200 normal healthy controls were included in the study. Nutritional assessment was done by subjective global assessment scores (SGA). Genotyping of leptin-2548 G/A (rs7799039), ghrelin Leu72Met (rs696217-408 C/A), Arg51Gln (rs34911341-346 G/A) and uncoupling protein 2 (UCP2) 45 bp insertion deletion was done using PCR-RFLP. Levels of leptin and acyl ghrelin were assessed using ELISA. Leptin-2548 AA genotype was associated with twofold higher risk of disease susceptibility while UCP2 insertion-deletion heterozygotes showed protective effect. Ghrelin Gln51Gln and Met72Met genotype were associated with 3.4- and 2.5-fold higher disease susceptibility. The Met72 and Gln51 allele showed 3.3- and 2.1-fold higher susceptibility to malnutrition in severe SGA group. Further, the levels of acyl ghrelin were significantly less in severe category of malnutrition and in poor appetite group. On combined analysis, the group 2 (presence of 3-4 risk alleles) showed 1.5- and twofold higher susceptibility to disease and malnutrition, respectively. On docking analysis, it was observed that higher receptor binding energy was associated with the mutant form of ghrelin (Gln51). Moderate and severe SGA were associated with 2.2- and 4.1-fold higher death hazard. Our study suggests that ghrelin may be major marker contributing to susceptibility to MIS among ESRD patients.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, 226014, UP, India,
| | | | | | | | | |
Collapse
|
18
|
Uncoupling protein 2 -866G/A and uncoupling protein 3 -55C/T polymorphisms in young South African Indian coronary artery disease patients. Gene 2013; 524:79-83. [PMID: 23639961 DOI: 10.1016/j.gene.2013.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Uncoupling proteins (UCPs) 2 and 3 play an important role in the regulation of oxidative stress which contributes to chronic inflammation. Promoter polymorphisms of these genes have been linked to chronic diseases including heart disease and type II diabetes mellitus in several populations. This is the first investigation of the UCP2 -866G/A rs659366 and UCP3 -55C/T rs1800849 polymorphisms in young South African (SA) Indians with coronary artery disease (CAD). METHODS A total of 300 subjects were recruited into this study of which 100 were SA Indian males with CAD, 100 age- (range 24-45 years), gender- and race-matched controls and 100 age-matched black SA males. The frequency of the UCP2 -866G/A and UPC3 -55C/T genotypes was assessed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). RESULTS The heterozygous UCP2 -866G/A and homozygous UCP3 -55C/C genotypes occurred at highest frequency in CAD patients (60% and 64%, respectively) compared to SA Indian controls (52% and 63%) and SA Black controls (50% and 58%). The UCP2 -886G/A (OR=1.110; 95% CI=0.7438-1.655; p=0.6835) and UCP3 -55C/T (OR=0.788; 95% CI=0.482-1.289; p=0.382) polymorphisms did not influence the risk of CAD. The rare homozygous UCP3 -55T/T genotype was associated with highest fasting glucose (11.87 ± 3.7 mmol/L vs. C/C:6.11 ± 0.27 mmol/L and C/T:6.48 ± 0.57 mmol/L, p=0.0025), HbA1c (10.05 ± 2.57% vs. C/C:6.44 ± 0.21% and C/T:6.76 ± 0.35%, p=0.0006) and triglycerides (6.47 ± 1.7 mmol/L vs. C/C:2.33 ± 0.17 mmol/L and C/T:2.06 ± 0.25 mmol/L, p<0.0001) in CAD patients. CONCLUSION The frequency of the UCP2 -866G/A and UCP3 -55C/T polymorphisms was similar in our SA Indian and SA Black groups. The presence of the UCP2 -866G/A and UCP3 -55C/T polymorphisms does not influence the risk of CAD in young South African Indian CAD patients.
Collapse
|
19
|
Genetic association of adipokine and UCP2 polymorphism with recurrent miscarriage among non-obese women. Reprod Biomed Online 2012; 25:527-35. [DOI: 10.1016/j.rbmo.2012.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/23/2022]
|
20
|
Bharati DR, Pal R, Kar S, Rekha R, Yamuna TV, Basu M. Prevalence and determinants of diabetes mellitus in Puducherry, South India. J Pharm Bioallied Sci 2012; 3:513-8. [PMID: 22219584 PMCID: PMC3249698 DOI: 10.4103/0975-7406.90104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/25/2011] [Accepted: 06/27/2011] [Indexed: 12/24/2022] Open
Abstract
Background: Diabetes mellitus is an emerging global health problem. It is a chronic, noncommunicable, and expensive public health disease. Aims and Objectives: To determine the prevalence and the risk factors of type 2 diabetes mellitus among the adult population of Puducherry, South India. Materials and Methods: This was a population-based cross-sectional study carried out during 1st May 2007–30th November 2007 in the rural and urban field practice area of Mahatma Gandhi Medical College and Research Institute, Puducherry. Simple random sampling technique was used for the selection of 1370 adult 20 years of age and above. Main outcome measures were the assessment of the prevalence of prevalence and correlates of diabetes among the adult population. Predesigned and pretested questionnaire was used to elicit the information on family and individual sociodemographic variables. Height, weight, waist, and hip circumference, blood pressure was measured and venous blood was also collected to measure fasting blood glucose, blood cholesterol. Results: Overall, 8.47% study subjects were diagnosed as diabetic. The univariate analysis and multivariate logistic regression analysis showed that the important correlates of diabetes mellitus were age, blood cholesterol, and family history of diabetes. The findings were found to be statistically significant. Conclusions: In our study we observed that adults having increased age, hypercholesterolemia, and family history of diabetes mellitus are more likely to develop diabetes mellitus.
Collapse
Affiliation(s)
- Dharamvir Ranjan Bharati
- Department of Community Medicine, Mahatma Gandhi Medical College and Research Institute, Pondy-Cuddalore Main Road, Pillayarkuppam, Puducherry, India
| | | | | | | | | | | |
Collapse
|
21
|
Association of the UCP2 45-bp insertion/deletion polymorphism with diabetes type 2 and obesity in Saudi population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2012. [DOI: 10.1016/j.ejmhg.2012.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C. The Human Obesity Gene Map: The 2003 Update. ACTA ACUST UNITED AC 2012; 12:369-439. [PMID: 15044658 DOI: 10.1038/oby.2004.47] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This is the tenth update of the human obesity gene map, incorporating published results up to the end of October 2003 and continuing the previous format. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) from human genome-wide scans and animal crossbreeding experiments, and association and linkage studies with candidate genes and other markers is reviewed. Transgenic and knockout murine models relevant to obesity are also incorporated (N = 55). As of October 2003, 41 Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. QTLs reported from animal models currently number 183. There are 208 human QTLs for obesity phenotypes from genome-wide scans and candidate regions in targeted studies. A total of 35 genomic regions harbor QTLs replicated among two to five studies. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 272 studies reporting positive associations with 90 candidate genes. Fifteen such candidate genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, more than 430 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Eric E Snyder
- Human Genomics Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808-4124, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu X, Zhang B, Liu X, Shen Y, Li J, Zhao N, Ma L, Du Q, Liu L, Zhao J, Wang X. A 45-bp insertion/deletion polymorphism in uncoupling protein 2 is not associated with obesity in a Chinese population. Biochem Genet 2012; 50:784-96. [PMID: 22733179 DOI: 10.1007/s10528-012-9520-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
The association of a 45-bp insertion/deletion (UCP2-45 bp I/D) polymorphism in uncoupling protein 2 with body mass index (BMI) remains controversial. A case-control study was conducted to examine the association in a Chinese population. The 1,526 subjects recruited in downtown Beijing and genotyped included 616 obese subjects with BMI >28 and 910 age- and gender-matched controls with BMI <24. The association of the polymorphisms with obesity was estimated using multivariate logistic regression in three models of inheritance. The odds ratios were 1.08 (95 % CI 0.846-1.368; P = 0.551) in the dominant model, 0.931 (0.751-1.154; P = 0.513) in the additive model, and 1.18 (0.550-2.550; P = 0.666) in the recessive model. The overall comparison of the genotype distributions in obese and control subjects using the chi-square test yielded P = 0.801. Our study demonstrated no association between UCP2-45 bp I/D and BMI variation in the Chinese population.
Collapse
Affiliation(s)
- Xiaoqiu Liu
- Department of Epidemiology, Public Health School, Harbin Medical University, 194 Xuefu Road, Nangang District, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Papazoglou D, Papathanasiou P, Papanas N, Papatheodorou K, Chatziangeli E, Nikitidis I, Kotsiou S, Maltezos E. Uncoupling protein-2 45-base pair insertion/deletion polymorphism: is there an association with severe obesity and weight loss in morbidly obese subjects? Metab Syndr Relat Disord 2012; 10:307-11. [PMID: 22568573 DOI: 10.1089/met.2012.0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Uncoupling proteins are attractive candidate genes for obesity and type 2 diabetes mellitus. Our aim was to investigate the potential association of the uncoupling protein-2 (UCP2) 45-bp insertion/deletion (ins/del) polymorphism with obesity, as well as the potential effect of this polymorphism on weight loss variability in severely obese subjects. METHODS A total of 158 severely obese subjects (94 without and 64 with metabolic syndrome) and 91 age and sex-matched lean controls were recruited. A subgroup of 124 obese patients participated in a 3-month weight loss program. Anthropometric and metabolic variables were measured. Participants were genotyped for the UCP2 ins/del polymorphism. RESULTS Allelic frequency differed neither between obese subjects and controls (P=0.56), nor between obese subjects with versus without metabolic syndrome (P=0.58). At 3 months, metabolically healthy subjects carrying the insertion allele had significantly greater reduction in body mass index (P=0.029) and fat-free mass (P=0.013) and a borderline significant improvement in the homeostatic model assessment index (P=0.048). CONCLUSION There is no association of the UCP2 ins/del polymorphism with morbid obesity in our population, but this genotype appears to be linked with a favorable response to dietary changes in metabolically healthy obese subjects.
Collapse
Affiliation(s)
- Dimitrios Papazoglou
- Outpatient Clinic of Obesity, Diabetes, and Metabolism in the Second Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Souza BMD, Assmann TS, Kliemann LM, Gross JL, Canani LH, Crispim D. The role of uncoupling protein 2 (UCP2) on the development of type 2 diabetes mellitus and its chronic complications. ACTA ACUST UNITED AC 2012; 55:239-48. [PMID: 21779625 DOI: 10.1590/s0004-27302011000400001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022]
Abstract
It is well established that genetic factors play an important role in the development of type 2 diabetes mellitus (DM2) and its chronic complications, and that genetically susceptible subjects can develop the disease after being exposed to environmental risk factors. Therefore, great efforts have been made to identify genes associated with DM2. Uncoupling protein 2 (UCP2) is expressed in several tissues, and acts in the protection against oxidative stress; in the negative regulation of insulin secretion by beta cells, and in fatty acid metabolism. All these mechanisms are associated with DM2 pathogenesis and its chronic complications. Therefore, UCP2 is a candidate gene for the development of these disorders. Indeed, several studies have reported that three common polymorphisms in UCP2 gene are possibly associated with DM2 and/or obesity. Only a few studies investigated these polymorphisms in relation to chronic complications of diabetes, with inconclusive results.
Collapse
|
27
|
de Souza BM, Assmann TS, Kliemann LM, Marcon AS, Gross JL, Canani LH, Crispim D. The presence of the -866A/55Val/Ins haplotype in the uncoupling protein 2 (UCP2) gene is associated with decreased UCP2 gene expression in human retina. Exp Eye Res 2011; 94:49-55. [PMID: 22134120 DOI: 10.1016/j.exer.2011.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 10/14/2011] [Accepted: 11/14/2011] [Indexed: 12/31/2022]
Abstract
Uncoupling protein 2 (UCP2) is a mitochondrial transporter present in the inner membrane of mitochondria, and it uncouples substrate oxidation from ATP synthesis, thereby dissipating the membrane potential energy and consequently decreasing ATP production by mitochondrial respiratory chain. As a consequence of the uncoupling, UCP2 decreases the reactive oxygen species (ROS) formation by mitochondria. ROS overproduction is related to diabetic retinopathy (DR), a chronic complication of diabetes mellitus (DM). Recently, our group reported that the -866A/55Val/Ins haplotype (-866G/A, Ala55Val and Ins/Del polymorphisms) of the UCP2 gene was associated with increased risk for DR in patients with DM. The purpose of this study was to analyze the effect of this haplotype on UCP2 gene expression in human retina. In addition, MnSOD2 gene expression was also investigated according to different UCP2 haplotypes. This cross-sectional study included 188 cadaveric cornea donors. In a subset of 91 retinal samples differentiated according to the presence of the mutated UCP2 haplotype and risk alleles of the -866G/A and Ins/Del polymorphisms, UCP2 and MnSOD2 gene expressions were measured by semi-quantitative RT-qPCR. Mutated UCP2 haplotype carriers (homozygous + heterozygous) had a lower UCP2 gene expression than reference haplotype carriers (8.4 ± 7.6 vs. 18.8 ± 23.7 arbitrary units; P = 0.046). Accordingly, UCP2 gene expression was decreased in -866A carriers when compared with G/G carriers (P = 0.010). UCP2 gene expression did not differ between Ins allele carriers and Del/Del carriers (P = 0.556). Interestingly, subjects carrying the heterozygous UCP2 haplotype showed increased MnSOD2 gene expression (P = 0.025). This is the first report suggesting that the presence of the -866A/55Val/Ins haplotype is associated with decreased UCP2 gene expression in human retina. Possibly, MnSOD2 expression might influence the UCP2 effect in the protection against oxidative stress.
Collapse
Affiliation(s)
- Bianca M de Souza
- Endocrinology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang J, Liu C, Zhao H, Wang F, Guo J, Xie H, Lu X, Bao Y, Pei L, Niu B, Zhong R, Zheng X, Zhang T. Association between a 45-bp 3'untranslated insertion/deletion polymorphism in exon 8 of UCP2 gene and neural tube defects in a high-risk area of China. Reprod Sci 2011; 18:556-60. [PMID: 21266666 DOI: 10.1177/1933719110393026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Uncoupling protein 2(UCP2) is an attractive candidate gene for screening neural tube defects (NTDs) risk. In this study, polymerase chain reaction and agarose gel electrophoresis were used to determine the distribution of the polymorphism in a case group of 140 deliveries with NTDs, and a control group of 251 normal newborns. We found that the frequencies of allele I and genotypes ID + II were higher in the case group than in the control group (P = .167, OR = 1.4, 95% CI, 0.9-2.1; P = .132, OR = 1.44, 95% CI, 0.89-2.33, respectively); and at low maternal educational level, the frequency of ID + II genotypes was significantly higher in the NTD case group (P < .05, OR = 1.7, 95% CI, 1.01-2.79). The result suggested that the polymorphism in UCP2 may be a potential genetic risk factor for NTDs in a high-risk area of China, and the association was influenced by maternal education.
Collapse
|
29
|
Dalgaard LT. Genetic Variance in Uncoupling Protein 2 in Relation to Obesity, Type 2 Diabetes, and Related Metabolic Traits: Focus on the Functional -866G>A Promoter Variant (rs659366). J Obes 2011; 2011:340241. [PMID: 21603268 PMCID: PMC3092578 DOI: 10.1155/2011/340241] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/21/2011] [Indexed: 01/09/2023] Open
Abstract
Uncoupling proteins (UCPs) are mitochondrial proteins able to dissipate the proton gradient of the inner mitochondrial membrane when activated. This decreases ATP-generation through oxidation of fuels and may theoretically decrease energy expenditure leading to obesity. Evidence from Ucp((-/-)) mice revealed a role of UCP2 in the pancreatic β-cell, because β-cells without UCP2 had increased glucose-stimulated insulin secretion. Thus, from being a candidate gene for obesity UCP2 became a valid candidate gene for type 2 diabetes mellitus. This prompted a series of studies of the human UCP2 and UCP3 genes with respect to obesity and diabetes. Of special interest was a promoter variant of UCP2 situated 866bp upstream of transcription initiation (-866G>A, rs659366). This variant changes promoter activity and has been associated with obesity and/or type 2 diabetes in several, although not all, studies. The aim of the current paper is to summarize current evidence of association of UCP2 genetic variation with obesity and type 2 diabetes, with focus on the -866G>A polymorphism.
Collapse
Affiliation(s)
- Louise T. Dalgaard
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- *Louise T. Dalgaard:
| |
Collapse
|
30
|
Yiew SK, Khor LY, Tan ML, Pang CL, Chai VY, Kanachamy SS, Say YH. No association between peroxisome proliferator-activated receptor and uncoupling protein gene polymorphisms and obesity in Malaysian university students. Obes Res Clin Pract 2010; 4:e247-342. [DOI: 10.1016/j.orcp.2010.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/28/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
|
31
|
Crispim D, Fagundes NJR, dos Santos KG, Rheinheimer J, Bouças AP, de Souza BM, Macedo GS, Leiria LB, Gross JL, Canani LH. Polymorphisms of the UCP2 gene are associated with proliferative diabetic retinopathy in patients with diabetes mellitus. Clin Endocrinol (Oxf) 2010; 72:612-9. [PMID: 19681913 DOI: 10.1111/j.1365-2265.2009.03684.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Uncoupling protein 2 (UCP2) plays a role in controlling reactive oxygen species (ROS) production by mitochondria. As ROS overproduction is related to diabetic retinopathy (DR), UCP2 gene polymorphisms might be involved in the development of this complication. We investigated whether the -866G/A (rs659366), Ala55Val (rs660339) and 45 bp insertion/deletion (Ins/Del) polymorphisms in the UCP2 gene might be associated with proliferative DR (PDR). DESIGN AND METHODS In this case-control study, we analysed 501 type 2 diabetic patients (242 patients with PDR and 259 subjects without any degree of DR) and 196 type 1 diabetic patients (85 cases with PDR and 111 without DR). Haplotypes constructed from the combination of the three UCP2 polymorphisms were inferred using a Bayesian statistical method. RESULTS In the type 2 diabetic group, multivariate analyses confirmed that the haplotype [A Val Ins] was an independent risk factor for PDR when present in one [adjusted odds ratio (aOR) = 2.12; P = 0.006], at least one (aOR = 2.75; P = 0.00001), or two copies (aOR = 5.30; P = 0.00001), suggesting an additive model of inheritance. Nevertheless, in type 1 diabetic patients, the association of this haplotype with PDR was confirmed only when it was present in at least one (aOR = 2.68; P = 0.014) or two copies (aOR = 6.02; P = 0.005). CONCLUSIONS The haplotype [A Val Ins] seems to be an important risk factor associated with PDR in both type 2 and 1 diabetic groups.
Collapse
Affiliation(s)
- Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yonezawa T, Kurata R, Hosomichi K, Kono A, Kimura M, Inoko H. Nutritional and hormonal regulation of uncoupling protein 2. IUBMB Life 2010; 61:1123-31. [PMID: 19946892 DOI: 10.1002/iub.264] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Uncoupling proteins (UCPs) belong to a family of mitochondrial carrier proteins that are present in the mitochondrial inner membrane. Genetic and experimental studies have shown that UCP dysfunction can be involved in metabolic disorders and in obesity. Uncoupling protein-1 (UCP1; also known as thermogenin) was identified in 1988 and found to be highly expressed in brown adipose tissue. UCP1 allows the leak of protons in respiring mitochondria, dissipating the energy as heat; the enzyme has an important role in nonshivering heat production induced by cold exposure or food intake. In 1997, two homologs of UCP1 were identified and named UCP2 and UCP3. These novel proteins also lower mitochondrial membrane potential, but whether they can dissipate metabolic energy as heat as efficiently as UCP1 is open to dispute. Even after a decade of study, the physiological roles of these novel proteins have still not been completely elucidated. This review aims to shed light on the nutritional and hormonal regulation of UCP2 and on its physiological roles.
Collapse
Affiliation(s)
- Tomo Yonezawa
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Bohseidai, Ishehara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Salopuro T, Pulkkinen L, Lindström J, Kolehmainen M, Tolppanen AM, Eriksson JG, Valle TT, Aunola S, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Tuomilehto J, Laakso M, Uusitupa M. Variation in the UCP2 and UCP3 genes associates with abdominal obesity and serum lipids: the Finnish Diabetes Prevention Study. BMC MEDICAL GENETICS 2009; 10:94. [PMID: 19769793 PMCID: PMC2754982 DOI: 10.1186/1471-2350-10-94] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/21/2009] [Indexed: 02/06/2023]
Abstract
Background We explored the associations of three variants in the uncoupling protein 2 (UCP2) gene, one variant in the UCP2-UCP3 intergenic region and five variants in the uncoupling protein 3 (UCP3) gene with obesity and diabetes related traits in subjects with impaired glucose tolerance participating in Finnish Diabetes Prevention Study. Altogether 507 overweight individuals (body mass index: 31.2 ± 4.5 kg/m2, age: 55 ± 7 years) for whom DNA was available were randomized to either an intensified diet and physical activity group or to a conventional care control group. Methods We analysed the data from the baseline and annual follow-up visits from years 1, 2 and 3. Measurements of anthropometry, plasma glucose and serum insulin in oral glucose tolerance test, serum total cholesterol, HDL-cholesterol and triglycerides were included. The median follow-up time for type 2 diabetes incidence was 7 years. Genetic variants were screened by restriction fragment length polymorphism or Illumina method. Results UCP3 gene variant rs3781907 was associated with increased serum total and LDL-cholesterol levels, at baseline and during the follow-up period. The same variant was associated with a higher risk of type 2 diabetes. Variants rs1726745, rs11235972 and rs1800849 in the UCP3 gene associated with serum total and LDL-cholesterol at baseline. Haploblock including variants rs659366, rs653529, rs15763, and rs1726745 was associated with measures of abdominal obesity at baseline and in the longitudinal analysis. The haplotype comprising alleles rs659366-G, rs653529-A, rs15763-G and rs1726745-A was associated with higher waist-to-hip ratio, and haplotype comprising alleles rs3781907-G, rs11235972-A, and rs1800849-T was associated with increased serum total and LDL-cholesterol concentrations. Conclusion Genetic variation in the UCP2-UCP3 gene cluster may act as a modifier increasing serum lipid levels and indices of abdominal obesity, and may thereby also contribute to the metabolic aberrations observed in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Titta Salopuro
- University of Kuopio, Department of Clinical Nutrition and Food and Health Research Center, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jia JJ, Zhang X, Ge CR, Jois M. The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes Rev 2009; 10:519-26. [PMID: 19413708 DOI: 10.1111/j.1467-789x.2009.00569.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uncoupling proteins (UCPs) belong to the family of mitochondrial transporter proteins that may uncouple the transport of protons across the inner mitochondrial membrane from electron transport and the synthesis of ATP from ADP, hence generating heat rather than energy. In mammals, more than five family members have been identified, including UCP1, UCP2, UCP3, UCP4 (or BMCP1/UCP5) and UCP5. The UCPs may play an important role in energy homeostasis and have become prominent in the fields of thermogenesis, obesity, diabetes and free-radical biology and have been considered candidate genes for obesity and insulin resistance. They have been as important potential targets for treatment of aging, degenerative diseases, diabetes and obesity. Recently, a series of studies showed the polymorphisms of UCPs gene association with the fat metabolism, obesity and diabetes. This review summarizes data supporting the roles of UCP2 and UCP3 in energy dissipation, as well as the genetic variety association with fat metabolism, obesity and diabetes in humans.
Collapse
Affiliation(s)
- J-J Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | | | | | | |
Collapse
|
35
|
Malini DS, Sahu A, Mohapatro S, Tripathy RM. Assessment of Risk Factors for Development of Type-II Diabetes Mellitus Among Working Women in Berhampur, Orissa. Indian J Community Med 2009; 34:232-6. [PMID: 20049302 PMCID: PMC2800904 DOI: 10.4103/0970-0218.55290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 02/04/2009] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES 1) Assess general health condition and anthropological parameters of the working women. 2) Identify prevalence of Type-II Diabetes among them. 3) Assess risk factors associated with development of diabetes. 4) Educate them about Life Style Modifications. MATERIALS AND METHODS A cross sectional study was carried out in six educational institutes. A total of 100 working women were selected as study population. During the two-month study period, Fasting Blood Sugar (FBS) was estimated to identify the diabetics and the Impaired Glucose Tolerance (IGT). Information from the study population was collected through pre-tested questionnaire using several anthropometric measurements. RESULTS Out of 100 women, 24 were having FBS compatible with IGT or diabetes. The incidence was highest in 46 to 55 yr age group. 75% of women with diabetes or IGT were in higher income group. Body Mass Index was more than 25 kg/m(2) in maximum (75%) women having diabetes or IGT. 92% women with diabetes or IGT had their Waist Hip Ratio >/=0.85. Moreover, orientation towards healthy life style modification to control diabetes and its prevention was poor among the study population. CONCLUSION Prevalence of diabetes and IGT was higher among urban working women and is increasing with increase in age. Obesity plays a major role in development of Type 2 diabetes. Several long- and short-term steps should be taken for promotion of healthy life style modifications to prevent diabetes and emergence of its complications.
Collapse
Affiliation(s)
- D Shobha Malini
- Department of Community Medicine, MKCG Medical College, Berhampur, India
| | - A Sahu
- Department of Community Medicine, MKCG Medical College, Berhampur, India
| | - Swapna Mohapatro
- Department of Community Medicine, MKCG Medical College, Berhampur, India
| | - RM Tripathy
- Department of Community Medicine, MKCG Medical College, Berhampur, India
| |
Collapse
|
36
|
Session on ‘Obesity’ Adipose tissue development, nutrition in early life and its impact on later obesity. Proc Nutr Soc 2009; 68:321-6. [DOI: 10.1017/s0029665109001402] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is now apparent that one key factor determining the current obesity epidemic within the developed world is the extent to which adipose tissue growth and function can be reset in early life. Adipose tissue can be either brown or white, with brown fat being characterised as possessing a unique uncoupling protein (uncoupling protein 1) that enables the rapid generation of heat by non-shivering thermogenesis. In large mammals this function is recruited at approximately the time of birth, after which brown fat is lost, not normally reappearing again throughout the life cycle. The origin and developmental regulation of brown fat in large mammals is therefore very different from that of small mammals in which brown fat is retained throughout the life cycle and may have the same origin as muscle cells. In contrast, white adipose tissue increases in mass after birth, paralleled by a rise in glucocorticoid action and macrophage accumulation. This process can be reset by changes in the maternal nutritional environment, with the magnitude of response being further determined by the timing at which such a challenge is imposed. Importantly, the long-term response within white adipocytes can occur in the absence of any change in total fat mass. The present review therefore emphasises the need to further understand the developmental regulation of the function of fat through the life cycle in order to optimise appropriate and sustainable intervention strategies necessary not only to prevent obesity in the first place but also to reverse excess fat mass in obese individuals.
Collapse
|
37
|
Avesani CM, Kamimura MA, Utaka S, Pecoits-Filho R, Nordfors L, Stenvinkel P, Lindholm B, Draibe SA, Cuppari L. Is UCP2 gene polymorphism associated with decreased resting energy expenditure in nondialyzed chronic kidney disease patients? J Ren Nutr 2009; 18:489-94. [PMID: 18940651 DOI: 10.1053/j.jrn.2008.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The deletion/deletion (del/del) polymorphism of uncoupling protein 2 (UCP2) was associated with decreased energy expenditure in diabetic and obese patients. There is evidence of decreased resting energy expenditure (REE) in chronic kidney disease (CKD) patients not yet on dialysis. However, whether REE is associated with the UCP2 polymorphism was not previously investigated in this population. This study evaluated whether the del/del polymorphism of the UCP2 gene is associated with lower REE in nondialyzed CKD patients. DESIGN This was a cross-sectional study. PATIENTS AND METHODS Forty-four nondialyzed CKD patients (29 male; aged 52 +/- 12 years; creatinine clearance, 37 +/- 13 mL/min/1.73 m(2) [values are mean +/- SD unless otherwise noted]) were included. Their REE was assessed by indirect calorimetry, and body composition by bioelectrical impedance. High-sensitivity C-reactive protein (hs-CRP) was also evaluated. The insertion/deletion (ins/del) polymorphism of the UCP2 gene was determined in all participants. To test whether the deletion/deletion (del/del) polymorphism of the UCP2 gene was associated with lower REE, the REE of carriers of the del/del genotype (n = 24; group Del) was compared with that of carriers of the insertion and ins/del genotype (n = 20; group Ins). MAIN OUTCOME MEASURE The main outcome measure was REE. RESULTS The REE of group Del was similar to that of the group Ins (1379 +/- 239 kcal/day vs. 1360 +/- 289 kcal/day, respectively, P = NS). This result was maintained even after the REE was adjusted for lean body mass by analysis of covariance. In addition, in a multiple-regression analysis using REE as the dependent variable, only lean body mass and hs-CRP were significant predictors of REE. CONCLUSION The results suggest that the del/del polymorphism of the UCP2 gene is not associated with lower REE in nondialyzed CKD patients.
Collapse
Affiliation(s)
- Carla Maria Avesani
- Department of Medicine, Division of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men. J Hypertens 2009; 27:305-13. [PMID: 19155787 DOI: 10.1097/hjh.0b013e32831ac967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Lee YH, Kim W, Yu BC, Park BL, Kim LH, Shin HD. Association of the ins/del polymorphisms of uncoupling protein 2 (UCP2) with BMI in a Korean population. Biochem Biophys Res Commun 2008; 371:767-71. [DOI: 10.1016/j.bbrc.2008.04.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/25/2008] [Indexed: 11/24/2022]
|
40
|
Abstract
Obstructive sleep apnea-hypopnea syndrome involves recurring episodes of total obstruction (apnea) or partial obstruction (hypopnea) of airways during sleep. Obstructive sleep apnea-hypopnea syndrome affects mainly obese individuals and it is defined by an apnea-hypopnea index of five or more episodes per hour associated with daytime somnolence. In addition to anatomical factors and neuromuscular and genetic factors, sleep disorders are also involved in the pathogenesis of sleep apnea. Obesity affects upper airway anatomy because of fat deposition and metabolic activity of adipose tissue. Obstructive sleep apnea-hypopnea syndrome and metabolic syndrome have several characteristics such as visceral obesity, hypertension and insulin resistance. Inflammatory cytokines might be related to the pathogenesis of sleep apnea and metabolic syndrome. Sleep apnea treatment includes obesity treatment, use of equipment such as continuous positive airway pressure, drug therapy and surgical procedures in selected patients. Currently, there is no specific drug therapy available with proven efficacy for the treatment of obstructive sleep apnea-hypopnea syndrome. Body-weight reduction results in improvement of sleep apnea, and obesity treatment must be emphasized, including lifestyle changes, anti-obesity drugs and bariatric surgery.
Collapse
Affiliation(s)
- A G P de Sousa
- Obesity and Metabolic Diseases Group, Endocrinology and Metabology Service, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil.
| | | | | | | |
Collapse
|
41
|
Abstract
Obesity is the result of an imbalance between food intake and energy expenditure resulting in the storing of energy as fat. Adipose tissue contains the largest store of energy in the body and plays important roles in regulating energy partitioning. Developments in genomics, in particular microarray-based expression profiling, have provided scientists with a number of new candidate genes whose expression in adipose tissue is regulated by obesity. Integrating expression profiles with genome-wide linkage and/or association analyses is a promising strategy to identify new genes underlying susceptibility to obesity. This article provides a comprehensive review of adipose-tissue-expressed genes implicated in predisposition to human obesity. The authors consider the following genes of particular interest: peroxisome proliferator-activated receptor gamma and, potentially, INSIG2 acting in adipogenesis; the adrenoreceptors beta 2 and 3, as well as hormone-sensitive lipase acting on lipolysis; uncoupling protein 2 acting in mitochondria energy expenditure; and among secreted molecules the cytokine tumor necrosis factor alpha and the hormone leptin. With the rapid development in genome research, we predict that additional alleles in genes regulating adipose tissue function will be established as risk factors for common obesity in the coming years. This has important implications for the prevention of obesity and may also offer new therapeutic targets.
Collapse
Affiliation(s)
- I Dahlman
- Department of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
42
|
Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc 2007; 63:397-403. [PMID: 15373949 DOI: 10.1079/pns2004366] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is apparent from epidemiological studies that the timing of maternal nutrient restriction has a major influence on outcome in terms of predisposing the resulting offspring to adult obesity. The present review will consider the extent to which maternal age, parity and nutritional restriction at defined stages of gestation can have important effects on fat deposition and endocrine sensitivity of adipose tissue in the offspring. For example, in 1-year-old sheep the offspring of juvenile mothers have substantially reduced fat deposition compared with those born to adult mothers. Offspring of primiparous adult mothers, however, show increased adiposity compared with those born to multiparous mothers. These offspring of multiparous ewes show retained abundance of the brown adipose tissue-specific uncoupling protein 1 at 1 month of age. A stimulated rate of metabolism in brown fat of these offspring may act to reduce adipose tissue deposition in later life. In terms of defined windows of development that can programme adipose tissue growth, maternal nutrient restriction targetted over the period of maximal placental growth results in increased adiposity at term in conjunction with enhanced abundance of mRNA for the insulin-like growth factor-I and -II receptors. In contrast, nutrient restriction in late gestation, coincident with the period of maximal fetal growth, has no major effect on adiposity but results in greater abundance of specific mitochondrial proteins, i.e. voltage-dependent anion channel and/or uncoupling protein 2. These adaptations may increase the predisposal of these offspring to adult obesity. Increasing maternal nutrition in late gestation, however, can result in proportionately less fetal adipose tissue deposition in conjunction with enhanced abundance of uncoupling protein 1.
Collapse
Affiliation(s)
- Michael E Symonds
- Centre for Reproduction and Early Life, Institute of Clinical Research, Queen's Medical Centre, University Hospital, Nottingham NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
43
|
Rance KA, Johnstone AM, Murison S, Duncan JS, Wood SG, Speakman JR. Plasma leptin levels are related to body composition, sex, insulin levels and the A55V polymorphism of the UCP2 gene. Int J Obes (Lond) 2007; 31:1311-8. [PMID: 17342078 DOI: 10.1038/sj.ijo.0803535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Circulating leptin levels show a high degree of individual variability even after the main effect of body fatness is accounted for. We therefore wanted to determine the roles of variation in body composition, age, sex and polymorphisms of the UCP2 gene and promoter region on levels of circulating leptin. SUBJECTS One hundred and fifty Caucasian subjects, which represented a cross-section of the population from NE, Scotland, were recruited. MEASUREMENTS Body composition was measured using dual X-ray absorptiometry. Fasted circulating leptin, insulin, T3 and T4 levels were measured, and all individuals were genotyped for the UCP2 polymorphisms A55V, -866G>A and exon-8 ins/del. RESULTS The results indicate that circulating leptin was significantly related to sex and principle component (PC) scores representing overall adipose tissue mass and a second representing the contrast of central to peripheral bone mineral content. Residual leptin was associated with the A55V polymorphism (P< 0.001) explaining 11.3% of the residual variance. There was a marginal effect associated with exon-8 ins/del (P=0.045) explaining 4.4% of the residual variance in leptin. Log(e) transformed circulating fasting insulin was related to PC scores representing general adiposity and sex. Residual Log(e) insulin was associated with the A55V and exon-8 ins/del polymorphisms explaining 5.7% (P=0.015) and 5% (P=0.026) of the residual variation, respectively. The -866G>A polymorphism was not significantly associated with residual leptin or insulin. Leptin and insulin were significantly (P=0.007) correlated. Statistically removing the effect of insulin on leptin still showed association between leptin and A55V (P=0.002). Removing the effect of leptin on insulin, the A55V polymorphism was no longer significant (P=0.120). After accounting for the correlation between insulin and leptin, the exon-8 ins/del was no longer significant for residual leptin (P=0.119) or Log(e) insulin (P=0.252). CONCLUSION These data suggest that the A55V polymorphism directly affected the levels of leptin but not via an effect on insulin.
Collapse
Affiliation(s)
- K A Rance
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), Rowett Research Institute, Bucksburn, Aberdeen, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 704] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gnanalingham MG, Mostyn A, Symonds ME, Stephenson T. Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1407-15. [PMID: 16002557 DOI: 10.1152/ajpregu.00375.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased glucocorticoid action and adipose tissue inflammation contribute to excess adiposity. These adaptations may be enhanced in offspring exposed to nutrient restriction (NR) in utero, thereby increasing their susceptibility to later obesity. We therefore determined the developmental ontogeny of glucocorticoid receptor (GR), 11β-hydroxysteroid dehydrogenase (11βHSD) types 1 and 2, and uncoupling protein (UCP)-2 mRNA in perirenal adipose tissue between late gestation and 6 mo after birth in the sheep, as well as the effect of maternal NR targeted between early to mid (28–80 days, term ∼147 days)- or late (110–147 days) gestation. GR and 11βHSD1 mRNA increased with fat mass and were all maximal within the 6-mo observation period. 11βHSD2 mRNA abundance demonstrated a converse decline, whereas UCP2 peaked at 30 days. GR and 11βHSD1 mRNA abundance were strongly correlated with total and relative perirenal adipose tissue weight, and UCP2 was strongly correlated with GR and 11βHSD1 mRNA. Early- to midgestational NR increased GR, 11βHSD1, and UCP2 mRNA, but decreased 11βHSD2 mRNA abundance, an adaptation reversed with late-gestational NR. We conclude that the continual rise in glucocorticoid action and fat mass after birth may underlie the development of later obesity. The magnitude of this adaptation is partly dependent on maternal food intake through pregnancy.
Collapse
Affiliation(s)
- Muhuntha G Gnanalingham
- Centre for Reproduction and Early Life, Institute of Chemical Research, University of Nottingham, United Kingdom
| | | | | | | |
Collapse
|
46
|
Abstract
Both obesity and obstructive sleep apnea (OSA) are complex disorders with multiple risk factors, which interact in a complicated fashion to determine the overall phenotype. In addition to environmental risk factors, each disorder has a strong genetic basis that is likely due to the summation of small to moderate effects from a large number of genetic loci. Obesity is a strong risk factor for sleep apnea, and there are some data to suggest sleep apnea may influence obesity. It is therefore not surprising that many susceptibility genes for obesity and OSA should be shared. Current research suggests that approximately half of the genetic variance in the apnea hypopnea index is shared with obesity phenotypes. Genetic polymorphisms that increase weight will also be risk factors for apnea. In addition, given the interrelated pathways regulating both weight and other intermediate phenotypes for sleep apnea such as ventilatory control, upper airway muscle function, and sleep characteristics, it is likely that there are genes with pleiotropic effects independently impacting obesity and OSA traits. Other genetic loci likely interact with obesity to influence development of OSA in a gene-by-environment type of effect. Conversely, environmental stressors such as intermittent hypoxia and sleep fragmentation produced by OSA may interact with obesity susceptibility genes to modulate the importance that these loci have on defining obesity-related traits.
Collapse
Affiliation(s)
- Sanjay R Patel
- Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Yu X, Jacobs DR, Schreiner PJ, Gross MD, Steffes MW, Fornage M. The uncoupling protein 2 Ala55Val polymorphism is associated with diabetes mellitus: the CARDIA study. Clin Chem 2005; 51:1451-6. [PMID: 15951317 DOI: 10.1373/clinchem.2004.044859] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Uncoupling proteins (UCPs) reduce ATP generation with concomitant increased release of heat. The activities of UCPs have been related to obesity and energy metabolism. METHODS We investigated the association of the commonly observed UCP2 Ala55Val (V) polymorphism with diabetes mellitus and impaired fasting glucose (IFG) among 3684 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) study. RESULTS The V frequency was approximately 45% in blacks and 42% in whites. Those with the Val/Val (VV) genotype had a higher incidence of diabetes than those having the Ala/Ala (AA) genotype (5.8% vs 3.3%; P = 0.02). Similarly, the incidences of diabetes in participants without abdominal obesity were 2.8% and 1.0% (P = 0.03) in the VV and AA groups, and 12.4% and 8.3% (P = 0.15) in participants with abdominal obesity. The incidence of IFG was higher in VV vs AA only in those without abdominal obesity (12.9% vs 9.2%). These trends persisted in minimally and fully adjusted models, and in strata of blacks and whites and men and women. The homeostasis model assessment for insulin resistance was highest in VV in the combined group of those with IFG or untreated diabetes, but not in those with normal fasting glucose. CONCLUSION The VV genotype of the UCP2 polymorphism was positively related to diabetes. It may involve increased insulin resistance in those with impaired glucose homeostasis.
Collapse
Affiliation(s)
- Xinhua Yu
- Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
It is regularly thought that human complex disorder susceptibility genes show differences in gene expression between normal and pathologic tissues. Thus, differences of transcript amounts could be indicative of complex disorder susceptibility loci and, therefore, be used for the discovery or the validation of human susceptibility genes to complex disorders/traits. Whether human complex disorder susceptibility genes effectively display differences in transcript amounts was tested by meta-analysis of the published literature comparing transcript amounts of well-validated human susceptibility genes to complex traits/disorders. A total of 94 gene-disease associations, which were studied in at least three independent studies and showed strong evidence of positive association, were analyzed. For 23 out of these 94 well-validated gene-disease associations, 120 gene expression studies comparing normal and pathologic human tissues were found. For 60 out of these 120 gene expression studies, the difference of level expression between normal and pathologic human tissues was statistically significant. This result was highly significant, as only 6 significant results were expected randomly under the null hypothesis (P < 10(-112)). A large excess of replication studies were also found, which were in agreement with the original report (P = 6 x 10(-4)). However, the overall level of expression change between normal and pathologic human tissues was relatively moderate, because only 36 (60%) and 19 (31.6%) out of the 62 statistically significant gene expression studies reached 2- or 3-fold changes in expression level, respectively. The present meta-analysis confirms statistical differences of expression levels between normal and pathologic human tissues for human susceptibility genes to complex traits/disorders. However, the levels of differences in transcript amounts appear to be relatively weak. These findings rationalize the use of gene expression for the discovery/validation of human susceptibility genes, but the weak differences of expression typically found should be taken into account for the design of such studies.
Collapse
|
49
|
Abstract
Obesity is an important cause of morbidity and mortality in developed countries, and is also becoming increasingly prevalent in the developing world. Although environmental factors are important, there is considerable evidence that genes also have a significant role in its pathogenesis. The identification of genes that are involved in monogenic, syndromic and polygenic obesity has greatly increased our knowledge of the mechanisms that underlie this condition. In the future, dissection of the complex genetic architecture of obesity will provide new avenues for treatment and prevention, and will increase our understanding of the regulation of energy balance in humans.
Collapse
Affiliation(s)
- Christopher G Bell
- Section of Genomic Medicine, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
50
|
Li H, Li Y, Zhao X, Li N, Wu C. Structure and Nucleotide Polymorphisms in Pig Uncoupling Protein 2 and 3 Genes. Anim Biotechnol 2005; 16:209-20. [PMID: 16335813 DOI: 10.1080/10495390500278128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Uncoupling proteins (UCPs) are mitochondrial membrane transporters, acting as an uncoupler in oxidative phosphorylation. In this study, we designed 11 primer sets based on the human and mouse UCP2, UCP3 sequences and successfully amplified full regions of porcine UCP2 and UCP3 by polymerase chain reactions (PCR). Comparison of the UCP2 and UCP3 genic structures revealed a highly conservative region was putatively presented, showing the second transmembrane domain may be the UCPs' cardinal function region. Altogether 23 nucleotide polymorphisms of UCP2 and UCP3 genes were discovered in Yorkshire, Wuzhishan, and Lepinghua pigs. These polymorphisms included 3 missense mutations, 16 intronic substitutions, and 4 intronic deletions. The substitution of Ala-55-Val in UCP2 is actually the most common mutation in human. We also calculated genotypic frequencies of five polymorphisms in three pig breeds.
Collapse
Affiliation(s)
- Hanjie Li
- College of Animal Science and Technology, State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P.R. China
| | | | | | | | | |
Collapse
|